Bronchopulmonary Dysplasia in Extremely Premature Infants: A Scoping Review for Identifying Risk Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search and Selection of Studies
2.2. Eligibility Criteria
2.3. Selection of Sources of Evidence
2.4. Data Charting
3. Results
3.1. Risk Factors of Severe BPD
3.2. Risk Factors for Moderate or Severe BPD
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, P.S.; Lui, K.; Sjörs, G.; Mirea, L.; Reichman, B.; Adams, M.; Modi, N.; Darlow, B.A.; Kusuda, S.; San Feliciano, L.; et al. Neonatal Outcomes of Very Low Birth Weight and Very Preterm Neonates: An International Comparison. J. Pediatr. 2016, 177, 144–152.e6. [Google Scholar] [CrossRef] [PubMed]
- Stoll, B.J.; Hansen, N.I.; Bell, E.F.; Shankaran, S.; Laptook, A.R.; Walsh, M.C.; Hale, E.C.; Newman, N.S.; Schibler, K.; Carlo, W.A.; et al. Neonatal Outcomes of Extremely Preterm Infants From the NICHD Neonatal Research Network. Pediatrics 2010, 126, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Motoyama, E.K.; Fort, M.D.; Klesh, K.W.; Mutich, R.L.; Guthrie, R.D. Early Onset of Airway Reactivity in Premature Infants with Bronchopulmonary Dysplasia. Am. Rev. Respir. Dis. 1987, 136, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Fawke, J.; Lum, S.; Kirkby, J.; Hennessy, E.; Marlow, N.; Rowell, V.; Thomas, S.; Stocks, J. Lung function and respiratory symptoms at 11 years in children born extremely preterm: The EPICure study. Am. J. Respir. Crit. Care Med. 2010, 182, 237–245. [Google Scholar] [CrossRef]
- Smith, V.C.; Zupancic, J.A.; McCormick, M.C.; Croen, L.A.; Greene, J.; Escobar, G.J.; Richardson, D.K. Rehospitalization in the first year of life among infants with bronchopulmonary dysplasia. J. Pediatr. 2004, 144, 799–803. [Google Scholar]
- Schmidt, B.; Asztalos, E.V.; Roberts, R.S.; Robertson, C.M.T.; Sauve, R.S.; Whitfield, M.F. Impact of Bronchopulmonary Dysplasia, Brain Injury, and Severe Retinopathy on the Outcome of Extremely Low-Birth-Weight Infants at 18 Months: Results From the Trial of Indomethacin Prophylaxis in Preterms. JAMA 2003, 289, 1124–1129. [Google Scholar] [CrossRef]
- Arjaans, S.; Haarman, M.G.; Roofthooft, M.T.R.; Fries, M.W.F.; Kooi, E.M.W.; Bos, A.F.; Berger, R.M.F. Fate of pulmonary hypertension associated with bronchopulmonary dysplasia beyond 36 weeks postmenstrual age. Arch. Dis. Child.-Fetal Neonatal Ed. 2020, 106, 45–50. [Google Scholar] [CrossRef]
- Humayun, J.; Löfqvist, C.; Ley, D.; Hellström, A.; Gyllensten, H. Systematic review of the healthcare cost of bronchopulmonary dysplasia. BMJ Open 2021, 11, e045729. [Google Scholar] [CrossRef]
- Helenius, K.; Sjörs, G.; Shah, P.S.; Modi, N.; Reichman, B.; Morisaki, N.; Kusuda, S.; Lui, K.; Darlow, B.A.; Bassler, D.; et al. Survival in Very Preterm Infants: An International Comparison of 10 National Neonatal Networks. Pediatrics 2017, 140, e20171264. [Google Scholar] [CrossRef]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef]
- Hines, D.; Modi, N.; Lee, S.K.; Isayama, T.; Sjörs, G.; Gagliardi, L.; Lehtonen, L.; Vento, M.; Kusuda, S.; Bassler, D.; et al. Scoping review shows wide variation in the definitions of bronchopulmonary dysplasia in preterm infants and calls for a consensus. Acta Paediatr. 2017, 106, 366–374. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, Y.; Fujimura, M.; Goto, A.; Kawano, T.; Kondo, T.; Nakae, N.; Nishida, A.; Ohno, T.; Takeuchi, Y.; Togari, H.; et al. Epidemiology of Neonatal Chronic Lung Disease in Japan. Acta Paediatr Jpn. 1992, 34, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Hirata, K.; Nishihara, M.; Shiraishi, J.; Hirano, S.; Matsunami, K.; Sumi, K.; Wada, N.; Kawamoto, Y.; Nishikawa, M.; Nakayama, M.; et al. Perinatal factors associated with long-term respiratory sequelae in extremely low birthweight infants. Arch. Dis. Child.-Fetal Neonatal Ed. 2015, 100, F314–F319. [Google Scholar] [CrossRef] [PubMed]
- Namba, F.; Fujimura, M.; Tamura, M. Bubbly and cystic appearance in chronic lung disease: Is this diagnosed as Wilson-Mikity syndrome? Pediatr. Int. 2016, 58, 251–253. [Google Scholar] [CrossRef] [PubMed]
- Jobe, A.J. The New BPD: An Arrest of Lung Development. Pediatr. Res. 1999, 46, 641. [Google Scholar] [CrossRef]
- Hutchison, A.A.; Bignall, S. Non-invasive positive pressure ventilation in the preterm neonate: Reducing endotrauma and the incidence of bronchopulmonary dysplasia. Arch. Dis. Child.-Fetal Neonatal Ed. 2008, 93, F64–F68. [Google Scholar] [CrossRef] [PubMed]
- Isayama, T.; Iwami, H.; McDonald, S.; Beyene, J. Association of Noninvasive Ventilation Strategies With Mortality and Bronchopulmonary Dysplasia Among Preterm Infants: A Systematic Review and Meta-analysis. JAMA 2016, 316, 611–624. [Google Scholar] [CrossRef] [PubMed]
- Sand, L.; Szatkowski, L.; Kwok, T.C.; Sharkey, D.; A Todd, D.; Budge, H.; Ojha, S. Observational cohort study of changing trends in non-invasive ventilation in very preterm infants and associations with clinical outcomes. Arch. Dis. Child.-Fetal Neonatal Ed. 2022, 107, 150–155. [Google Scholar] [CrossRef]
- Ito, M.; Tomotaki, S.; Isayama, T.; Hara, H.; Hirata, K.; Arai, H. The status of chronic lung disease diagnosis in Japan: Secondary publication. Pediatr. Int. 2022, 64, e15184. [Google Scholar] [CrossRef]
- Arai, H.; Ito, T.; Ito, M.; Ota, S.; Takahashi, T. The Neonatal Research Network of Japan Impact of chest radiography-based definition of bronchopulmonary dysplasia. Pediatr. Int. 2019, 61, 258–263. [Google Scholar] [CrossRef]
- Kato, S.; Ito, M.; Saito, M.; Miyahara, N.; Namba, F.; Ota, E.; Nakanishi, H. Severe bronchopulmonary dysplasia in extremely premature infants: A scoping review protocol for identifying risk factors. BMJ Open 2022, 12, e062192. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Tagliaferro, T.; Jain, D.; Vanbuskirk, S.; Bancalari, E.; Claure, N. Maternal preeclampsia and respiratory outcomes in extremely premature infants. Pediatr. Res. 2019, 85, 693–696. [Google Scholar] [CrossRef] [PubMed]
- Fritz, T.; Källén, K.; Marsál, K.; Jacobsson, B. Outcome of extremely preterm infants after iatrogenic or spontaneous birth. Acta Obstet. Gynecol. Scand. 2018, 97, 1388–1395. [Google Scholar] [CrossRef]
- Shin, J.; A Lee, J.; Oh, S.; Lee, E.H.; Choi, B.M. Conservative Treatment Without Any Intervention Compared With Other Therapeutic Strategies for Symptomatic Patent Ductus Arteriosus in Extremely Preterm Infants: A Nationwide Cohort Study in Korea. Front. Pediatr. 2021, 9, 729329. [Google Scholar] [CrossRef]
- Ushida, T.; Moriyama, Y.; Nakatochi, M.; Kobayashi, Y.; Imai, K.; Nakano-Kobayashi, T.; Nakamura, N.; Hayakawa, M.; Kajiyama, H.; Kotani, T.; et al. Antenatal prediction models for short- and medium-term outcomes in preterm infants. Acta Obstet. Gynecol. Scand. 2021, 100, 1089–1096. [Google Scholar] [CrossRef]
- Shin, S.H.; Kim, S.H.; Kim, Y.-J.; Cho, H.; Kim, E.-K.; Kim, H.-S. The Association of Pregnancy-induced Hypertension with Bronchopulmonary Dysplasia–A Retrospective Study Based on the Korean Neonatal Network database. Sci. Rep. 2020, 10, 5600. [Google Scholar] [CrossRef]
- Shim, S.-Y.; Cho, S.J.; Kong, K.A.; Park, E.A. Gestational age-specific sex difference in mortality and morbidities of preterm infants: A nationwide study. Sci. Rep. 2017, 7, 6161. [Google Scholar] [CrossRef]
- Park, J.H.; Bae, J.G.; Chang, Y.S. Neonatal Outcomes according to the Latent Period from Membrane Rupture to Delivery among Extremely Preterm Infants Exposed to Preterm Premature Rupture of Membrane: A Nationwide Cohort Study. J. Korean Med Sci. 2021, 36, e93. [Google Scholar] [CrossRef]
- Lee, B.K.; Lee, J.H.; Shin, J.; Jung, Y.H.; Choi, C.W. The association of low body mass index with neonatal morbidities in preterm infants. Sci. Rep. 2021, 11, 18841. [Google Scholar] [CrossRef]
- Marc, I.; Piedboeuf, B.; Lacaze-Masmonteil, T.; Fraser, W.; Mâsse, B.; Mohamed, I.; Qureshi, M.; Afifi, J.; Lemyre, B.; Caouette, G.; et al. Effect of Maternal Docosahexaenoic Acid Supplementation on Bronchopulmonary Dysplasia-Free Survival in Breastfed Preterm Infants: A Randomized Clinical Trial. JAMA 2020, 324, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Travers, C.P.; Carlo, W.A.; McDonald, S.A.; Das, A.; Bell, E.F.; Ambalavanan, N.; Jobe, A.H.; Goldberg, R.N.; D’Angio, C.T.; Stoll, B.J.; et al. Mortality and pulmonary outcomes of extremely preterm infants exposed to antenatal corticosteroids. Am. J. Obstet. Gynecol. 2018, 218, 130.e1–130.e13. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, T.; Inoue, H.; Sakemi, Y.; Ochiai, M.; Yamashita, H.; Ohga, S. Trends in Bronchopulmonary Dysplasia Among Extremely Preterm Infants in Japan, 2003-2016. J. Pediatr. 2021, 230, 119–125.e7. [Google Scholar] [CrossRef] [PubMed]
- Sloane, A.J.; Flannery, D.D.; Lafferty, M.; Jensen, E.A.; Dysart, K.; Cook, A.; Greenspan, J.; Aghai, Z.H. Hypertensive disorders during pregnancy are associated with reduced severe intraventricular hemorrhage in very-low-birth-weight infants. J. Perinatol. 2019, 39, 1125–1130. [Google Scholar] [CrossRef]
- Klinger, G.; Bromiker, R.; Zaslavsky-Paltiel, I.; Sokolover, N.; Lerner-Geva, L.; Yogev, Y.; Reichman, B. Antepartum Hemorrhage and Outcome of Very Low Birth Weight, Very Preterm Infants: A Population-Based Study. Am. J. Perinatol. 2021, 38, 1134–1141. [Google Scholar] [CrossRef]
- Boghossian, N.S.; Geraci, M.; Edwards, E.M.; Horbar, J.D. Morbidity and Mortality in Small for Gestational Age Infants at 22 to 29 Weeks’ Gestation. Pediatrics 2018, 141, e20172533. [Google Scholar] [CrossRef] [PubMed]
- Aldana-Aguirre, J.C.; Toye, J.; Shah, P.S.; Yoon, E.W.; Kumaran, K. Patent ductus arteriosus and small for gestational age infants: Treatment approaches and outcomes. Early Hum. Dev. 2019, 131, 10–14. [Google Scholar] [CrossRef]
- Monier, I.; Ancel, P.-Y.; Ego, A.; Jarreau, P.-H.; Lebeaux, C.; Kaminski, M.; Goffinet, F.; Zeitlin, J. Fetal and neonatal outcomes of preterm infants born before 32 weeks of gestation according to antenatal vs postnatal assessments of restricted growth. Am. J. Obstet. Gynecol. 2017, 216, 516.e1–516.e10. [Google Scholar] [CrossRef]
- Boghossian, N.S.; Geraci, M.; Edwards, E.M.; Horbar, J.D. In-Hospital Outcomes in Large for Gestational Age Infants at 22-29 Weeks of Gestation. J. Pediatr. 2018, 198, 174–180.e13. [Google Scholar] [CrossRef]
- Tarnow-Mordi, W.; Morris, J.; Kirby, A.; Robledo, K.; Askie, L.; Brown, R.; Evans, N.; Finlayson, S.; Fogarty, M.; Gebski, V.; et al. Delayed versus Immediate Cord Clamping in Preterm Infants. N. Engl. J. Med. 2017, 377, 2445–2455. [Google Scholar] [CrossRef]
- Lodha, A.; Shah, P.S.; Soraisham, A.S.; Rabi, Y.; Mehrem, A.A.; Singhal, N.; for the Canadian Neonatal Network Investigators. Association of Deferred vs. Immediate Cord Clamping With Severe Neurological Injury and Survival in Extremely Low-Gestational-Age Neonates. JAMA Netw. Open 2019, 2, e191286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, V.; Elkhateeb, O.; Shah, P.S.; Yang, J.; Lee, K.-S. Outcomes of neonates born at <26 weeks gestational age who receive extensive cardiopulmonary resuscitation compared with airway and breathing support. J. Perinatol. 2020, 40, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Stritzke, A.; Mohammad, K.; Shah, P.S.; Ye, X.Y.; Bhandari, V.; Akierman, A.; Harrison, A.; Bertelle, V.; Lodha, A. Use and timing of surfactant administration: Impact on neonatal outcomes in extremely low gestational age infants born in Canadian Neonatal Intensive Care Units. J. Matern. Neonatal Med. 2018, 31, 2862–2869. [Google Scholar] [CrossRef] [PubMed]
- Härtel, C.; Paul, P.; Hanke, K.; Humberg, A.; Kribs, A.; Mehler, K.; Vochem, M.; Wieg, C.; Roll, C.; Herting, E.; et al. Less invasive surfactant administration and complications of preterm birth. Sci. Rep. 2018, 8, 8333. [Google Scholar] [CrossRef]
- Lodha, A.; Entz, R.; Synnes, A.; Creighton, D.; Yusuf, K.; Lapointe, A.; Yang, J.; Shah, P.S. Early Caffeine Administration and Neurodevelopmental Outcomes in Preterm Infants. Pediatrics 2019, 143, e20181348. [Google Scholar] [CrossRef]
- Ogawa, R.; Mori, R.; Iida, K.; Uchida, Y.; Oshiro, M.; Kageyama, M.; Kato, Y.; Tanaka, T.; Nakata, Y.; Nishimura, Y.; et al. Effects of the early administration of sivelestat sodium on bronchopulmonary dysplasia in infants: A retrospective cohort study. Early Hum. Dev. 2017, 115, 71–76. [Google Scholar] [CrossRef]
- Mohamed, M.A.; El-Dib, M.; Alqahtani, S.; Alyami, K.; Ibrahim, A.N.; Aly, H. Patent ductus arteriosus in premature infants: To treat or not to treat? J. Perinatol. 2017, 37, 652–657. [Google Scholar] [CrossRef]
- Antoine, J.; Inglis, G.D.T.; Way, M.; O’Rourke, P.; Davies, M.W. Bacterial colonisation of the endotracheal tube in ventilated very preterm neonates: A retrospective cohort study. J. Paediatr. Child Health 2020, 56, 1607–1612. [Google Scholar] [CrossRef] [PubMed]
- Dicky, O.; Ehlinger, V.; Montjaux, N.; Gremmo-Féger, G.; Sizun, J.; Rozé, J.C.; Arnaud, C.; Casper, C. Policy of feeding very preterm infants with their mother’s own fresh expressed milk was associated with a reduced risk of bronchopulmonary dysplasia. Acta Paediatrica 2017, 106, 755–762. [Google Scholar] [CrossRef]
- Collins, C.T.; Makrides, M.; McPhee, A.J.; Sullivan, T.R.; Davis, P.G.; Thio, M.; Simmer, K.; Rajadurai, V.S.; Travadi, J.; Berry, M.J.; et al. Docosahexaenoic Acid and Bronchopulmonary Dysplasia in Preterm Infants. N. Engl. J. Med. 2017, 376, 1245–1255. [Google Scholar] [CrossRef]
- Jung, Y.H.; Park, Y.; Kim, B.I.; Choi, C.W. Length at birth z-score is inversely associated with an increased risk of bronchopulmonary dysplasia or death in preterm infants born before 32 gestational weeks: A nationwide cohort study. PLoS ONE 2019, 14, e0217739. [Google Scholar] [CrossRef] [Green Version]
- Jensen, C.; Ebbesen, F.; Petersen, J.; Sellmer, A.; Bach, C.; Henriksen, T. Hypothermia at neonatal intensive care unit admission was not associated with respiratory disease or death in very preterm infants. Acta Paediatr. 2017, 106, 1934–1939. [Google Scholar] [CrossRef]
- Flannery, D.D.; Dysart, K.; Cook, A.; Greenspan, J.; Aghai, Z.H.; Jensen, E.A. Association between early antibiotic exposure and bronchopulmonary dysplasia or death. J. Perinatol. 2018, 38, 1227–1234. [Google Scholar] [CrossRef]
- Ambalavanan, N.; Van Meurs, K.P.; Perritt, R.; A Carlo, W.; A Ehrenkranz, R.; Stevenson, D.K.; A Lemons, J.; Poole, W.K.; Higgins, R.D. Predictors of death or bronchopulmonary dysplasia in preterm infants with respiratory failure. J. Perinatol. 2008, 28, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Costeloe, K.L.; Hennessy, E.M.; Haider, S.; Stacey, F.; Marlow, N.; Draper, E.S. Short term outcomes after extreme preterm birth in England: Comparison of two birth cohorts in 1995 and 2006 (the EPICure studies). BMJ 2012, 345, e7976. [Google Scholar] [CrossRef] [PubMed]
- Palta, M.; Gabbert, D.; Weinstein, M.R.; Peters, M.E.; Project, N.L. Multivariate assessment of traditional risk factors for chronic lung disease in very low birth weight neonates. The Newborn Lung Project. J. Pediatr. 1991, 119, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Rojas, M.A.; Gonzalez, A.; Bancalari, E.; Claure, N.; Poole, C.; Silva-Neto, G. Changing trends in the epidemiology and pathogenesis of neonatal chronic lung disease. J. Pediatr. 1995, 126, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Bose, C.; Van Marter, L.J.; Laughon, M.; O’Shea, T.M.; Allred, E.N.; Karna, P.; Ehrenkranz, R.A.; Boggess, K.; Leviton, A. Fetal Growth Restriction and Chronic Lung Disease Among Infants Born Before the 28th Week of Gestation. Pediatrics 2009, 124, e450–e458. [Google Scholar] [CrossRef]
- Chida, S.; Fujiwara, T. Stable microbubble test for predicting the risk of respiratory distress syndrome: I. Comparisons with other predictors of fetal lung maturity in amniotic fluid. Eur. J. Pediatr. 1993, 152, 148–151. [Google Scholar] [CrossRef]
- Chida, S.; Fujiwara, T.; Konishi, M.; Takahashi, H.; Sasaki, M. Stable microbubble test for predicting the risk of respiratory distress syndrome: II. Prospective evaluation of the test on amniotic fluid and gastric aspirate. Eur. J. Pediatr. 1993, 152, 152–156. [Google Scholar] [CrossRef]
- Sweet, D.G.; Carnielli, V.; Greisen, G.; Hallman, M.; Ozek, E.; Pas, A.T.; Plavka, R.; Roehr, C.C.; Saugstad, O.D.; Simeoni, U.; et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome–2019 Update. Neonatology 2019, 115, 432–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, D.; Autilio, C. Strategies to protect surfactant and enhance its activity. Biomed. J. 2021, 44, 654–662. [Google Scholar] [CrossRef] [PubMed]
- Stevens, T.; Blennow, M.; Soll, R. Early surfactant administration with brief ventilation vs selective surfactant and continued mechanical ventilation for preterm infants with or at risk for respiratory distress syndrome. Cochrane Database Syst. Rev. 2004, 3, CD003063. [Google Scholar] [CrossRef]
- Aldana-Aguirre, J.C.; Pinto, M.; Featherstone, R.M.; Kumar, M. Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: A systematic review and meta-analysis. Arch. Dis. Child.-Fetal Neonatal Ed. 2017, 102 Pt 1, F17–F23. [Google Scholar] [CrossRef] [PubMed]
- Hodgman, J.E. Relationship Between Wilson-Mikity Syndrome and the New Bronchopulmonary Dysplasia. Pediatrics 2003, 112, 1414–1415. [Google Scholar] [CrossRef]
- Jobe, A.H. Mechanisms of Lung Injury and Bronchopulmonary Dysplasia. Am. J. Perinatol. 2016, 33, 1076–1078. [Google Scholar] [CrossRef] [PubMed]
- Watterberg, K.L.; Demers, L.M.; Scott, S.M.; Murphy, S. Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics 1996, 97, 210–215. [Google Scholar] [CrossRef]
- Licini, C.; Tossetta, G.; Avellini, C.; Ciarmela, P.; Lorenzi, T.; Toti, P.; Gesuita, R.; Voltolini, C.; Petraglia, F.; Castellucci, M.; et al. Analysis of cell-cell junctions in human amnion and chorionic plate affected by chorioamnionitis. Histol. Histopathol. 2016, 31, 759–767. [Google Scholar]
- Palmsten, K.; Nelson, K.K.; Laurent, L.C.; Park, S.; Chambers, C.D.; Parast, M.M. Subclinical and clinical chorioamnionitis, fetal vasculitis, and risk for preterm birth: A cohort study. Placenta 2018, 67, 54–60. [Google Scholar] [CrossRef]
- Tita, A.T.; Andrews, W.W. Diagnosis and Management of Clinical Chorioamnionitis. Clin. Perinatol. 2010, 37, 339–354. [Google Scholar] [CrossRef]
- Suzuki, S. Association between clinical chorioamnionitis and histological funisitis at term. J. Neonatal-Perinatal Med. 2019, 12, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Abu-Shaweesh, J.M.; Almidani, E. PDA: Does it matter? Int. J. Pediatr. Adolesc. Med. 2020, 7, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Hundscheid, T.; Onland, W.; Kooi, E.M.; Vijlbrief, D.C.; de Vries, W.B.; Dijkman, K.P.; van Kaam, A.H.; Villamor, E.; Kroon, A.A.; Visser, R.; et al. Expectant Management or Early Ibuprofen for Patent Ductus Arteriosus. N. Engl. J. Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Qiu, X.; Sun, P.; Lin, Y.; Huang, Z.; Yang, C.; Walther, F.J. Neonatal ibuprofen exposure and bronchopulmonary dysplasia in extremely premature infants. J. Perinatol. 2020, 40, 124–129. [Google Scholar] [CrossRef]
Risk Factor | Number of Studies with Positive Association/Number of Studies That Evaluated Risk Factors | aOR or RR* | 95% CI | Author, Year | Country | Study Design | Number of Participants | Patient Characteristic | BPD Definition | Reference Number |
---|---|---|---|---|---|---|---|---|---|---|
Male sex | 1/1 | 1.75 | 1.22–2.49 | Tagliaferro, T., 2019 | USA | Retrospective cohort study | 1218 | Birth at 23–28 wks GA | need for ≥30% O2 at 36 wks PMA | [23] |
Iatrogenic preterm birth | 1/1 | 1.90 | 1.10–3.26 | Fritz, T., 2018 | Sweden | Prospective cohort study | 737 | Birth at <27 wks GA | need for ≥30% O2 at 36 wks PMA | [24] |
HDP | 1/1 | 2.18 | 1.45–3.28 | Tagliaferro, T., 2019 | USA | Retrospective cohort study | 1218 | Birth at 23–28 wks GA | need for ≥30% O2 at 36 wks PMA | [23] |
Low GA | 1/1 | 1.36 | 1.19–1.55 | Tagliaferro, T., 2019 | USA | Retrospective cohort study | 1218 | Birth at 23–28 wks GA | need for ≥30% O2 at 36 wks PMA | [23] |
SGA birth weight | 1/1 | 3.25 | 1.91–5.54 | Tagliaferro, T., 2019 | USA | Retrospective cohort study | 1218 | Birth at 23–28 wks GA | need for ≥30% O2 at 36 wks PMA | [23] |
Risk Factor | Number of Studies with Positive Association/Number of Studies That Evaluated Risk Factors | aOR or RR* | 95% CI | Author, Year | Country | Study Design | Number of Participants | Patient Characteristic | BPD Definition | Reference Number |
---|---|---|---|---|---|---|---|---|---|---|
Mechanical ventilation on first day after birth | 1/1 | 2.84 | 1.54–5.24 | Tagliaferro, T., 2019 | USA | Retrospective cohort study | 1218 | Birth at 23–28 wks GA | need for ≥30% O2 at 36 wks PMA | [23] |
Prophylactic treatment for PDA | 0/1 | 0.98 | 0.53–1.81 | Shin, J., 2021 | Korea | Prospective cohort study | 2303 | Birth at <28 wks GA | need for ≥30% O2 at 36 wks PMA | [25] |
Need for PDA management | 1/1 | 2.53 | 1.41–4.53 | Tagliaferro, T., 2019 | USA | Retrospective cohort study | 1218 | Birth at 23–28 wks GA | need for ≥30% O2 at 36 wks PMA | [23] |
Risk Factor | Number of Studies with positive Association /Number of Studies that evaluated Risk Factors | aOR or RR* | 95% CI | Author, Year | Country | Study Design | Number of Participants | Patient Characteristic | BPD Definition | Reference Number |
---|---|---|---|---|---|---|---|---|---|---|
Male sex | 4/4 | 1.75 | 1.22–2.49 | Tagliaferro, T., 2019 | USA | Retrospective cohort study | 1218 | Birth at 23–28 wks GA | need for ≥30% O2 at 36 wks PMA | [23] |
1.42 | 1.32–1.53 | Ushida, T., 2021 | Japan | Retrospective cohort study | 31,157 | Birth at 22–31 wks GA with VLBW | need for >21% O2 at 36 wks PMA | [26] | ||
1.39 | 1.11–1.75 | Shin, S. H., 2020 | Korea | Prospective cohort study | 2276 | Birth at <30 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [27] | ||
1.28 | 1.06–1.54 | Shim, S. Y., 2017 | Korea | Retrospective cohort study | 1839 | Birth at 23–29 wks GA with VLBW | need for >21% O2 | [28] | ||
Monochorionic twins | 1/1 | 1.34 | 1.18–1.52 | Ushida, T., 2021 | Japan | Retrospective cohort study | 31,157 | Birth at 22–31 wks GA with VLBW | need for >21% O2 at 36 wks PMA | [26] |
Multiple birth | 0/2 | 0.82 | 0.71–0.94 | Arai, H., 2019 | Japan | Retrospective cohort study | 15,480 | BPD, birth at <28 wks GA with BW < 1500 g | need for >21% O2 or positive pressure support at 36 wks PMA | [20] ** |
0.62 | 0.40–0.96 | Park, J. H., 2021 | Korea | Retrospective cohort study | 884 | Birth at 23–27 wks GA with PROM | need for >21% O2 or positive pressure support at 36 wks PMA | [29] | ||
Iatrogenic preterm birth | 1/1 | 1.90 | 1.10–3.26 | Fritz, T., 2018 | Sweden | Prospective cohort study | 737 | Birth at <27 wks GA | need for ≥30% O2 at 36 wks PMA | [24] |
Vaginal delivery | 0/1 | 0.85 | 0.78–0.94 | Ushida, T., 2021 | Japan | Retrospective cohort study | 31,157 | Birth at 22–31 wks GA with VLBW | need for >21% O2 at 36 wks PMA | [26] |
CS | 0/1 | 1.39 | 0.95–2.03 | Park, J. H., 2021 | Korea | Retrospective cohort study | 884 | Birth at 23–27 wks GA with PROM | need for >21% O2 or positive pressure support at 36 wks PMA | [29] |
High maternal BMI | 0/1 | 1.22 | 0.96–1.56 | Lee, B. K., 2021 | Korea | Retrospective cohort study | 7348 | Birth at 25–30 wks GA with VLBW | need for ≥30% O2 or positive pressure support at 36 wks PMA | [30] |
Low maternal BMI | 1/1 | 1.44 | 1.06–1.96 | Lee, B. K., 2021 | Korea | Retrospective cohort study | 7348 | Birth at 25–30 wks GA with VLBW | need for ≥30% O2 or positive pressure support at 36 wks PMA | [30] |
Oligohydramnios | 0/1 | 1.13 | 0.76–1.69 | Park, J. H., 2021 | Korea | Retrospective cohort study | 884 | Birth at 23–27 wks GA with PROM | need for >21% O2 or positive pressure support at 36 wks PMA | [29] |
Maternal docosahexaenoic acid supplementation | 0/1 | 0.91 * | 0.80–1.04 | Marc, I., 2020 | Canada | RCT | 528 | Birth at 29 wks GA | need for >21% O2 at 36 wks PMA | [31] |
Antenatal corticosteroid therapy | 0/2 | 0.96 | 0.90–1.03 | Travers, C. P., 2018 | USA | Retrospective cohort study | 9715 | Birth at 22–28 wks GA with BW > 400 g | need for >21% O2 at 36 wks PMA | [32] |
0.78 | 0.41–1.49 | Park, J. H., 2021 | Korea | Retrospective cohort study | 884 | Birth at 23–27 wks GA with PROM | need for >21% O2 or positive pressure support at 36 wks PMA | [29] | ||
No antenatal corticosteroid therapy | 0/1 | 0.72 | 0.67–0.78 | Ushida, T., 2021 | Japan | Retrospective cohort study | 31,157 | Birth at 22–31 wks GA with VLBW | need for >21% O2 at 36 wks PMA | [26] |
PROM | 2/2 | 1.49 | 1.04–2.14 | Park, J. H., 2021 | Korea | Retrospective cohort study | 884 | Birth at 23–27 wks GA with PROM | need for >21% O2 or positive pressure support at 36 wks PMA | [29] |
1.11 | 1.02–1.20 | Ushida, T., 2021 | Japan | Retrospective cohort study | 31,157 | Birth at 22–31 wks GA with VLBW | need for >21% O2 at 36 wks PMA | [26] | ||
Pathological chorioamnionitis | 2/2 | 1.53 | 1.21–1.94 | Shin, S. H., 2020 | Korea | Prospective cohort study | 2276 | Birth at <30 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [27] |
1.16 | 1.04–1.30 | Arai, H., 2019 | Japan | Retrospective cohort study | 15,480 | BPD, birth at <28 wks GA with BW < 1500 g | need for >21% O2 or positive pressure support at 36 wks PMA | [20] ** | ||
Clinical chorioamnionitis | 2/2 | 1.34 | 1.23–1.45 | Nakashima, T., 2020 | Japan | Retrospective cohort study | 17,126 | Birth at 22–27 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [33] |
1.25 | 1.14–1.37 | Ushida, T., 2021 | Japan | Retrospective cohort study | 31,157 | Birth at 22–31 wks GA with VLBW | need for >21% O2 at 36 wks PMA | [26] | ||
HDP | 3/4 | 2.18 | 1.45–3.28 | Tagliaferro, T., 2019 | USA | Retrospective cohort study | 1218 | Birth at 23–28 wks GA | need for ≥30% O2 at 36 wks PMA | [23] |
1.47 | 1.03–2.12 | Shin, S. H., 2020 | Korea | Prospective cohort study | 2276 | Birth at <30 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [27] | ||
1.33 | 1.09–1.61 | Arai, H., 2019 | Japan | Retrospective cohort study | 15,480 | BPD, birth at <28 wks GA with BW < 1500 g | need for >21% O2 or positive pressure support at 36 wks PMA | [20] ** | ||
0.75 | 0.58–0.97 | Sloane, A. J., 2019 | USA | Retrospective cohort study | 5456 | VLBW | need for >21% O2 at 36 wks PMA | [34] | ||
Antepartum hemorrhage | 0/1 | 1.19 | 0.98–1.43 | Klinger, G., 2021 | Israel | Retrospective cohort study | 33,627 | Birth at 24–31 wks GA with VLBW | need for >21% O2 at 36 wks PMA | [35] |
Low GA | 1/1 | 1.36 | 1.19–1.55 | Tagliaferro, T., 2019 | USA | Retrospective cohort study | 1218 | Birth at 23–28 wks GA | need for ≥30% O2 at 36 wks PMA | [23] |
High GA | 0/3 | 0.97 | 0.96–0.97 | Ushida, T., 2021 | Japan | Retrospective cohort study | 31,157 | Birth at 22–31 wks GA with VLBW | need for >21% O2 at 36 wks PMA | [26] |
0.78 | 0.62–0.99 | Park, J. H., 2021 | Korea | Retrospective cohort study | 884 | Birth at 23–27 wks GA with PROM | need for >21% O2 or positive pressure support at 36 wks PMA | [29] | ||
0.67 | 0.63–0.72 | Shin, S. H., 2020 | Korea | Prospective cohort study | 2276 | Birth at <30 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [27] | ||
GA < 26 wks | 2/2 | 2.68 | 2.47–2.91 | Nakashima, T., 2020 | Japan | Retrospective cohort study | 17,126 | Birth at 22–27 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [33] |
1.30 | 1.07–1.47 | Arai, H., 2019 | Japan | Retrospective cohort study | 15,480 | BPD, birth at <28 wks GA with BW < 1500 g | need for >21% O2 or positive pressure support at 36 wks PMA | [20] ** | ||
High BW | 0/2 | 1.00 | 1.00–1.00 | Park, J. H., 2021 | Korea | Retrospective cohort study | 884 | Birth at 23–27 wks GA with PROM | need for >21% O2 or positive pressure support at 36 wks PMA | [29] |
0.77 | 0.76–0.79 | Ushida, T., 2021 | Japan | Retrospective cohort study | 31,157 | Birth at 22–31 wks GA with VLBW | need for >21% O2 at 36 wks PMA | [26] | ||
BW < 700 g | 1/1 | 1.71 | 1.43–2.06 | Arai, H., 2019 | Japan | Retrospective cohort study | 15,480 | BPD, birth at <28 wks GA with BW < 1500 g | need for >21% O2 or positive pressure support at 36 wks PMA | [20] ** |
BW < 750 g | 1/1 | 3.14 | 2.90–3.41 | Nakashima, T., 2020 | Japan | Retrospective cohort study | 17,126 | Birth at 22–27 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [33] |
SGA BW | 10/10 | 5.65 | 2.42–13.19 | Shin, S. H., 2020 | Korea | Prospective cohort study | 2276 | Birth at <30 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [27] |
3.56 | 3.04–4.18 | Boghossian, N. S., 2018 | USA | Retrospective cohort study | data not available | Birth at 27 wks GA | need for >21% O2 at 36 wks PMA | [36] | ||
3.35 | 2.65–4.22 | Aldana-Aguirre, J. C., 2019 | Canada | Retrospective cohort study | 5309 | PDA, birth at <33 wks GA | need for >21% O2 at 36 wks PMA | [37] | ||
3.25 | 1.91–5.54 | Tagliaferro, T., 2019 | USA | Retrospective cohort study | 1218 | Birth at 23–28 wks GA | need for ≥30% O2 at 36 wks PMA | [23] | ||
2.82 | 2.29–3.49 | Boghossian, N. S., 2018 | USA | Retrospective cohort study | data not available | Birth at 29 wks GA | need for >21% O2 at 36 wks PMA | [36] | ||
2.77 | 2.23–3.43 | Aldana-Aguirre, J. C., 2019 | Canada | Retrospective cohort study | 16,998 | Birth at <33 wks GA | need for >21% O2 at 36 wks PMA | [37] | ||
1.84 | 1.30–2.60 | Boghossian, N. S., 2018 | USA | Retrospective cohort study | data not available | Birth at 23 wks GA | need for >21% O2 at 36 wks PMA | [36] | ||
1.73 | 1.56–1.91 | Nakashima, T., 2020 | Japan | Retrospective cohort study | 17,126 | Birth at 22–27 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [33] | ||
1.29 | 1.08–1.54 | Arai, H., 2019 | Japan | Retrospective cohort study | 15,480 | BPD, birth at <28 wks GA with BW < 1500 g | need for >21% O2 or positive pressure support at 36 wks PMA | [20] ** | ||
1.30 * | 1.20–1.40 | Monier, I., 2017 | France | Retrospective cohort study | 2505 | Birth at <32 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [38] | ||
LGA BW | 0/1 | 0.71 | 0.68–0.73 | Boghossian, N. S., 2018 | USA | Retrospective cohort study | 156,587 | Birth at 22–29 wks GA | need for >21% O2 at 36 wks PMA | [39] |
Risk Factor | Number of Studies with positive Association /Number of Studies That Evaluated Risk Factors | aOR or RR* | 95% CI | Author, Year | Country | Study Design | Number of Participants | Patient Characteristic | BPD Definition | Reference Number |
---|---|---|---|---|---|---|---|---|---|---|
Delayed cord clamping | 0/2 | 1.04 * | 0.95–1.14 | Tarnow-Mordi, W., 2017 | Australia | Randomized clinical trial | 1634 | Birth at <32 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [40] |
0.99 | 0.86–1.14 | Lodha, A., 2019 | Canada | Retrospective cohort study | 4680 | Birth at 22–28 wks GA | need for >21% O2 at 36 wks PMA | [41] | ||
Extensive cardiopulmonary resuscitation | 1/1 | 1.68 | 1.19–2.37 | Shukla, V., 2020 | Canada | Retrospective cohort study | 3633 | Birth at <26 wks GA | need for >21% O2 at 36 wks PMA or at discharge from the participating unit | [42] |
Intubation at birth | 1/1 | 1.84 | 1.64–2.07 | Nakashima, T., 2020 | Japan | Retrospective cohort study | 17,126 | Birth at 22–27 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [33] |
Mechanical ventilation on first day after birth | 1/1 | 2.84 | 1.54–5.24 | Tagliaferro, T., 2019 | USA | Retrospective cohort study | 1218 | Birth at 23–28 wks GA | need for ≥30% O2 at 36 wks PMA | [23] |
Supplemental oxygen for >4 weeks | 1/1 | 6.98 | 8.27–11.72 | Nakashima, T., 2020 | Japan | Retrospective cohort study | 17,126 | Birth at 22–27 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [33] |
Invasive ventilation for >4 weeks | 1/1 | 4.82 | 4.39–5.30 | Nakashima, T., 2020 | Japan | Retrospective cohort study | 17,126 | Birth at 22–27 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [33] |
Non-invasive positive pressure ventilation for >4 weeks | 1/1 | 1.11 | 1.03–1.20 | Nakashima, T., 2020 | Japan | Retrospective cohort study | 17,126 | Birth at 22–27 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [33] |
Bubbly/cystic appearance on X-ray | 1/1 | 2.49 | 2.24–2.77 | Arai, H., 2019 | Japan | Retrospective cohort study | 15,480 | BPD, birth at <28 wks GA with BW < 1500 g | need for >21% O2 or positive pressure support at 36 wks PMA | [20] ** |
RDS/surfactant administration | 2/4 | 2.44 | 1.68–3.54 | Tagliaferro, T., 2019 | USA | Retrospective cohort study | 1218 | Birth at 23–28 wks GA | need for ≥30% O2 at 36 wks PMA | [23] |
1.62 | 0.96–2.72 | Shin, S. H., 2020 | Korea | Prospective cohort study | 2276 | Birth at <30 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [27] | ||
1.24 | 1.13–1.37 | Nakashima, T., 2020 | Japan | Retrospective cohort study | 17,126 | Birth at 22–27 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [33] | ||
0.84 | 0.74–0.94 | Arai, H., 2019 | Japan | Retrospective cohort study | 15,480 | BPD, birth at <28 wks GA with BW < 1500 g | need for >21% O2 or positive pressure support at 36 wks PMA | [20] ** | ||
Late surfactant administration | 1/1 | 1.55 | 1.20–2.00 | Stritzke, A., 2018 | Canada | Retrospective cohort study | 2512 | Birth at <28 wks GA | need for >21% O2 at 36 wks PMA | [43] |
Less invasive surfactant administration | 0/1 | 0.55 | 0.49–0.62 | Härtel, C., 2018 | Germany | Retrospective cohort study | 7533 | Birth at 22–29 wks GA with BW < 1500 g | need for >21% O2 or positive pressure support at 36 wks PMA | [44] |
Early caffeine administration | 0/1 | 0.61 | 0.45–0.81 | Lodha, A., 2019 | Canada | Retrospective cohort study | 3993 | Birth at <29 wks GA | need for >21% O2 at 36 wks PMA | [45] |
Sivelestat administration | 0/1 | 0.83 | 0.53–1.30 | Ogawa, R., 2017 | Japan | Retrospective cohort study | 1031 | Birth at <28 wks GA with BW < 1000 g | need for >21% O2 at 28 days old or 36 wks PMA | [46] |
Prophylactic treatment for PDA | 0/1 | 0.98 | 0.53–1.81 | Shin, J., 2021 | Korea | Prospective cohort study | 2303 | Birth at <28 wks GA | need for ≥30% O2 at 36 wks PMA | [25] |
Need for PDA management | 3/4 | 2.53 | 1.41–4.53 | Tagliaferro, T., 2019 | USA | Retrospective cohort study | 1218 | Birth at 23–28 wks GA | need for ≥30% O2 at 36 wks PMA | [23] |
2.30 | 1.82–2.90 | Shin, S. H., 2020 | Korea | Prospective cohort study | 2276 | Birth at <30 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [27] | ||
1.30 | 1.20–1.41 | Nakashima, T., 2020 | Japan | Retrospective cohort study | 17,126 | Birth at 22–27 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [33] | ||
0.47 | 0.28–1.80 | Mohamed, M. A., 2017 | USA | Retrospective cohort study | 643 | BW < 1500 g | need for >21% O2 at 36 wks PMA | [47] | ||
Sepsis | 1/1 | 1.50 | 1.33–1.69 | Nakashima, T., 2020 | Japan | Retrospective cohort study | 17,126 | Birth at 22–27 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [33] |
Normal respiratory flora | 0/1 | 0.58 | 0.34–0.99 | Antoine, J., 2020 | Australia | Retrospective cohort study | 1054 | Birth at <32 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [48] |
Breast milk | 0/1 | 0.40 | 0.27–0.67 | Dicky, O., 2017 | France | Prospective cohort study | 926 | Birth at <32 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [49] |
Enteral docosahexaenoic acid supplementation | 1/1 | 1.13 | 1.02–1.25 | Collins, C. T., 2017 | Australia | RCT | 1273 | Birth at <29 wks GA | need for >21% O2 or positive pressure support at 36 wks PMA | [50] |
Risk Factor | Number of Studies with Positive Association/Number of Studies That Evaluated Risk Factors | aOR or RR* | 95% CI | Author, Year | Country | Study Design | Number of Participants | Patient Characteristic | BPD Definition | Reference Number |
---|---|---|---|---|---|---|---|---|---|---|
Male sex | 1/1 | 1.37 | 1.19–1.58 | Jung, Y. H., 2019 | Korea | Prospective cohort study | 4940 | Birth at 23–31 wks GA | need for >21% O2 at 36 wks PMA | [51] |
Oligohydramnios | 0/1 | 1.22 | 1.00–1.50 | Jung, Y. H., 2019 | Korea | Prospective cohort study | 4940 | Birth at 23–31 wks GA | need for >21% O2 at 36 wks PMA | [51] |
LGA birth weight | 1/1 | 1.70 | 1.63–1.77 | Jung, Y. H., 2019 | Korea | Prospective cohort study | 4940 | Birth at 23–31 wks GA | need for >21% O2 at 36 wks PMA | [51] |
SGA z-score | 1/1 | 1.35 | 1.20–1.52 | Jung, Y. H., 2019 | Korea | Prospective cohort study | 4940 | Birth at 23–31 wks GA | need for >21% O2 at 36 wks PMA | [51] |
Short length at birth z-score | 1/1 | 1.25 | 1.14–1.37 | Jung, Y. H., 2019 | Korea | Prospective cohort study | 4940 | Birth at 23–31 wks GA | need for >21% O2 at 36 wks PMA | [51] |
Risk Factor | Number of Studies with Positive Association/Number of Studies That Evaluated Risk Factors | aOR or RR* | 95% CI | Author, Year | Country | Study Design | Number of Participants | Patient Characteristic | BPD Definition | Reference Number |
---|---|---|---|---|---|---|---|---|---|---|
Hypothemia | 0/1 | 1.03 | 0.64–1.68 | Jensen, C. F., 2017 | Denmark | Retrospective cohort study | 808 | Birth at <32 wks GA | need for >21% O2 at 36 wks PMA | [52] |
RDS | 1/1 | 1.90 | 1.46–2.48 | Jung, Y. H., 2019 | Korea | Prospective cohort study | 4940 | Birth at 23–31 wks GA | need for >21% O2 at 36 wks PMA | [51] |
≤48 hours of antibiotic therapy | 0/1 | 1.19 | 0.88–1.62 | Flannery, D. D., 2018 | USA | Retrospective cohort study | 4950 | Sepsis, birth at <32 wks GA with BW <1500 g | need for >21% O2 or positive pressure support at 36 wks PMA | [53] |
3–7 days of antibiotic therapy | 0/1 | 0.82 | 0.65–1.04 | Flannery, D. D., 2018 | USA | Retrospective cohort study | 4950 | Sepsis, birth at <32 wks GA with BW <1500 g | need for >21% O2 or positive pressure support at 36 wks PMA | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, M.; Kato, S.; Saito, M.; Miyahara, N.; Arai, H.; Namba, F.; Ota, E.; Nakanishi, H. Bronchopulmonary Dysplasia in Extremely Premature Infants: A Scoping Review for Identifying Risk Factors. Biomedicines 2023, 11, 553. https://doi.org/10.3390/biomedicines11020553
Ito M, Kato S, Saito M, Miyahara N, Arai H, Namba F, Ota E, Nakanishi H. Bronchopulmonary Dysplasia in Extremely Premature Infants: A Scoping Review for Identifying Risk Factors. Biomedicines. 2023; 11(2):553. https://doi.org/10.3390/biomedicines11020553
Chicago/Turabian StyleIto, Masato, Shin Kato, Makoto Saito, Naoyuki Miyahara, Hirokazu Arai, Fumihiko Namba, Erika Ota, and Hidehiko Nakanishi. 2023. "Bronchopulmonary Dysplasia in Extremely Premature Infants: A Scoping Review for Identifying Risk Factors" Biomedicines 11, no. 2: 553. https://doi.org/10.3390/biomedicines11020553
APA StyleIto, M., Kato, S., Saito, M., Miyahara, N., Arai, H., Namba, F., Ota, E., & Nakanishi, H. (2023). Bronchopulmonary Dysplasia in Extremely Premature Infants: A Scoping Review for Identifying Risk Factors. Biomedicines, 11(2), 553. https://doi.org/10.3390/biomedicines11020553