Clinical Validation of GenBody COVID-19 Ag, Nasal and Nasopharyngeal Rapid Antigen Tests for Detection of SARS-CoV-2 in European Adult Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statements
2.2. Research Centers, Study Design, Patient Group and Sample Collection
2.3. Diagnostics Medical Device Candidate
2.4. Reference Devices Description
2.5. Performance Evaluation
negative agreement (%) = D/(B + D) × 100
negative predictive value (%) = [(D/(D + C) ] × 100
- (True positive) constituted the number of positive samples in both developed and reference tests;
- (False positive) represented the number of positive samples in the developed test, but negative in the reference method,
- (False negative) were samples negative in the tested device and positive in the reference method;
- (True negative) were samples in both the tested device and reference method;
- Was the number of positive cases in the reference method based on the CT value;
- Referred to positive RAT results for a specific CT.
3. Results
3.1. Patient Group and Specimen Characteristics
3.2. Medical Device Candidate Evaluation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19. 11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-themedia-briefing-on-covid-19$-$11-march-2020 (accessed on 20 January 2022).
- Komiazyk, M.; Aptowicz, A.; Ksiazek, I.; Sitkiewicz, I.; Baraniak, A. Asymptomatic carriage of severe acute respiratory syndrome coronavirus 2 by a pregnant woman and her newborn. Pol. Arch. Intern. Med. 2021, 131, 182–183. [Google Scholar] [CrossRef] [PubMed]
- Komiazyk, M.; Walory, J.; Gawor, J.; Ksiazek, I.; Gromadka, R.; Baraniak, A. Case Report of COVID-19 after full vaccination: Viral loads and anti-SARS-CoV-2 antibodies. Diagnostics 2021, 11, 1815. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.L.; Wang, Y.M.; Li, X.W.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Haitao, T.; Vermunt, J.V.; Abeykoon, J.; Ghamrawi, R.; Gunaratne, M.; Jayachandran, M.; Narang, K.; Parashuram, S.; Suvakov, S.; Garovic, V.D. COVID-19 and Sex Differences: Mechanisms and Biomarkers. Mayo Clin. Proc. 2020, 95, 2189–2203. [Google Scholar] [CrossRef]
- Booth, A.; Reed, A.B.; Ponzo, S.; Yassaee, A.; Aral, M.; Plans, D.; Labrique, A.; Mohan, D. Population Risk Factors for Severe Disease and Mortality in COVID-19: A Global Systematic Review and Meta-Analysis. PLoS ONE 2021, 16, e02474. [Google Scholar] [CrossRef] [PubMed]
- Velavan, T.P.; Pallerla, S.R.; Rüter, J.; Augustin, Y.; Kremsner, P.G.; Krishna, S.; Meyer, C.G. Host Genetic Factors Determining COVID-19 Susceptibility and Severity. EbioMedicine 2021, 72, 103629. [Google Scholar] [CrossRef]
- Amodio, E.; Battisti, M.; Maida, C.M.; Zarcone, M.; Casuccio, A.; Vitale, F. Socio-Demographic Factors Involved in a Low-Incidence Phase of SARS-CoV-2 Spread in Sicily, Italy. Healthcare 2021, 9, 867. [Google Scholar] [CrossRef]
- PN-EN ISO 13485:2016/A11:2022-01; International Organization for Standardization & International Electrotechnical Commission. Medical Devices—Quality Management Systems, Requirements for Regulatory Purposes. Springer: Cham, Switzerland, 2022.
- Goldsack, J.C.; Coravos, A.; Bakker, J.P.; Bent, B.; Dowling, A.V.; Fitzer-Attas, C.; Godfrey, A.; Godino, J.G.; Gujar, N.; Izmailova, E.; et al. Verification, analytical validation, and clinical validation (V3): The foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs). NPJ Digit. Med. 2020, 3, 55. [Google Scholar] [CrossRef]
- Council Recommendation on a Common Framework for the Use and Validation of Rapid Antigen Tests and the Mutual Recognition of COVID-19 Test Results in the EU 2021/C 24/01. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021H0122(01) (accessed on 30 April 2022).
- European Commission Directorate-General for Health and Food Safety. Update—MDCG 2021-21 Rev.1—Guidance on Performance Evaluation of SARS-CoV-2 In Vitro Diagnostic Medical Devices. Available online: https://health.ec.europa.eu/latest-updates/update-mdcg-2021-21-rev1-guidance-performance-evaluation-sars-cov-2-vitro-diagnostic-medical-devices-2022-02-15_en (accessed on 30 April 2022).
- European Commission Directorate-General for Health and Food Safety. EU Common List of COVID-19 Antigen Tests. Available online: https://health.ec.europa.eu/system/files/2022-10/covid-19_eu-common-list-antigen-tests_en_1.pdf (accessed on 14 October 2022).
- Guaman-Bautista, L.P.; Moreta-Urbano, E.; Oña-Arias, C.G.; Torres-Arias, M.; Kyriakidis, N.C.; Malcı, K.; Jonguitud-Borrego, N.; Rios-Solis, L.; Ramos-Martinez, E.; López-Cortés, A.; et al. Tracking SARS-CoV-2: Novel Trends and Diagnostic Strategies. Diagnostics 2021, 11, 1981. [Google Scholar] [CrossRef] [PubMed]
- Dinnes, J.; Sharma, P.; Berhane, S.; van Wyk, S.S.; Nyaaba, N.; Domen, J.; Taylor, M.; Cunningham, J.; Davenport, C.; Dittrich, S.; et al. Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. Cochrane Database Syst. Rev. 2022, 7, CD013705. [Google Scholar]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Kw Chu, D.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef]
- Tang, Y.W.; Schmitz, J.E.; Persing, D.H.; Stratton, C.W. Laboratory Diagnosis of COVID-19: Current Issues and Challenges. J. Clin. Microbiol. 2020, 58, e00512-20. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Antigen-Detection in the Diagnosis of SARS-CoV-2 Infection. Available online: https://www.who.int/publications/i/item/antigen-detection-in-the-diagnosis-of-sars-cov-2infection-using-rapid-immunoassays (accessed on 6 October 2021).
- Torres, I.; Poujois, S.; Albert, E.; Colomina, J.; Navarro, D. Evaluation of a rapid antigen test (Panbio™ COVID-19 Ag rapid test device) for SARS-CoV-2 detection in asymptomatic close contacts of COVID-19 patients. Clin. Microbiol. Infect. 2021, 27, 636.e1–636.e4. [Google Scholar] [CrossRef] [PubMed]
- Tapari, A.; Braliou, G.G.; Papaefthimiou, M.; Mavriki, H.; Kontou, P.I.; Nikolopoulos, G.K.; Bagos, P.G. Performance of Antigen Detection Tests for SARS-CoV-2: A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 1388. [Google Scholar] [CrossRef] [PubMed]
- CDC. Interim Guidelines for Collecting and Handling of Clinical Specimens for COVID-19 Testing. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/guidelines-clinical-specimens.html (accessed on 27 December 2022).
- Kim, D.; Lee, J.; Bal, J.; Seo, S.K.; Chong, C.K.; Lee, J.H.; Park, H. Development and Clinical Evaluation of an Immunochromatography-Based Rapid Antigen Test (GenBody™ COVAG025) for COVID-19 Diagnosis. Viruses 2021, 13, 796. [Google Scholar] [CrossRef]
- Czibere, L.; Burggraf, S.; Becker, M.; Durner, J.; Draenert, M.E. Verification of lateral flow antigen tests for SARS-CoV-2 by qPCR directly from the test device. Dent. Mater. 2022, 38, 155–159. [Google Scholar] [CrossRef]
- Koskinen, J.M.; Antikainen, P.; Hotakainen, K.; Haveri, A.; Ikonen, N.; Savolainen-Kopra, C.; Sundström, K.; Koskinen, J.O. Clinical validation of automated and rapid mariPOC SARS-CoV-2 antigen test. Sci Rep. 2021, 11, 20363. [Google Scholar] [CrossRef]
- Tré-Hardy, M.; Wilmet, A.; Beukinga, I.; Favresse, J.; Dogné, J.M.; Douxfils, J.; Blairon, L. Analytical and clinical validation of an ELISA for specific SARS-CoV-2 IgG, IgA, and IgM antibodies. J. Med. Virol. 2021, 93, 803–811. [Google Scholar] [CrossRef]
- Terpos, E.; Ntanasis-Stathopoulos, I.; Skvarč, M. Clinical Application of a New SARS-CoV-2 Antigen Detection Kit (Colloidal Gold) in the Detection of COVID-19. Diagnostics 2021, 11, 995. [Google Scholar] [CrossRef]
- Fernandez-Montero, A.; Argemi, J.; Rodríguez, J.A.; Ariño, A.H.; Moreno-Galarraga, L. Validation of a rapid antigen test as a screening tool for SARS-CoV-2 infection in asymptomatic populations. Sensitivity, specificity and predictive values. EClinicalMedicine 2021, 37, 100954. [Google Scholar] [CrossRef] [PubMed]
- Sammut-Powell, C.; Reynard, C.; Allen, J.; McDermott, J.; Braybrook, J.; Parisi, R.; Lasserson, D.; Body, R.; behalf of the CONDOR steering committee. Examining the effect of evaluation sample size on the sensitivity and specificity of COVID-19 diagnostic tests in practice: A simulation study. Diagn. Progn. Res. 2022, 6, 12. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Diagnostic tests 2: Predictive values. BMJ 1994, 309, 102. [Google Scholar] [CrossRef]
- Parikh, R.; Mathai, A.; Parikh, S.; Chandra, S.G.; Thomas, R. Understanding and using sensitivity, specificity and predictive values. Indian J. Ophthalmol. 2008, 56, 45–50. [Google Scholar] [CrossRef]
- Singh, A.; Gupta, P.; Mathuria, Y.P.; Kalita, D.; Prasa, A.; Panda, P.K.; Bahurupi, Y.; Sahoo, B.; Omar, B.J. Comparative Evaluation of Nasopharyngeal and Oropharyngeal Swab Based Rapid SARS-CoV-2 Antigen Detection and Real-Time RT-PCR for Diagnosis of COVID-19 in Tertiary Care Hospital. Cureus 2021, 31, e16785. [Google Scholar] [CrossRef]
- Nóra, M.; Déri, D.; Veres, D.S.; Kis, Z.; Barcsay, E.; Pályi, B. Evaluating the field performance of multiple SARS-Cov-2 antigen rapid tests using nasopharyngeal swab samples. PLoS ONE 2022, 17, e0262399. [Google Scholar] [CrossRef] [PubMed]
- Van Beek, J.; Igloi, Z.; Boelsums, T.; Fanoy, E.; Gotz, H.; Molenkamp, R.; van Kampen, J.; GeurtsvanKessel, C.; van der Eijk, A.A.; van de Vijver, D.; et al. From more testing to smart testing: Data-guided SARS-CoV-2 testing choices, the Netherlands, May to September 2020. Eur. Surveill. 2022, 27, 2100702. [Google Scholar] [CrossRef] [PubMed]
- Yi, T.H.; Lee, J.H. Comparison Between GenBody COVID-19 Rapid Antigen Kit and SARS-CoV-2 RT-PCR. Clin. Lab. 2022, 68. [Google Scholar] [CrossRef]
- Komiazyk, M.; Walory, J.; Kozinska, A.; Wasko, I.; Baraniak, A. Impact of the Nucleic Acid Extraction Method and the RT-qPCR Assay on SARS-CoV-2 Detection in Low-Viral Samples. Diagnostics 2021, 11, 2247. [Google Scholar] [CrossRef]
- Hagag, I.T.; Pyrc, K.; Weber, S.; Balkema-Buschmann, A.; Groschup, M.H.; Keller, M. Mutations in SARS-CoV-2 nucleocapsid in variants of concern impair the sensitivity of SARS-CoV-2 detection by rapid antigen tests. Front. Virol. 2022, 2, 971862. [Google Scholar] [CrossRef]
- Oguri, S.; Fujisawa, S.; Kamada, K.; Nakakubo, S.; Yamashita, Y.; Nakamura, J.; Horii, H.; Sato, K.; Nishida, M.; Teshima, T.; et al. Effect of varying storage conditions on diagnostic test outcomes of SARS-CoV-2. J. Infect. 2021, 83, 119–145. [Google Scholar] [CrossRef] [PubMed]
- Dzung, A.; Cheng, P.F.; Stoffel, C.; Tastanova, A.; Turko, P.; Levesque, M.P.; Bosshard, P.P. Prolonged Unfrozen Storage and Re-peated Freeze-Thawing of SARS-CoV-2 Patient Samples Have Minor Effects on SARS-CoV-2 Detectability by RT-PCR. J. Mol. Diagn. 2021, 23, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Skalina, K.A.; Goldstein, D.Y.; Sulail, J.; Hahm, E.; Narliewa, M.; Szymczak, W.; Fox, A.S. Extended storage of SARS-CoV-2 nasopharyngeal swabs does not negatively impact results of molecular-based testing across three clinical platforms. J. Clin. Pathol. 2022, 75, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Wegrzynska, K.; Komiazyk, M.; Walory, J.; Kozinska, A.; Wasko, I.; Baraniak, A. Differentiation of SARS-CoV-2 Variants Using RT-qPCRs by Targeting Recurrent Mutation Sites: A Diagnostic Laboratory Experience from Multi-Center Regional Study, August 2020-December 2021, Poland. Int. J. Mol. Sci. 2022, 23, 9416. [Google Scholar] [CrossRef]
- Visualization of COVID-19 Spread. Available online: https://covidhub.psnc.pl/eng/mapa/#! (accessed on 14 October 2022).
- Genomic Epidemiology of Novel Coronavirus—Poland Global-Focused Subsampling. Available online: https://nextstrain.wlkp.covidhub.pl/ncov/poland-global?c=clade_membership&dmax=2022-05-31&dmin=2022-02-01&lang=pl (accessed on 10 November 2022).
NMI | OC | MUB | |
---|---|---|---|
Nucleic acid extraction | NucleoMag Pathogen kit | 3DMed Sample Transport Medium (Extraction free) | MagSi-Na Pathogens kit PurePrep 96 Nucleic Acid Purification System |
Macherey-Nagel Duren, Germany | 3D Biomedicine Science & Technology Shanghai, China | Magtivio Nuth, Netherlands | |
RT-PCR system | QuantStudio™ 6 | QuantStudio™ 5 | CFX96™ Dx |
Life Technologies Singapore | Life Technologies Singapore | Bio-Rad California, CA, USA | |
RT-PCR kit | MutaPLEX® Coronavirus | ANDiS FAST SARS-CoV-2 RT-qPCR Detection Kit | Allplex SARS-CoV-2 fast PCR Assay CE IVD |
Immundiagnostik AG Bensheim, Germany | 3D Biomedicine Science & Technology Shanghai, China | Seegene Seoul, Republic of Korea |
Age | Gender * | CT Range | |||
---|---|---|---|---|---|
CT ≤ 25 | 25 < CT ≤ 28 | 28 < CT ≤ 31 | CT > 31 | ||
19–35 | F | 29 | 12 | 5 | 2 |
M | 9 | 5 | 2 | 1 | |
36–64 | F | 9 | 7 | 0 | 3 |
M | 5 | 4 | 4 | 0 | |
>65 | F | 5 | 0 | 1 | 0 |
Specimen | Candidate Device | RT-PCR | |
---|---|---|---|
Positive | Negative | ||
Nasal swab | Positive | 97 | 0 |
Negative | 6 | 301 | |
Nasopharyngeal swab | Positive | 100 | 0 |
Negative | 3 | 301 |
GenBody COVID-19 Ag Test Result | Specimen | |||
---|---|---|---|---|
Nasal Swab | Nasopharyngeal Swab | |||
Sensitivity | 94.17% | (95%CI 87.75% to 97.83%) | 97.09% | (95%CI 91.72% to 99.4%) |
Specificity | 100% | (95%CI 98.78% to 100%) | 100% | (95%CI 98.78% to 100%) |
Positive predictive value | 100% | 100% | ||
Negative predictive value | 98.05% | (95%CI 95.85% to 99.09%) | 99.01% | (95%CI 97.05% to 99.67%) |
Negative likelihood ratio | 0.06 | (95%CI 0.03 to 0.13) | 0.03 | (95%CI 0.01 to 0.09) |
Accuracy | 98.51% | (95%CI 96.80% to 99,45%) | 99.26% | (95%CI 97.85% to 99.85%) |
CT Range | CT ≤ 25 | 25 < CT ≤ 28 | 28 < CT ≤ 31 | CT > 31 |
---|---|---|---|---|
No. of positive cases in RT-qPCR | 57 | 28 | 12 | 6 |
Nasal swab No. of positive cases in tested device | 57 | 27 | 10 | 3 |
Nasopharyngeal swab No. of positive cases in tested device | 57 | 28 | 11 | 4 |
Nasal swab Sensitivity of the test depending on CT | 100% (95%CI 93.73% to 100%) | 96.43% (95%CI 81.65% to 99.91%) | 83.33% (95%CI 51.59% to 97.91%) | 50% (95%CI 11.81% to 88.19%) |
Nasopharyngeal swab Sensitivity of the test depending on CT | 100% (95%CI 93.73 to 100%) | 100% (95%CI 87.66% to 100%) | 91.67% (95%CI 61.52 to 99.79%) | 66.67% (95%CI 22.28% to 95.67%) |
Positive co-incidence rate * | 1/1 | 0.96/1 | 0.83/0.92 | 0.5/0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wegrzynska, K.; Walory, J.; Charkiewicz, R.; Lewandowska, M.A.; Wasko, I.; Kozinska, A.; Majewski, P.; Baraniak, A. Clinical Validation of GenBody COVID-19 Ag, Nasal and Nasopharyngeal Rapid Antigen Tests for Detection of SARS-CoV-2 in European Adult Population. Biomedicines 2023, 11, 493. https://doi.org/10.3390/biomedicines11020493
Wegrzynska K, Walory J, Charkiewicz R, Lewandowska MA, Wasko I, Kozinska A, Majewski P, Baraniak A. Clinical Validation of GenBody COVID-19 Ag, Nasal and Nasopharyngeal Rapid Antigen Tests for Detection of SARS-CoV-2 in European Adult Population. Biomedicines. 2023; 11(2):493. https://doi.org/10.3390/biomedicines11020493
Chicago/Turabian StyleWegrzynska, Karolina, Jaroslaw Walory, Radoslaw Charkiewicz, Marzena Anna Lewandowska, Izabela Wasko, Aleksandra Kozinska, Piotr Majewski, and Anna Baraniak. 2023. "Clinical Validation of GenBody COVID-19 Ag, Nasal and Nasopharyngeal Rapid Antigen Tests for Detection of SARS-CoV-2 in European Adult Population" Biomedicines 11, no. 2: 493. https://doi.org/10.3390/biomedicines11020493
APA StyleWegrzynska, K., Walory, J., Charkiewicz, R., Lewandowska, M. A., Wasko, I., Kozinska, A., Majewski, P., & Baraniak, A. (2023). Clinical Validation of GenBody COVID-19 Ag, Nasal and Nasopharyngeal Rapid Antigen Tests for Detection of SARS-CoV-2 in European Adult Population. Biomedicines, 11(2), 493. https://doi.org/10.3390/biomedicines11020493