Neural Surface Antibodies and Neurodegeneration: Clinical Commonalities and Pathophysiological Relationships
Abstract
:1. Introduction
Antibody Target | Age/ Sex Prevalence | Clinical Syndromes/Symptoms | Acute Phase Cognitive Features | Ancillary Test | Antibody Pathogenicity and Mechanism of Cognitive Impairment |
---|---|---|---|---|---|
NMDAR [10,16,17,18] | Young/F | Encephalitis with psychiatric symptoms, seizures, movement disorders, autonomic instability, hypoventilation, coma | Severe cognitive dysfunction involving all domains (memory, executive function, attention, language, visuospatial processing and social cognition) | MRI: mainly normal (70–80%) or unspecific. CSF: 80% abnormal (pleocytosis, oligoclonal bands); EEG: usually abnormal (90%) with slow wave or epileptic changes and rare delta brush | NMDAR-Ab cause cross-linking and internalization with reduced NMDARs density and consequent reduced NMDAR-dependent LTP leading to memory dysfunction |
LGI1 [19,20,21,22,23] | Elderly/M | Limbic encephalitis with memory impairment and seizures. FBDS can precede the onset of cognitive impairment | Disorientation, confusion and autobiographical memory impairment | MRI: abnormal (75%), mostly showing increased medial temporal lobe and hippocampus signal; CSF: abnormal 25% (pleocytosis and increased proteins); EEG: 50% abnormal (epileptiform activity or slowing) | Disruption of the interaction with ADAM22 and reduction of AMPAR; possible complement activation. Antibodies abrogate LTP induction at CA3-CA1 hippocampal synapses in animal model leading to memory impairment |
CASPR2 [19,24,25,26,27] | Elderly/M | Limbic encephalitis, neuromyotonia and Morvan’s syndrome, neuropathic pain | Common cognitive dysfunction, anterograde and episodic memory impairment | MRI: more often normal (30% abnormal signals in the hippocampus); CSF: often normal (30% pleocytosis, increased proteins or oligoclonal bands); EEG: 70% abnormal (epileptic changes or slowing) | CAPSR2 internalization and inhibition of CASPR2/TAG1 interaction. Possible reduction of Kv1 and AMPARs leading to neuronal hyperexcitability and ineffective recruitment of post-synaptic AMPARs leading to memory impairment |
GABAB receptor [28,29,30,31] | Elderly/M | Limbic encephalitis, seizures | Cognitive/behavioural dysfunction in most patients with memory impairment and confusion | MRI: abnormal signals in the temporal lobe and hippocampus (70%); CSF: frequently altered (80%); EEG: epileptic changes (80%) | Antibodies can prevent the activation of the GABABR and block its function; however, how this mechanism can impact memory has not been investigated in vivo |
AMPA receptor [32,33,34,35,36] | Middle aged/F | Limbic encephalitis, seizures | Prominent memory impairment: amnesia could be isolated at onset | MRI: often bilateral medial temporal lobes and insular cortex involvement; CSF: 70% abnormal; EEG: abnormal in about half cases | Internalisation of GluA2 containing AMPARs with reduction of extrasynaptic AMPAR leading to LTP changes and consequent memory impairment |
GABAA receptor [37,38] | Broad age range/no sex predominance | Encephalitis and refractory seizures or status epilepticus | Cognitive impairment in two thirds of patients | MRI: multifocal cortical and subcortical FLAIR signal abnormalities: CSF. Abnormal in about 50% of cases; EEG: usually abnormal | Antibodies selectively remove GABAAR from synapses, downregulation of the GABAAR function; however how this mechanism can impact cognition has not been investigated in vivo |
DPPX [39,40] | Middle aged/M | Weight loss/diarrhoea, cognitive/behavioural changes, CNS hyperexcitability (myoclonus, tremors and hyperekplexia) | Memory loss, confusion | MRI: normal or unspecific; CSF: often normal; EEG: 70% abnormal | DPPX and Kv4.2 membrane expression is reduced by patient antibodies, whilst enteric neuron activity is increased; how this mechanism can impact cognition has not been investigated in vivo |
Glycine receptor [41,42,43,44] | Broad age range/M | Progressive encephalopathy with rigidity and myoclonus (PERM), epilepsy, SPS | Cognitive deficits, encephalopathy | MRI: often normal or non-specific; CSF: abnormal in less than half cases; EEG: often abnormal (70%), with focal/diffuse slowing or rarer epileptic changes | GlyR internalisation; how this mechanism can impact cognition has not been investigated in vivo |
IgLON5 [45,46,47] | Elderly/no sex predominance | Sleep disorder, bulbar symptoms, gait abnormality followed by cognitive dysfunction | Sleep disorder, bulbar symptoms and gait abnormality followed by cognitive dysfunction | MRI: often normal or non-specific; CSF: 60% pleocytosis | Internalisation with reduction of IgLon5 expression (irreversible in the long term after the removal of antibodies); memory impairment due to gamma-oscillation dysfunction, neurodegeneration and synaptic dysfunction |
2. Neuronal Surface Antibody-Mediated Encephalitis Presenting as a Neurodegenerative Disorder
Diagnostic Clues to the Autoimmune Aetiology
3. NSA-Ab in Patients with Neurodegenerative Disorders
4. Secondary Neurodegeneration in Patients with Autoimmune Encephalitis
4.1. Long-Term Cognitive Outcome
4.2. Brain MRI Changes
4.3. Biomarkers and Predictors of Neurodegeneration
4.4. Mechanisms of Neurodegeneration in AE
5. IgLON5 Disease: The Interface between Antibody-Mediated Immunity and Neurodegeneration
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Graus, F.; Titulaer, M.J.; Balu, R.; Benseler, S.; Bien, C.G.; Cellucci, T.; Cortese, I.; Dale, R.C.; Gelfand, J.M.; Geschwind, M.; et al. A Clinical Approach to Diagnosis of Autoimmune Encephalitis. Lancet Neurol. 2016, 15, 391–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannoccaro, M.P.; Crisp, S.J.; Vincent, A. Antibody-Mediated Central Nervous System Diseases. Brain Neurosci. Adv. 2018, 2, 239821281881749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escudero, D.; Guasp, M.; Ariño, H.; Gaig, C.; Martínez-Hernández, E.; Dalmau, J.; Graus, F. Antibody-Associated CNS Syndromes without Signs of Inflammation in the Elderly. Neurology 2017, 89, 1471–1475. [Google Scholar] [CrossRef] [PubMed]
- Ingram, C.R.; Phegan, K.J.; Blumenthal, H.T. Significance of An Aging-Linked Neuron Binding Gamma Globulin Fraction of Human Sera. J. Gerontol. 1974, 29, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Mayer, P.P.; Chughtai, M.A.; Cape, R.D.T. An immunological approach to dementia in the elderly. Age Ageing 1976, 5, 164–170. [Google Scholar] [CrossRef]
- McRae-Degueurce, A.; Booj, S.; Haglid, K.; Rosengren, L.; Karlsson, J.E.; Karlsson, I.; Wallin, A.; Svennerholm, L.; Gottfries, C.G.; Dahlstrom, A. Antibodies in Cerebrospinal Fluid of Some Alzheimer Disease Patients Recognize Cholinergic Neurons in the Rat Central Nervous System. Proc. Natl. Acad. Sci. USA 1987, 84, 9214–9218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Li, L. Autoantibodies in Alzheimer’s Disease: Potential Biomarkers, Pathogenic Roles, and Therapeutic Implications. J. Biomed. Res. 2016, 30, 361–372. [Google Scholar] [CrossRef]
- Kocurova, G.; Ricny, J.; Ovsepian, S.V. Autoantibodies Targeting Neuronal Proteins as Biomarkers for Neurodegenerative Diseases. Theranostics 2022, 12, 3045–3056. [Google Scholar] [CrossRef]
- Ovsepian, S.V.; O’Leary, V.B. Adult Neurogenesis in the Gut, Homeostatic Autoimmunity and Neurodegenerative Disease Biomarkers. Neuroscience 2022, 504, 75–78. [Google Scholar] [CrossRef]
- Dalmau, J.; Gleichman, A.J.; Hughes, E.G.; Rossi, J.E.; Peng, X.; Lai, M.; Dessain, S.K.; Rosenfeld, M.R.; Balice-Gordon, R.; Lynch, D.R. Anti-NMDA-Receptor Encephalitis: Case Series and Analysis of the Effects of Antibodies. Lancet Neurol. 2008, 7, 1091–1098. [Google Scholar] [CrossRef] [Green Version]
- Pruss, H.; Holtje, M.; Maier, N.; Gomez, A.; Buchert, R.; Harms, L.; Ahnert-Hilger, G.; Schmitz, D.; Terborg, C.; Kopp, U.; et al. IgA NMDA Receptor Antibodies Are Markers of Synaptic Immunity in Slow Cognitive Impairment. Neurology 2012, 78, 1743–1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doss, S.; Wandinger, K.-P.; Hyman, B.T.; Panzer, J.A.; Synofzik, M.; Dickerson, B.; Mollenhauer, B.; Scherzer, C.R.; Ivinson, A.J.; Finke, C.; et al. High Prevalence of NMDA Receptor IgA/IgM Antibodies in Different Dementia Types. Ann. Clin. Transl. Neurol. 2014, 1, 822–832. [Google Scholar] [CrossRef] [Green Version]
- Busse, M.; Kunschmann, R.; Dobrowolny, H.; Hoffmann, J.; Bogerts, B.; Steiner, J.; Frodl, T.; Busse, S. Dysfunction of the Blood-Cerebrospinal Fluid-Barrier and N-Methyl-d-Aspartate Glutamate Receptor Antibodies in Dementias. Eur. Arch. Psychiatry Clin. Neurosci. 2018, 268, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Busse, S.; Busse, M.; Brix, B.; Probst, C.; Genz, A.; Bogerts, B.; Stoecker, W.; Steiner, J. Seroprevalence of N-Methyl-d-Aspartate Glutamate Receptor (NMDA-R) Autoantibodies in Aging Subjects without Neuropsychiatric Disorders and in Dementia Patients. Eur. Arch. Psychiatry Clin. Neurosci. 2014, 264, 545–550. [Google Scholar] [CrossRef]
- Ehrenreich, H. Autoantibodies against N-Methyl-d-Aspartate Receptor 1 in Health and Disease. Curr. Opin. Neurol. 2018, 31, 306–312. [Google Scholar] [CrossRef] [Green Version]
- Titulaer, M.J.; McCracken, L.; Gabilondo, I.; Armangué, T.; Glaser, C.; Iizuka, T.; Honig, L.S.; Benseler, S.M.; Kawachi, I.; Martinez-Hernandez, E.; et al. Treatment and Prognostic Factors for Long-Term Outcome in Patients with Anti-NMDA Receptor Encephalitis: An Observational Cohort Study. Lancet Neurol. 2013, 12, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Hughes, E.G.; Peng, X.; Gleichman, A.J.; Lai, M.; Zhou, L.; Tsou, R.; Parsons, T.D.; Lynch, D.R.; Dalmau, J.; Balice-Gordon, R.J. Cellular and Synaptic Mechanisms of Anti-NMDA Receptor Encephalitis. J. Neurosci. 2010, 30, 5866–5875. [Google Scholar] [CrossRef] [Green Version]
- Manto, M.; Dalmau, J.; Didelot, A.; Rogemond, V.; Honnorat, J. In Vivo Effects of Antibodies from Patients with Anti-NMDA Receptor Encephalitis: Further Evidence of Synaptic Glutamatergic Dysfunction. Orphanet J. Rare Dis. 2010, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Irani, S.R.; Alexander, S.; Waters, P.; Kleopa, K.A.; Pettingill, P.; Zuliani, L.; Peles, E.; Buckley, C.; Lang, B.; Vincent, A. Antibodies to Kv1 Potassium Channel-Complex Proteins Leucine-Rich, Glioma Inactivated 1 Protein and Contactin-Associated Protein-2 in Limbic Encephalitis, Morvan’s Syndrome and Acquired Neuromyotonia. Brain 2010, 133, 2734–2748. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of Multiple Sclerosis: 2017 Revisions of the McDonald Criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Ariño, H.; Armangué, T.; Petit-Pedrol, M.; Sabater, L.; Martinez-Hernandez, E.; Hara, M.; Lancaster, E.; Saiz, A.; Dalmau, J.; Graus, F. Anti-LGI1–Associated Cognitive Impairment. Neurology 2016, 87, 759–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Sonderen, A.; Thijs, R.D.; Coenders, E.C.; Jiskoot, L.C.; Sanchez, E.; de Bruijn, M.A.A.M.; van Coevorden-Hameete, M.H.; Wirtz, P.W.; Schreurs, M.W.J.; Sillevis Smitt, P.A.E.; et al. Anti-LGI1 Encephalitis: Clinical Syndrome and Long-Term Follow-Up. Neurology 2016, 87, 1449–1456. [Google Scholar] [CrossRef] [PubMed]
- Petit-Pedrol, M.; Sell, J.; Planagumà, J.; Mannara, F.; Radosevic, M.; Haselmann, H.; Ceanga, M.; Sabater, L.; Spatola, M.; Soto, D.; et al. LGI1 Antibodies Alter Kv1.1 and AMPA Receptors Changing Synaptic Excitability, Plasticity and Memory. Brain 2018, 141, 3144–3159. [Google Scholar] [CrossRef] [PubMed]
- Joubert, B.; Saint-Martin, M.; Noraz, N.; Picard, G.; Rogemond, V.; Ducray, F.; Desestret, V.; Psimaras, D.; Delattre, J.-Y.; Antoine, J.-C.; et al. Characterization of a Subtype of Autoimmune Encephalitis with Anti–Contactin-Associated Protein-like 2 Antibodies in the Cerebrospinal Fluid, Prominent Limbic Symptoms, and Seizures. JAMA Neurol. 2016, 73, 1115. [Google Scholar] [CrossRef] [Green Version]
- Giannoccaro, M.P.; Menassa, D.A.; Jacobson, L.; Coutinho, E.; Prota, G.; Lang, B.; Leite, M.I.; Cerundolo, V.; Liguori, R.; Vincent, A. Behaviour and Neuropathology in Mice Injected with Human Contactin-Associated Protein 2 Antibodies. Brain 2019, 142, 2000–2012. [Google Scholar] [CrossRef]
- Joubert, B.; Petit-Pedrol, M.; Planagumà, J.; Mannara, F.; Radosevic, M.; Marsal, M.; Maudes, E.; García-Serra, A.; Aguilar, E.; Andrés-Bilbé, A.; et al. Human CASPR2 Antibodies Reversibly Alter Memory and the CASPR2 Protein Complex. Ann. Neurol. 2022, 91, 801–813. [Google Scholar] [CrossRef]
- Fernandes, D.; Santos, S.D.; Coutinho, E.; Whitt, J.L.; Beltrão, N.; Rondão, T.; Leite, M.I.; Buckley, C.; Lee, H.-K.; Carvalho, A.L. Disrupted AMPA Receptor Function upon Genetic- or Antibody-Mediated Loss of Autism-Associated CASPR2. Cereb. Cortex 2019, 29, 4919–4931. [Google Scholar] [CrossRef]
- Van Coevorden-Hameete, M.H.; de Bruijn, M.A.A.M.; de Graaff, E.; Bastiaansen, D.A.E.M.; Schreurs, M.W.J.; Demmers, J.A.A.; Ramberger, M.; Hulsenboom, E.S.P.; Nagtzaam, M.M.P.; Boukhrissi, S.; et al. The Expanded Clinical Spectrum of Anti-GABABR Encephalitis and Added Value of KCTD16 Autoantibodies. Brain 2019, 142, 1631–1643. [Google Scholar] [CrossRef] [Green Version]
- Hoftberger, R.; Titulaer, M.J.; Sabater, L.; Dome, B.; Rozsas, A.; Hegedus, B.; Hoda, M.A.; Laszlo, V.; Ankersmit, H.J.; Harms, L.; et al. Encephalitis and GABAB Receptor Antibodies: Novel Findings in a New Case Series of 20 Patients. Neurology 2013, 81, 1500–1506. [Google Scholar] [CrossRef] [Green Version]
- Lancaster, E.; Lai, M.; Peng, X.; Hughes, E.; Constantinescu, R.; Raizer, J.; Friedman, D.; Skeen, M.B.; Grisold, W.; Kimura, A.; et al. Antibodies to the GABAB Receptor in Limbic Encephalitis with Seizures: Case Series and Characterisation of the Antigen. Lancet Neurol. 2010, 9, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Nibber, A.; Mann, E.O.; Pettingill, P.; Waters, P.; Irani, S.R.; Kullmann, D.M.; Vincent, A.; Lang, B. Pathogenic Potential of Antibodies to the GABAB Receptor. Epilepsia Open 2017, 2, 355–359. [Google Scholar] [CrossRef]
- Ricken, G.; Zrzavy, T.; Macher, S.; Altmann, P.; Troger, J.; Falk, K.K.; Kiefer, A.; Fichtenbaum, A.; Mitulovic, G.; Kubista, H.; et al. Autoimmune Global Amnesia as Manifestation of AMPAR Encephalitis and Neuropathologic Findings. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1019. [Google Scholar] [CrossRef]
- Joubert, B.; Kerschen, P.; Zekeridou, A.; Desestret, V.; Rogemond, V.; Chaffois, M.-O.; Ducray, F.; Larrue, V.; Daubail, B.; Idbaih, A.; et al. Clinical Spectrum of Encephalitis Associated with Antibodies Against the α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid Receptor: Case Series and Review of the Literature. JAMA Neurol. 2015, 72, 1163. [Google Scholar] [CrossRef] [Green Version]
- Hoftberger, R.; van Sonderen, A.; Leypoldt, F.; Houghton, D.; Geschwind, M.; Gelfand, J.; Paredes, M.; Sabater, L.; Saiz, A.; Titulaer, M.J.; et al. Encephalitis and AMPA Receptor Antibodies: Novel Findings in a Case Series of 22 Patients. Neurology 2015, 84, 2403–2412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, M.; Hughes, E.G.; Peng, X.; Zhou, L.; Gleichman, A.J.; Shu, H.; Matà, S.; Kremens, D.; Vitaliani, R.; Geschwind, M.D.; et al. AMPA Receptor Antibodies in Limbic Encephalitis Alter Synaptic Receptor Location. Ann. Neurol. 2009, 65, 424–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haselmann, H.; Mannara, F.; Werner, C.; Planagumà, J.; Miguez-Cabello, F.; Schmidl, L.; Grünewald, B.; Petit-Pedrol, M.; Kirmse, K.; Classen, J.; et al. Human Autoantibodies against the AMPA Receptor Subunit GluA2 Induce Receptor Reorganization and Memory Dysfunction. Neuron 2018, 100, 91–105.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spatola, M.; Petit-Pedrol, M.; Simabukuro, M.M.; Armangue, T.; Castro, F.J.; Barcelo Artigues, M.I.; Julià Benique, M.R.; Benson, L.; Gorman, M.; Felipe, A.; et al. Investigations in GABA A Receptor Antibody-Associated Encephalitis. Neurology 2017, 88, 1012–1020. [Google Scholar] [CrossRef] [Green Version]
- Pettingill, P.; Kramer, H.B.; Coebergh, J.A.; Pettingill, R.; Maxwell, S.; Nibber, A.; Malaspina, A.; Jacob, A.; Irani, S.R.; Buckley, C.; et al. Antibodies to GABAA receptor α1 and γ2 subunits: Clinical and serologic characterization. Neurology 2015, 84, 1233–1241. [Google Scholar] [CrossRef] [Green Version]
- Hara, M.; Ariño, H.; Petit-Pedrol, M.; Sabater, L.; Titulaer, M.J.; Martinez-Hernandez, E.; Schreurs, M.W.J.; Rosenfeld, M.R.; Graus, F.; Dalmau, J. DPPX Antibody–Associated Encephalitis: Main Syndrome and Antibody Effects. Neurology 2017, 88, 1340–1348. [Google Scholar] [CrossRef] [Green Version]
- Piepgras, J.; Höltje, M.; Michel, K.; Li, Q.; Otto, C.; Drenckhahn, C.; Probst, C.; Schemann, M.; Jarius, S.; Stöcker, W.; et al. Anti-DPPX Encephalitis: Pathogenic Effects of Antibodies on Gut and Brain Neurons. Neurology 2015, 85, 890–897. [Google Scholar] [CrossRef] [Green Version]
- Carvajal-González, A.; Leite, M.I.; Waters, P.; Woodhall, M.; Coutinho, E.; Balint, B.; Lang, B.; Pettingill, P.; Carr, A.; Sheerin, U.-M.; et al. Glycine Receptor Antibodies in PERM and Related Syndromes: Characteristics, Clinical Features and Outcomes. Brain 2014, 137, 2178–2192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvajal-González, A.; Jacobson, L.; Clover, L.; Wickremaratchi, M.; Shields, S.; Lang, B.; Vincent, A. Systemic Delivery of Human GlyR IgG Antibody Induces GlyR Internalization into Motor Neurons of Brainstem and Spinal Cord with Motor Dysfunction in Mice. Neuropathol. Appl. Neurobiol. 2021, 47, 316–327. [Google Scholar] [CrossRef]
- Rauschenberger, V.; von Wardenburg, N.; Schaefer, N.; Ogino, K.; Hirata, H.; Lillesaar, C.; Kluck, C.J.; Meinck, H.; Borrmann, M.; Weishaupt, A.; et al. Glycine Receptor Autoantibodies Impair Receptor Function and Induce Motor Dysfunction. Ann. Neurol. 2020, 88, 544–561. [Google Scholar] [CrossRef]
- Hansen, N.; Bartels, C.; Stöcker, W.; Wiltfang, J.; Fitzner, D. Impaired Verbal Memory Recall in Patients with Axonal Degeneration and Serum Glycine-Receptor Autoantibodies—Case Series. Front. Psychiatry 2022, 12, 778684. [Google Scholar] [CrossRef]
- Sabater, L.; Gaig, C.; Gelpi, E.; Bataller, L.; Lewerenz, J.; Torres-Vega, E.; Contreras, A.; Giometto, B.; Compta, Y.; Embid, C.; et al. A Novel Non-Rapid-Eye Movement and Rapid-Eye-Movement Parasomnia with Sleep Breathing Disorder Associated with Antibodies to IgLON5: A Case Series, Characterisation of the Antigen, and Post-Mortem Study. Lancet Neurol. 2014, 13, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Grüter, T.; Möllers, F.E.; Tietz, A.; Dargvainiene, J.; Melzer, N.; Heidbreder, A.; Strippel, C.; Kraft, A.; Höftberger, R.; Schöberl, F.; et al. Clinical, Serological and Genetic Predictors of Response to Immunotherapy in Anti-IgLON5 Disease. Brain 2022, 146, 600–611. [Google Scholar] [CrossRef]
- Ni, Y.; Feng, Y.; Shen, D.; Chen, M.; Zhu, X.; Zhou, Q.; Gao, Y.; Liu, J.; Zhang, Q.; Shen, Y.; et al. Anti-IgLON5 Antibodies Cause Progressive Behavioral and Neuropathological Changes in Mice. J. Neuroinflamm. 2022, 19, 140. [Google Scholar] [CrossRef]
- Geschwind, M.D.; Shu, H.; Haman, A.; Sejvar, J.J.; Miller, B.L. Rapidly Progressive Dementia. Ann. Neurol. 2008, 64, 97–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chitravas, N.; Jung, R.S.; Kofskey, D.M.; Blevins, J.E.; Gambetti, P.; Leigh, R.J.; Cohen, M.L. Treatable Neurological Disorders Misdiagnosed as Creutzfeldt-Jakob Disease. Ann. Neurol. 2011, 70, 437–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sala, I.; Marquié, M.; Sánchez-Saudinós, M.B.; Sánchez-Valle, R.; Alcolea, D.; Gómez-Ansón, B.; Gómez-Isla, T.; Blesa, R.; Lleó, A. Rapidly Progressive Dementia: Experience in a Tertiary Care Medical Center. Alzheimer Dis. Assoc. Disord. 2012, 26, 267–271. [Google Scholar] [CrossRef]
- Papageorgiou, S.G.; Kontaxis, T.; Bonakis, A.; Karahalios, G.; Kalfakis, N.; Vassilopoulos, D. Rapidly Progressive Dementia: Causes Found in a Greek Tertiary Referral Center in Athens. Alzheimer Dis. Assoc. Disord. 2009, 23, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Anuja, P.; Venugopalan, V.; Darakhshan, N.; Awadh, P.; Wilson, V.; Manoj, G.; Manish, M.; Vivek, L. Rapidly Progressive Dementia: An Eight Year (2008–2016) Retrospective Study. PLoS ONE 2018, 13, e0189832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flanagan, E.P.; McKeon, A.; Lennon, V.A.; Boeve, B.F.; Trenerry, M.R.; Tan, K.M.; Drubach, D.A.; Josephs, K.A.; Britton, J.W.; Mandrekar, J.N.; et al. Autoimmune Dementia: Clinical Course and Predictors of Immunotherapy Response. Mayo Clin. Proc. 2010, 85, 881–897. [Google Scholar] [CrossRef]
- Li, X.; Yuan, J.; Liu, L.; Hu, W. Antibody-LGI 1 Autoimmune Encephalitis Manifesting as Rapidly Progressive Dementia and Hyponatremia: A Case Report and Literature Review. BMC Neurol. 2019, 19, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Y.; Sun, L.; Cao, J.; Liu, C. Creutzfeldt-Jakob Disease versus Anti-LGI1 Limbic Encephalitis in a Patient with Progressive Cognitive Dysfunction, Psychiatric Symptoms, Involuntary Facio-Brachio-Crural Movement, and an Abnormal Electroencephalogram: A Case Report. Neuropsychiatr. Dis. Treat. 2015, 11, 1427–1430. [Google Scholar] [CrossRef] [Green Version]
- McKeon, A.; Marnane, M.; O’Connell, M.; Stack, J.P.; Kelly, P.J.; Lynch, T. Potassium Channel Antibody–Associated Encephalopathy Presenting with a Frontotemporal Dementia–like Syndrome. Arch. Neurol. 2007, 64, 1528. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Chiba, Y. A Case of Treatable Dementia with Lewy Bodies Remarkably Improved by Immunotherapy. J. Neuroimmunol. 2019, 330, 35–37. [Google Scholar] [CrossRef]
- Marquetand, J.; van Lessen, M.; Bender, B.; Reimold, M.; Elsen, G.; Stoecker, W.; Synofzik, M. Slowly Progressive LGI1 Encephalitis with Isolated Late-Onset Cognitive Dysfunction: A Treatable Mimic of Alzheimer’s Disease. Eur. J. Neurol. 2016, 23, e28–e29. [Google Scholar] [CrossRef]
- Arakawa, I.; Oguri, T.; Nakamura, T.; Sakurai, K.; Yuasa, H. Anti-voltage-gated potassium channel (VGKC) complex/leucine-rich glioma-inactivated protein 1 (LGI1) antibody-associated limbic encephalitis mimicking dementia with Lewy bodies in a patient with subacute REM sleep behavior disorder. Rinsho Shinkeigaku 2022, 62, 22–26. [Google Scholar] [CrossRef]
- Gadoth, A.; Pittock, S.J.; Dubey, D.; McKeon, A.; Britton, J.W.; Schmeling, J.E.; Smith, A.; Kotsenas, A.L.; Watson, R.E.; Lachance, D.H.; et al. Expanded Phenotypes and Outcomes among 256 LGI1/CASPR2-IgG-Positive Patients: LGI1/CASPR2-IgG + Patients. Ann. Neurol. 2017, 82, 79–92. [Google Scholar] [CrossRef]
- Bastiaansen, A.E.M.; van Steenhoven, R.W.; de Bruijn, M.A.A.M.; Crijnen, Y.S.; van Sonderen, A.; van Coevorden-Hameete, M.H.; Nühn, M.M.; Verbeek, M.M.; Schreurs, M.W.J.; Smitt, P.A.E.S.; et al. Autoimmune Encephalitis Resembling Dementia Syndromes. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1039. [Google Scholar] [CrossRef] [PubMed]
- Tobin, W.O.; Lennon, V.A.; Komorowski, L.; Probst, C.; Clardy, S.L.; Aksamit, A.J.; Appendino, J.P.; Lucchinetti, C.F.; Matsumoto, J.Y.; Pittock, S.J.; et al. DPPX Potassium Channel Antibody: Frequency, Clinical Accompaniments, and Outcomes in 20 Patients. Neurology 2014, 83, 1797–1803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtis, M.M.; Toledano, R.; García-Morales, I.; Gil-Nagel, A. Immunomodulated Parkinsonism as a Presenting Symptom of LGI1 Antibody Encephalitis. Park. Relat. Disord. 2015, 21, 1286–1287. [Google Scholar] [CrossRef] [PubMed]
- Kannoth, S.; Anandakkuttan, A.; Mathai, A.; Sasikumar, A.N.; Nambiar, V. Autoimmune Atypical Parkinsonism—A Group of Treatable Parkinsonism. J. Neurol. Sci. 2016, 362, 40–46. [Google Scholar] [CrossRef]
- Abdullah, N.S.; Jan, T.H.; Remli, R.; Mukari, S.A.M.; Ibrahim, N.M. Anti-GABAB Receptor Encephalitis Presenting with Atypical Corticobasal Syndrome in a Patient with Parkinson’s Disease. J. Mov. Disord. 2020, 13, 235–237. [Google Scholar] [CrossRef]
- Iranzo, A.; Molinuevo, J.L.; Santamaría, J.; Serradell, M.; Martí, M.J.; Valldeoriola, F.; Tolosa, E. Rapid-Eye-Movement Sleep Behaviour Disorder as an Early Marker for a Neurodegenerative Disorder: A Descriptive Study. Lancet Neurol. 2006, 5, 572–577. [Google Scholar] [CrossRef]
- Iranzo, A.; Graus, F.; Clover, L.; Morera, J.; Bruna, J.; Vilar, C.; Martínez-Rodriguez, J.E.; Vincent, A.; Santamaría, J. Rapid Eye Movement Sleep Behavior Disorder and Potassium Channel Antibody-Associated Limbic Encephalitis. Ann. Neurol. 2006, 59, 178–181. [Google Scholar] [CrossRef]
- Cornelius, J.R.; Pittock, S.J.; McKeon, A.; Lennon, V.A.; Aston, P.A.; Josephs, K.A.; Tippmann-Peikert, M.; Silber, M.H. Sleep Manifestations of Voltage-Gated Potassium Channel Complex Autoimmunity. Arch. Neurol. 2011, 68, 733–738. [Google Scholar] [CrossRef] [Green Version]
- Stamelou, M.; Plazzi, G.; Lugaresi, E.; Edwards, M.J.; Bhatia, K.P. The Distinct Movement Disorder in Anti-NMDA Receptor Encephalitis May Be Related to Status Dissociatus: A Hypothesis. Mov. Disord. 2012, 27, 1360–1363. [Google Scholar] [CrossRef]
- Abgrall, G.; Demeret, S.; Rohaut, B.; Leu-Semenescu, S.; Arnulf, I. Status Dissociatus and Disturbed Dreaming in a Patient with Morvan Syndrome plus Myasthenia Gravis. Sleep Med. 2015, 16, 894–896. [Google Scholar] [CrossRef]
- Giannoccaro, M.P.; Gastaldi, M.; Rizzo, G.; Jacobson, L.; Vacchiano, V.; Perini, G.; Capellari, S.; Franciotta, D.; Costa, A.; Liguori, R.; et al. Antibodies to Neuronal Surface Antigens in Patients with a Clinical Diagnosis of Neurodegenerative Disorder. Brain Behav. Immun. 2021, 96, 106–112. [Google Scholar] [CrossRef]
- Hazan, J.; Wing, M.; Liu, K.Y.; Reeves, S.; Howard, R. Clinical Utility of Cerebrospinal Fluid Biomarkers in the Evaluation of Cognitive Impairment: A Systematic Review and Meta-Analysis. J. Neurol. Neurosurg. Psychiatry 2023, 94, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Barthel, H.; Villemagne, V.L.; Drzezga, A. Future Directions in Molecular Imaging of Neurodegenerative Disorders. J. Nucl. Med. 2022, 63, 68S–74S. [Google Scholar] [CrossRef] [PubMed]
- Geschwind, M.D.; Murray, K. Differential Diagnosis with Other Rapid Progressive Dementias. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 153, pp. 371–397. ISBN 978-0-444-63945-5. [Google Scholar]
- Janssen, J.C.; Godbolt, A.K.; Ioannidis, P.; Thompson, E.J.; Rossor, M.N. The Prevalence of Oligoclonal Bands in the CSF of Patients with Primary Neurodegenerative Dementia. J. Neurol. 2004, 251, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, E.P.; Drubach, D.A.; Boeve, B.F. Autoimmune Dementia and Encephalopathy. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2016; Volume 133, pp. 247–267. ISBN 978-0-444-63432-0. [Google Scholar]
- Beagle, A.J.; Darwish, S.M.; Ranasinghe, K.G.; La, A.L.; Karageorgiou, E.; Vossel, K.A. Relative Incidence of Seizures and Myoclonus in Alzheimer’s Disease, Dementia with Lewy Bodies, and Frontotemporal Dementia. J. Alzheimer’s Dis. 2017, 60, 211–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozsadi, D.A.; Larner, A.J. Prevalence and Causes of Seizures at the Time of Diagnosis of Probable Alzheimer’s Disease. Dement. Geriatr. Cogn. Disord. 2006, 22, 121–124. [Google Scholar] [CrossRef]
- Dubey, D.; Kothapalli, N.; McKeon, A.; Flanagan, E.P.; Lennon, V.A.; Klein, C.J.; Britton, J.W.; So, E.; Boeve, B.F.; Tillema, J.-M.; et al. Predictors of Neural-Specific Autoantibodies and Immunotherapy Response in Patients with Cognitive Dysfunction. J. Neuroimmunol. 2018, 323, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Mackay, G.; Ahmad, K.; Stone, J.; Sudlow, C.; Summers, D.; Knight, R.; Will, R.; Irani, S.R.; Vincent, A.; Maddison, P. NMDA Receptor Autoantibodies in Sporadic Creutzfeldt-Jakob Disease. J. Neurol. 2012, 259, 1979–1981. [Google Scholar] [CrossRef]
- Fujita, K.; Yuasa, T.; Takahashi, Y.; Tanaka, K.; Sako, W.; Koizumi, H.; Iwasaki, Y.; Yoshida, M.; Izumi, Y.; Kaji, R. Antibodies to N-Methyl-D-Aspartate Glutamate Receptors in Creutzfeldt–Jakob Disease Patients. J. Neuroimmunol. 2012, 251, 90–93. [Google Scholar] [CrossRef]
- Fujita, K.; Yuasa, T.; Watanabe, O.; Takahashi, Y.; Hashiguchi, S.; Adachi, K.; Izumi, Y.; Kaji, R. Voltage-Gated Potassium Channel Complex Antibodies in Creutzfeldt-Jakob Disease. J. Neurol. 2012, 259, 2249–2250. [Google Scholar] [CrossRef]
- Angus-Leppan, H.; Rudge, P.; Mead, S.; Collinge, J.; Vincent, A. Autoantibodies in Sporadic Creutzfeldt-Jakob Disease. JAMA Neurol. 2013, 70, 919–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, M.; Mead, S.; Collinge, J.; Rudge, P.; Vincent, A. Neuronal Antibodies in Patients with Suspected or Confirmed Sporadic Creutzfeldt-Jakob Disease: Table 1. J. Neurol. Neurosurg. Psychiatry 2015, 86, 692–694. [Google Scholar] [CrossRef] [PubMed]
- Zuhorn, F.; Hübenthal, A.; Rogalewski, A.; Dogan Onugoren, M.; Glatzel, M.; Bien, C.G.; Schäbitz, W.-R. Creutzfeldt-Jakob Disease Mimicking Autoimmune Encephalitis with CASPR2 Antibodies. BMC Neurol. 2014, 14, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grau-Rivera, O.; Sánchez-Valle, R.; Saiz, A.; Molinuevo, J.L.; Bernabé, R.; Munteis, E.; Pujadas, F.; Salvador, A.; Saura, J.; Ugarte, A.; et al. Determination of Neuronal Antibodies in Suspected and Definite Creutzfeldt-Jakob Disease. JAMA Neurol. 2014, 71, 74. [Google Scholar] [CrossRef] [Green Version]
- Çoban, A.; İsmail Küçükali, C.; Bilgiç, B.; Yalçınkaya, N.; Haytural, H.; Ulusoy, C.; Turan, S.; Çakır, S.; Üçok, A.; Ünübol, H.; et al. Evaluation of Incidence and Clinical Features of Antibody-Associated Autoimmune Encephalitis Mimicking Dementia. Behav. Neurol. 2014, 2014, 935379. [Google Scholar] [CrossRef] [Green Version]
- Gibson, L.L.; McKeever, A.; Cullen, A.E.; Nicholson, T.R.; Aarsland, D.; Zandi, M.S.; Pollak, T.A. Neuronal Surface Autoantibodies in Dementia: A Systematic Review and Meta-Analysis. J. Neurol. 2021, 268, 2769–2779. [Google Scholar] [CrossRef] [Green Version]
- Dahm, L.; Ott, C.; Steiner, J.; Stepniak, B.; Teegen, B.; Saschenbrecker, S.; Hammer, C.; Borowski, K.; Begemann, M.; Lemke, S.; et al. Seroprevalence of Autoantibodies against Brain Antigens in Health and Disease: Brain-Targeting Autoantibodies. Ann. Neurol. 2014, 76, 82–94. [Google Scholar] [CrossRef]
- Hopfner, F.; Müller, S.H.; Steppat, D.; Miller, J.; Schmidt, N.; Wandinger, K.-P.; Leypoldt, F.; Berg, D.; Franke, A.; Lieb, W.; et al. No Association between Parkinson Disease and Autoantibodies against NMDA-Type Glutamate Receptors. Transl. Neurodegener. 2019, 8, 11. [Google Scholar] [CrossRef] [Green Version]
- Lang, K.; Prüss, H. Frequencies of Neuronal Autoantibodies in Healthy Controls: Estimation of Disease Specificity. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e386. [Google Scholar] [CrossRef] [Green Version]
- Pollak, T.A.; Beck, K.; Irani, S.R.; Howes, O.D.; David, A.S.; McGuire, P.K. Autoantibodies to Central Nervous System Neuronal Surface Antigens: Psychiatric Symptoms and Psychopharmacological Implications. Psychopharmacology 2016, 233, 1605–1621. [Google Scholar] [CrossRef] [Green Version]
- Balint, B.; Vincent, A.; Meinck, H.-M.; Irani, S.R.; Bhatia, K.P. Movement Disorders with Neuronal Antibodies: Syndromic Approach, Genetic Parallels and Pathophysiology. Brain 2018, 141, 13–36. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Ding, J.L. Natural Antibodies Bridge Innate and Adaptive Immunity. J. Immunol. 2015, 194, 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, C.; Stepniak, B.; Schneider, A.; Papiol, S.; Tantra, M.; Begemann, M.; Sirén, A.-L.; Pardo, L.A.; Sperling, S.; Mohd Jofrry, S.; et al. Neuropsychiatric Disease Relevance of Circulating Anti-NMDA Receptor Autoantibodies Depends on Blood–Brain Barrier Integrity. Mol. Psychiatry 2014, 19, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Gómez, E.; Oliveira, B.; Tapken, D.; Bertrand, S.; Klein-Schmidt, C.; Pan, H.; Zafeiriou, P.; Steiner, J.; Jurek, B.; Trippe, R.; et al. All Naturally Occurring Autoantibodies against the NMDA Receptor Subunit NR1 Have Pathogenic Potential Irrespective of Epitope and Immunoglobulin Class. Mol. Psychiatry 2017, 22, 1776–1784. [Google Scholar] [CrossRef] [Green Version]
- Jézéquel, J.; Johansson, E.M.; Dupuis, J.P.; Rogemond, V.; Gréa, H.; Kellermayer, B.; Hamdani, N.; Le Guen, E.; Rabu, C.; Lepleux, M.; et al. Dynamic Disorganization of Synaptic NMDA Receptors Triggered by Autoantibodies from Psychotic Patients. Nat. Commun. 2017, 8, 1791. [Google Scholar] [CrossRef] [Green Version]
- Giannoccaro, M.P.; Wright, S.K.; Vincent, A. In Vivo Mechanisms of Antibody-Mediated Neurological Disorders: Animal Models and Potential Implications. Front. Neurol. 2020, 10, 1394. [Google Scholar] [CrossRef] [Green Version]
- Hirose, S.; Hara, M.; Kamei, S.; Dalmau, J.; Nakajima, H. Characteristics of Clinical Relapses and Patient-Oriented Long-Term Outcomes of Patients with Anti-N-Methyl-d-Aspartate Receptor Encephalitis. J. Neurol. 2022, 269, 2486–2492. [Google Scholar] [CrossRef]
- Finke, C.; Kopp, U.A.; Prüss, H.; Dalmau, J.; Wandinger, K.-P.; Ploner, C.J. Cognitive Deficits Following Anti-NMDA Receptor Encephalitis. J. Neurol. Neurosurg. Psychiatry 2012, 83, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Finke, C.; Kopp, U.A.; Scheel, M.; Pech, L.-M.; Soemmer, C.; Schlichting, J.; Leypoldt, F.; Brandt, A.U.; Wuerfel, J.; Probst, C.; et al. Functional and Structural Brain Changes in Anti-N-Methyl-D-Aspartate Receptor Encephalitis: Finke et al.: MRI in Anti-NMDAR Encephalitis. Ann. Neurol. 2013, 74, 284–296. [Google Scholar] [CrossRef]
- McKeon, G.L.; Scott, J.G.; Spooner, D.M.; Ryan, A.E.; Blum, S.; Gillis, D.; Langguth, D.; Robinson, G.A. Cognitive and Social Functioning Deficits after Anti-N-Methyl-D-Aspartate Receptor Encephalitis: An Exploratory Case Series. J. Int. Neuropsychol. Soc. 2016, 22, 828–838. [Google Scholar] [CrossRef] [Green Version]
- Heine, J.; Kopp, U.A.; Klag, J.; Ploner, C.J.; Prüss, H.; Finke, C. Long-Term Cognitive Outcome in Anti–N-Methyl-D-Aspartate Receptor Encephalitis. Ann. Neurol. 2021, 90, 949–961. [Google Scholar] [CrossRef] [PubMed]
- Finke, C.; Prüss, H.; Heine, J.; Reuter, S.; Kopp, U.A.; Wegner, F.; Then Bergh, F.; Koch, S.; Jansen, O.; Münte, T.; et al. Evaluation of Cognitive Deficits and Structural Hippocampal Damage in Encephalitis with Leucine-Rich, Glioma-Inactivated 1 Antibodies. JAMA Neurol. 2017, 74, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maureille, A.; Fenouil, T.; Joubert, B.; Picard, G.; Rogemond, V.; Pinto, A.-L.; Thomas, L.; Ducray, F.; Quadrio, I.; Psimaras, D.; et al. Isolated Seizures Are a Common Early Feature of Paraneoplastic Anti-GABAB Receptor Encephalitis. J. Neurol. 2019, 266, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Li, C.; Li, A.; Liu, X.; Chen, C.; Gong, X.; Zhou, D.; Hong, Z. Long-Term Cognitive and Neuropsychiatric Outcomes of Anti-GABABR Encephalitis Patients: A Prospective Study. J. Neuroimmunol. 2021, 351, 577471. [Google Scholar] [CrossRef] [PubMed]
- Nicolle, D.C.M.; Moses, J.L. A Systematic Review of the Neuropsychological Sequelae of People Diagnosed with Anti N-Methyl-D-Aspartate Receptor Encephalitis in the Acute and Chronic Phases. Arch. Clin. Neuropsychol. 2018, 33, 964–983. [Google Scholar] [CrossRef]
- McKeon, G.L.; Robinson, G.A.; Ryan, A.E.; Blum, S.; Gillis, D.; Finke, C.; Scott, J.G. Cognitive Outcomes Following Anti-N-Methyl-D-Aspartate Receptor Encephalitis: A Systematic Review. J. Clin. Exp. Neuropsychol. 2018, 40, 234–252. [Google Scholar] [CrossRef] [PubMed]
- Hinkle, C.D.; Porter, J.N.; Waldron, E.J.; Klein, H.; Tranel, D.; Heffelfinger, A. Neuropsychological Characterization of Three Adolescent Females with Anti-NMDA Receptor Encephalitis in the Acute, Post-Acute, and Chronic Phases: An Inter-Institutional Case Series. Clin. Neuropsychol. 2017, 31, 268–288. [Google Scholar] [CrossRef]
- Dalmau, J.; Lancaster, E.; Martinez-Hernandez, E.; Rosenfeld, M.R.; Balice-Gordon, R. Clinical Experience and Laboratory Investigations in Patients with Anti-NMDAR Encephalitis. Lancet Neurol. 2011, 10, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Hansen, N. Long-Term Memory Dysfunction in Limbic Encephalitis. Front. Neurol. 2019, 10, 330. [Google Scholar] [CrossRef]
- Hébert, J.; Day, G.S.; Steriade, C.; Wennberg, R.A.; Tang-Wai, D.F. Long-Term Cognitive Outcomes in Patients with Autoimmune Encephalitis. Can. J. Neurol. Sci. 2018, 45, 540–544. [Google Scholar] [CrossRef] [Green Version]
- Hanert, A.; Rave, J.; Granert, O.; Ziegler, M.; Pedersen, A.; Born, J.; Finke, C.; Bartsch, T. Hippocampal Dentate Gyrus Atrophy Predicts Pattern Separation Impairment in Patients with LGI1 Encephalitis. Neuroscience 2019, 400, 120–131. [Google Scholar] [CrossRef]
- Dogan Onugoren, M.; Golombeck, K.S.; Bien, C.; Abu-Tair, M.; Brand, M.; Bulla-Hellwig, M.; Lohmann, H.; Münstermann, D.; Pavenstädt, H.; Thölking, G.; et al. Immunoadsorption Therapy in Autoimmune Encephalitides. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e207. [Google Scholar] [CrossRef] [Green Version]
- Phillips, O.R.; Joshi, S.H.; Narr, K.L.; Shattuck, D.W.; Singh, M.; Di Paola, M.; Ploner, C.J.; Prüss, H.; Paul, F.; Finke, C. Superficial White Matter Damage in Anti-NMDA Receptor Encephalitis. J. Neurol. Neurosurg. Psychiatry 2018, 89, 518–525. [Google Scholar] [CrossRef]
- Finke, C.; Kopp, U.A.; Pajkert, A.; Behrens, J.R.; Leypoldt, F.; Wuerfel, J.T.; Ploner, C.J.; Prüss, H.; Paul, F. Structural Hippocampal Damage Following Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Biol. Psychiatry 2016, 79, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Cai, L.; Zhou, X.; Huang, H.; Zheng, J. Voxel-Based Analysis and Multivariate Pattern Analysis of Diffusion Tensor Imaging Study in Anti-NMDA Receptor Encephalitis. Neuroradiology 2020, 62, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xiang, Y.; Liu, J.; Feng, J.; Du, S.; Luo, T.; Li, Y.; Zeng, C. Diffusion Kurtosis Imaging and Diffusion Tensor Imaging Parameters Applied to White Matter and Gray Matter of Patients with Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Front. Neurosci. 2022, 16, 1030230. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Lv, X.; Zhang, J.; Li, C.; Wei, L.; Zhou, N.; Xu, J.; Tian, Y.; Wang, K. Gray Matter Atrophy and Corresponding Impairments in Connectivity in Patients with Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Brain Imaging Behav. 2022, 16, 2001–2010. [Google Scholar] [CrossRef]
- Xu, J.; Guo, Y.; Li, J.; Lv, X.; Zhang, J.; Zhang, J.; Hu, Q.; Wang, K.; Tian, Y. Progressive Cortical and Sub-Cortical Alterations in Patients with Anti-N-Methyl-d-Aspartate Receptor Encephalitis. J. Neurol. 2022, 269, 389–398. [Google Scholar] [CrossRef]
- Long, Q.; Lv, Z.; Zhao, J.; Shi, K.; Li, C.; Fan, B.; Zheng, J. Cerebral Gray Matter Volume Changes in Patients with Anti-N-Methyl-D-Aspartate Receptor Encephalitis: A Voxel-Based Morphometry Study. Front. Neurol. 2022, 13, 892242. [Google Scholar] [CrossRef]
- Peer, M.; Prüss, H.; Ben-Dayan, I.; Paul, F.; Arzy, S.; Finke, C. Functional Connectivity of Large-Scale Brain Networks in Patients with Anti-NMDA Receptor Encephalitis: An Observational Study. Lancet Psychiatry 2017, 4, 768–774. [Google Scholar] [CrossRef]
- Loane, C.; Argyropoulos, G.P.D.; Roca-Fernández, A.; Lage, C.; Sheerin, F.; Ahmed, S.; Zamboni, G.; Mackay, C.; Irani, S.R.; Butler, C.R. Hippocampal Network Abnormalities Explain Amnesia after VGKCC-Ab Related Autoimmune Limbic Encephalitis. J. Neurol. Neurosurg. Psychiatry 2019, 90, 965–974. [Google Scholar] [CrossRef] [Green Version]
- Miller, T.D.; Chong, T.T.-J.; Aimola Davies, A.M.; Ng, T.W.C.; Johnson, M.R.; Irani, S.R.; Vincent, A.; Husain, M.; Jacob, S.; Maddison, P.; et al. Focal CA3 Hippocampal Subfield Atrophy Following LGI1 VGKC-Complex Antibody Limbic Encephalitis. Brain 2017, 140, 1212–1219. [Google Scholar] [CrossRef] [Green Version]
- Szots, M.; Blaabjerg, M.; Orsi, G.; Iversen, P.; Kondziella, D.; Madsen, C.G.; Garde, E.; Magnusson, P.O.; Barsi, P.; Nagy, F.; et al. Global Brain Atrophy and Metabolic Dysfunction in LGI1 Encephalitis: A Prospective Multimodal MRI Study. J. Neurol. Sci. 2017, 376, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Heine, J.; Prüss, H.; Kopp, U.A.; Wegner, F.; Then Bergh, F.; Münte, T.; Wandinger, K.-P.; Paul, F.; Bartsch, T.; Finke, C. Beyond the Limbic System: Disruption and Functional Compensation of Large-Scale Brain Networks in Patients with Anti-LGI1 Encephalitis. J. Neurol. Neurosurg. Psychiatry 2018, 89, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Guery, D.; Cousyn, L.; Navarro, V.; Picard, G.; Rogemond, V.; Bani-Sadr, A.; Shor, N.; Joubert, B.; Muñiz-Castrillo, S.; Honnorat, J.; et al. Long-Term Evolution and Prognostic Factors of Epilepsy in Limbic Encephalitis with LGI1 Antibodies. J. Neurol. 2022, 269, 5061–5069. [Google Scholar] [CrossRef] [PubMed]
- Szots, M.; Marton, A.; Kover, F.; Kiss, T.; Berki, T.; Nagy, F.; Illes, Z. Natural Course of LGI1 Encephalitis: 3–5years of Follow-up without Immunotherapy. J. Neurol. Sci. 2014, 343, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Bauer, T.; David, B.; Ernst, L.; Becker, A.J.; Witt, J.; Helmstaedter, C.; Wagner, J.; Weber, B.; Elger, C.E.; Surges, R.; et al. Structural Network Topology in Limbic Encephalitis Is Associated with Amygdala Enlargement, Memory Performance and Serostatus. Epilepsia 2020, 61, e140–e145. [Google Scholar] [CrossRef]
- O’Connor, K.; Waters, P.; Komorowski, L.; Zekeridou, A.; Guo, C.-Y.; Mgbachi, V.C.; Probst, C.; Mindorf, S.; Teegen, B.; Gelfand, J.M.; et al. GABAA Receptor Autoimmunity: A Multicenter Experience. Neurol. Neuroimmunol. Neuroinflamm. 2019, 6, e552. [Google Scholar] [CrossRef] [Green Version]
- Dogan Onugoren, M.; Deuretzbacher, D.; Haensch, C.A.; Hagedorn, H.J.; Halve, S.; Isenmann, S.; Kramme, C.; Lohner, H.; Melzer, N.; Monotti, R.; et al. Limbic Encephalitis Due to GABA B and AMPA Receptor Antibodies: A Case Series. J. Neurol. Neurosurg. Psychiatry 2015, 86, 965–972. [Google Scholar] [CrossRef]
- Gaetani, L.; Blennow, K.; Calabresi, P.; Di Filippo, M.; Parnetti, L.; Zetterberg, H. Neurofilament Light Chain as a Biomarker in Neurological Disorders. J. Neurol. Neurosurg. Psychiatry 2019, 90, 870–881. [Google Scholar] [CrossRef]
- Blennow, K.; Zetterberg, H. Biomarkers for Alzheimer’s Disease: Current Status and Prospects for the Future. J. Intern. Med. 2018, 284, 643–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, B.K.; Day, G.S.; Graff-Radford, J.; McKeon, A.; Flanagan, E.P.; Algeciras-Schimnich, A.; Mielke, M.M.; Nguyen, A.; Jones, D.T.; Toledano, M.; et al. Alzheimer’s Disease Cerebrospinal Fluid Biomarkers Differentiate Patients with Creutzfeldt–Jakob Disease and Autoimmune Encephalitis. Eur. J. Neurol. 2022, 29, 2905–2912. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, R.; Krýsl, D.; Bergquist, F.; Andrén, K.; Malmeström, C.; Asztély, F.; Axelsson, M.; Menachem, E.B.; Blennow, K.; Rosengren, L.; et al. Cerebrospinal Fluid Markers of Neuronal and Glial Cell Damage to Monitor Disease Activity and Predict Long-Term Outcome in Patients with Autoimmune Encephalitis. Eur. J. Neurol. 2016, 23, 796–806. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, R.; Krýsl, D.; Andrén, K.; Asztély, F.; Bergquist, F.; Zetterberg, H.; Andreasson, U.; Axelsson, M.; Menachem, E.B.; Jons, D.; et al. Cerebrospinal Fluid Markers of Neuronal and Glial Cell Damage in Patients with Autoimmune Neurologic Syndromes with and without Underlying Malignancies. J. Neuroimmunol. 2017, 306, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Day, G.S.; Yarbrough, M.Y.; Körtvelyessy, P.; Prüss, H.; Bucelli, R.C.; Fritzler, M.J.; Mason, W.; Tang-Wai, D.F.; Steriade, C.; Hébert, J.; et al. Prospective Quantification of CSF Biomarkers in Antibody-Mediated Encephalitis. Neurology 2021, 96, e2546–e2557. [Google Scholar] [CrossRef]
- Guasp, M.; Martín-Aguilar, L.; Sabater, L.; Bioque, M.; Armangué, T.; Martínez-Hernández, E.; Landa, J.; Maudes, E.; Borràs, R.; Muñoz-Lopetegi, A.; et al. Neurofilament Light Chain Levels in Anti-NMDAR Encephalitis and Primary Psychiatric Psychosis. Neurology 2022, 98, e1489–e1498. [Google Scholar] [CrossRef]
- Körtvelyessy, P.; Prüss, H.; Thurner, L.; Maetzler, W.; Vittore-Welliong, D.; Schultze-Amberger, J.; Heinze, H.-J.; Reinhold, D.; Leypoldt, F.; Schreiber, S.; et al. Biomarkers of Neurodegeneration in Autoimmune-Mediated Encephalitis. Front. Neurol. 2018, 9, 668. [Google Scholar] [CrossRef] [Green Version]
- Lardeux, P.; Fourier, A.; Peter, E.; Dorey, A.; Muñiz-Castrillo, S.; Vogrig, A.; Picard, G.; Rogemond, V.; Verdurand, M.; Formaglio, M.; et al. Core Cerebrospinal Fluid Biomarker Profile in Anti-LGI1 Encephalitis. J. Neurol. 2022, 269, 377–388. [Google Scholar] [CrossRef]
- Ma, X.; Lu, Y.; Peng, F.; Wang, Y.; Sun, X.; Luo, W.; Shen, S.; Liu, Z.; Kermode, A.G.; Qiu, W.; et al. Serum NfL Associated with Anti-NMDA Receptor Encephalitis. Neurol. Sci. 2022, 43, 3893–3899. [Google Scholar] [CrossRef]
- Nissen, M.S.; Ryding, M.; Nilsson, A.C.; Madsen, J.S.; Olsen, D.A.; Halekoh, U.; Lydolph, M.; Illes, Z.; Blaabjerg, M. CSF-Neurofilament Light Chain Levels in NMDAR and LGI1 Encephalitis: A National Cohort Study. Front. Immunol. 2021, 12, 719432. [Google Scholar] [CrossRef]
- Vakrakou, A.G.; Tzartos, J.S.; Strataki, E.; Boufidou, F.; Dimou, E.; Pyrgelis, E.-S.; Constantinides, V.C.; Paraskevas, G.P.; Kapaki, E. Neuronal and Neuroaxonal Damage Cerebrospinal Fluid Biomarkers in Autoimmune Encephalitis Associated or Not with the Presence of Tumor. Biomedicines 2022, 10, 1262. [Google Scholar] [CrossRef] [PubMed]
- Juhl, A.L.; Grenzer, I.M.; Teegen, B.; Wiltfang, J.; Fitzner, D.; Hansen, N. Biomarkers of Neurodegeneration in Neural Autoantibody-Associated Psychiatric Syndromes: A Retrospective Cohort Study. J. Transl. Autoimmun. 2022, 5, 100169. [Google Scholar] [CrossRef]
- Mariotto, S.; Gajofatto, A.; Zuliani, L.; Zoccarato, M.; Gastaldi, M.; Franciotta, D.; Cantalupo, G.; Piardi, F.; Polo, A.; Alberti, D.; et al. Serum and CSF Neurofilament Light Chain Levels in Antibody-Mediated Encephalitis. J. Neurol. 2019, 266, 1643–1648. [Google Scholar] [CrossRef]
- Kammeyer, R.; Mizenko, C.; Sillau, S.; Richie, A.; Owens, G.; Nair, K.V.; Alvarez, E.; Vollmer, T.L.; Bennett, J.L.; Piquet, A.L. Evaluation of Plasma Neurofilament Light Chain Levels as a Biomarker of Neuronal Injury in the Active and Chronic Phases of Autoimmune Neurologic Disorders. Front. Neurol. 2022, 13, 689975. [Google Scholar] [CrossRef] [PubMed]
- Macher, S.; Zrzavy, T.; Höftberger, R.; Altmann, P.; Pataraia, E.; Zimprich, F.; Berger, T.; Rommer, P. Longitudinal Measurement of Cerebrospinal Fluid Neurofilament Light in Anti-N-methyl-D-aspartate Receptor Encephalitis. Eur. J. Neurol. 2021, 28, 1401–1405. [Google Scholar] [CrossRef]
- Li, J.; Gu, Y.; An, H.; Zhou, Z.; Zheng, D.; Wang, Z.; Wen, Z.; Shen, H.; Wang, Q.; Wang, H. Cerebrospinal Fluid Light and Heavy Neurofilament Level Increased in Anti-N-methyl-d-aspartate Receptor Encephalitis. Brain Behav. 2019, 9, e01354. [Google Scholar] [CrossRef] [Green Version]
- Freund, B.; Probasco, J.C.; Cervenka, M.C.; Sutter, R.; Kaplan, P.W. EEG Differences in Two Clinically Similar Rapid Dementias: Voltage-Gated Potassium Channel Complex–Associated Autoimmune Encephalitis and Creutzfeldt-Jakob Disease. Clin. EEG Neurosci. 2019, 50, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Fominykh, V.; Brylev, L.; Gaskin, V.; Luzin, R.; Yakovlev, A.; Komoltsev, I.; Belousova, I.; Rosliakova, A.; Guekht, A.; Gulyaeva, N. Neuronal Damage and Neuroinflammation Markers in Patients with Autoimmune Encephalitis and Multiple Sclerosis. Metab. Brain Dis. 2019, 34, 1473–1485. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ding, Y.; Zheng, D.; Wang, Z.; Pan, S.; Ji, T.; Shen, H.-Y.; Wang, H. Elevation of YKL-40 in the CSF of Anti-NMDAR Encephalitis Patients Is Associated with Poor Prognosis. Front. Neurol. 2018, 9, 727. [Google Scholar] [CrossRef] [Green Version]
- Mikasova, L.; De Rossi, P.; Bouchet, D.; Georges, F.; Rogemond, V.; Didelot, A.; Meissirel, C.; Honnorat, J.; Groc, L. Disrupted Surface Cross-Talk between NMDA and Ephrin-B2 Receptors in Anti-NMDA Encephalitis. Brain 2012, 135, 1606–1621. [Google Scholar] [CrossRef] [Green Version]
- Newcomer, J.W.; Farber, N.B.; Olney, J.W. NMDA Receptor Function, Memory, and Brain Aging. Dialogues Clin. Neurosci. 2000, 2, 219–232. [Google Scholar] [CrossRef]
- Tanaka, M.; Bohár, Z.; Vécsei, L. Are Kynurenines Accomplices or Principal Villains in Dementia? Maintenance of Kynurenine Metabolism. Molecules 2020, 25, 564. [Google Scholar] [CrossRef] [Green Version]
- Jorratt, P.; Hoschl, C.; Ovsepian, S.V. Endogenous Antagonists of N-Methyl-d-Aspartate Receptor in Schizophrenia. Alzheimer’s Dement. 2021, 17, 888–905. [Google Scholar] [CrossRef]
- Planagumà, J.; Leypoldt, F.; Mannara, F.; Gutiérrez-Cuesta, J.; Martín-García, E.; Aguilar, E.; Titulaer, M.J.; Petit-Pedrol, M.; Jain, A.; Balice-Gordon, R.; et al. Human N-Methyl D-Aspartate Receptor Antibodies Alter Memory and Behaviour in Mice. Brain 2015, 138, 94–109. [Google Scholar] [CrossRef]
- Saab, A.S.; Tzvetavona, I.D.; Trevisiol, A.; Baltan, S.; Dibaj, P.; Kusch, K.; Möbius, W.; Goetze, B.; Jahn, H.M.; Huang, W.; et al. Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism. Neuron 2016, 91, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Matute, C.; Palma, A.; Serrano-Regal, M.P.; Maudes, E.; Barman, S.; Sánchez-Gómez, M.V.; Domercq, M.; Goebels, N.; Dalmau, J. N-Methyl-D-Aspartate Receptor Antibodies in Autoimmune Encephalopathy Alter Oligodendrocyte Function. Ann. Neurol. 2020, 87, 670–676. [Google Scholar] [CrossRef]
- Jones, B.E.; Tovar, K.R.; Goehring, A.; Jalali-Yazdi, F.; Okada, N.J.; Gouaux, E.; Westbrook, G.L. Autoimmune Receptor Encephalitis in Mice Induced by Active Immunization with Conformationally Stabilized Holoreceptors. Sci. Transl. Med. 2019, 11, eaaw0044. [Google Scholar] [CrossRef]
- Zrzavy, T.; Endmayr, V.; Bauer, J.; Macher, S.; Mossaheb, N.; Schwaiger, C.; Ricken, G.; Winklehner, M.; Glatter, S.; Breu, M.; et al. Neuropathological Variability within a Spectrum of NMDAR-Encephalitis. Ann. Neurol. 2021, 90, 725–737. [Google Scholar] [CrossRef]
- Ohkawa, T.; Fukata, Y.; Yamasaki, M.; Miyazaki, T.; Yokoi, N.; Takashima, H.; Watanabe, M.; Watanabe, O.; Fukata, M. Autoantibodies to Epilepsy-Related LGI1 in Limbic Encephalitis Neutralize LGI1-ADAM22 Interaction and Reduce Synaptic AMPA Receptors. J. Neurosci. 2013, 33, 18161–18174. [Google Scholar] [CrossRef] [Green Version]
- Klang, A.; Schmidt, P.; Kneissl, S.; Bagó, Z.; Vincent, A.; Lang, B.; Moloney, T.; Bien, C.G.; Halász, P.; Bauer, J.; et al. IgG and Complement Deposition and Neuronal Loss in Cats and Humans with Epilepsy and Voltage-Gated Potassium Channel Complex Antibodies. J. Neuropathol. Exp. Neurol. 2014, 73, 403–413. [Google Scholar] [CrossRef] [Green Version]
- Patterson, K.R.; Dalmau, J.; Lancaster, E. Mechanisms of Caspr2 Antibodies in Autoimmune Encephalitis and Neuromyotonia: Caspr2 Antibody Mechanisms. Ann. Neurol. 2018, 83, 40–51. [Google Scholar] [CrossRef]
- Saint-Martin, M.; Pieters, A.; Déchelotte, B.; Malleval, C.; Pinatel, D.; Pascual, O.; Karagogeos, D.; Honnorat, J.; Pellier-Monnin, V.; Noraz, N. Impact of Anti-CASPR2 Autoantibodies from Patients with Autoimmune Encephalitis on CASPR2/TAG-1 Interaction and Kv1 Expression. J. Autoimmun. 2019, 103, 102284. [Google Scholar] [CrossRef]
- Sundal, C.; Vedeler, C.; Miletic, H.; Andersen, O. Morvan Syndrome with Caspr2 Antibodies. Clinical and Autopsy Report. J. Neurol. Sci. 2017, 372, 453–455. [Google Scholar] [CrossRef]
- Liguori, R. Morvan’s Syndrome: Peripheral and Central Nervous System and Cardiac Involvement with Antibodies to Voltage-Gated Potassium Channels. Brain 2001, 124, 2417–2426. [Google Scholar] [CrossRef] [Green Version]
- Körtvelyessy, P.; Bauer, J.; Stoppel, C.M.; Brück, W.; Gerth, I.; Vielhaber, S.; Wiedemann, F.R.; Heinze, H.J.; Bartels, C.; Bien, C.G. Complement-Associated Neuronal Loss in a Patient with CASPR2 Antibody–Associated Encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 2015, 2, e75. [Google Scholar] [CrossRef] [Green Version]
- Golombeck, K.S.; Bönte, K.; Mönig, C.; van Loo, K.M.; Hartwig, M.; Schwindt, W.; Widman, G.; Lindenau, M.; Becker, A.J.; Glatzel, M.; et al. Evidence of a Pathogenic Role for CD8 + T Cells in Anti-GABA B Receptor Limbic Encephalitis. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e232. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.-C.; Liu, C.-H.; Lin, J.-J.; Lin, K.-J.; Huang, K.-L.; Lee, T.-H.; Chang, Y.-J.; Peng, T.-I.; Lin, K.-L.; Chang, T.-Y.; et al. Rapid Progression and Brain Atrophy in Anti-AMPA Receptor Encephalitis. J. Neuroimmunol. 2013, 261, 129–133. [Google Scholar] [CrossRef]
- Simabukuro, M.M.; Sabater, L.; Adoni, T.; Cury, R.G.; Haddad, M.S.; Moreira, C.H.; Oliveira, L.; Boaventura, M.; Alves, R.C.; Azevedo Soster, L.; et al. Sleep Disorder, Chorea, and Dementia Associated with IgLON5 Antibodies. Neurol. Neuroimmunol. Neuroinflamm. 2015, 2, e136. [Google Scholar] [CrossRef] [Green Version]
- Brüggemann, N.; Wandinger, K.-P.; Gaig, C.; Sprenger, A.; Junghanns, K.; Helmchen, C.; Münchau, A. Dystonia, Lower Limb Stiffness, and Upward Gaze Palsy in a Patient with IgLON5 Antibodies. Mov. Disord. 2016, 31, 762–764. [Google Scholar] [CrossRef]
- Haitao, R.; Yingmai, Y.; Yan, H.; Fei, H.; Xia, L.; Honglin, H.; Chaiyan, L.; Stöcker, W.; Liying, C.; Hongzhi, G. Chorea and Parkinsonism Associated with Autoantibodies to IgLON5 and Responsive to Immunotherapy. J. Neuroimmunol. 2016, 300, 9–10. [Google Scholar] [CrossRef]
- Montagna, M.; Amir, R.; De Volder, I.; Lammens, M.; Huyskens, J.; Willekens, B. IgLON5-Associated Encephalitis with Atypical Brain Magnetic Resonance Imaging and Cerebrospinal Fluid Changes. Front. Neurol. 2018, 9, 329. [Google Scholar] [CrossRef] [Green Version]
- Bonello, M.; Jacob, A.; Ellul, M.A.; Barker, E.; Parker, R.; Jefferson, S.; Alusi, S. IgLON5 Disease Responsive to Immunotherapy. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e383. [Google Scholar] [CrossRef] [Green Version]
- Honorat, J.A.; Komorowski, L.; Josephs, K.A.; Fechner, K.; St Louis, E.K.; Hinson, S.R.; Lederer, S.; Kumar, N.; Gadoth, A.; Lennon, V.A.; et al. IgLON5 Antibody: Neurological Accompaniments and Outcomes in 20 Patients. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e385. [Google Scholar] [CrossRef] [Green Version]
- Gaig, C.; Compta, Y.; Heidbreder, A.; Marti, M.J.; Titulaer, M.J.; Crijnen, Y.; Högl, B.; Lewerenz, J.; Erro, M.E.; García-Moncó, J.C.; et al. Frequency and Characterization of Movement Disorders in Anti-IgLON5 Disease. Neurology 2021, 97, e1367–e1381. [Google Scholar] [CrossRef]
- Gelpi, E.; Höftberger, R.; Graus, F.; Ling, H.; Holton, J.L.; Dawson, T.; Popovic, M.; Pretnar-Oblak, J.; Högl, B.; Schmutzhard, E.; et al. Neuropathological Criteria of Anti-IgLON5-Related Tauopathy. Acta Neuropathol. 2016, 132, 531–543. [Google Scholar] [CrossRef] [Green Version]
- Morales-Briceño, H.; Cruse, B.; Fois, A.F.; Lin, M.-W.; Jiang, J.; Banerjee, D.; Grunstein, R.; Varikatt, W.; Rodriguez, M.; Shepherd, C.; et al. IgLON5-Mediated Neurodegeneration Is a Differential Diagnosis of CNS Whipple Disease. Neurology 2018, 90, 1113–1115. [Google Scholar] [CrossRef] [Green Version]
- Erro, M.E.; Sabater, L.; Martínez, L.; Herrera, M.; Ostolaza, A.; García de Gurtubay, I.; Tuñón, T.; Graus, F.; Gelpi, E. Anti-IGLON5 Disease: A New Case without Neuropathologic Evidence of Brainstem Tauopathy. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schöberl, F.; Levin, J.; Remi, J.; Goldschagg, N.; Eren, O.; Okamura, N.; Unterrainer, M.; Rominger, A.; Albert, N.; Brendel, M. IgLON5: A Case with Predominant Cerebellar Tau Deposits and Leptomeningeal Inflammation. Neurology 2018, 91, 180–182. [Google Scholar] [CrossRef]
- Strippel, C.; Heidbreder, A.; Schulte-Mecklenbeck, A.; Korn, L.; Warnecke, T.; Melzer, N.; Wiendl, H.; Pawlowski, M.; Gross, C.C.; Kovac, S. Increased Intrathecal B and Plasma Cells in Patients with Anti-IgLON5 Disease: A Case Series. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1137. [Google Scholar] [CrossRef]
- Sabater, L.; Planagumà, J.; Dalmau, J.; Graus, F. Cellular Investigations with Human Antibodies Associated with the Anti-IgLON5 Syndrome. J. Neuroinflamm. 2016, 13, 226. [Google Scholar] [CrossRef] [Green Version]
- Landa, J.; Gaig, C.; Plagumà, J.; Saiz, A.; Antonell, A.; Sanchez-Valle, R.; Dalmau, J.; Graus, F.; Sabater, L. Effects of IgLON5 Antibodies on Neuronal Cytoskeleton: A Link between Autoimmunity and Neurodegeneration. Ann. Neurol. 2020, 88, 1023–1027. [Google Scholar] [CrossRef] [PubMed]
- Ryding, M.; Gamre, M.; Nissen, M.S.; Nilsson, A.C.; Okarmus, J.; Poulsen, A.A.E.; Meyer, M.; Blaabjerg, M. Neurodegeneration Induced by Anti-IgLON5 Antibodies Studied in Induced Pluripotent Stem Cell-Derived Human Neurons. Cells 2021, 10, 837. [Google Scholar] [CrossRef] [PubMed]
- Alvente, S.; Matteoli, G.; Molina-Porcel, L.; Landa, J.; Alba, M.; Bastianini, S.; Berteotti, C.; Graus, F.; Lo Martire, V.; Sabater, L.; et al. Pilot Study of the Effects of Chronic Intracerebroventricular Infusion of Human Anti-IgLON5 Disease Antibodies in Mice. Cells 2022, 11, 1024. [Google Scholar] [CrossRef] [PubMed]
- Giil, L.M.; Aarsland, D.; Hellton, K.; Lund, A.; Heidecke, H.; Schulze-Forster, K.; Riemekasten, G.; Vik-Mo, A.O.; Kristoffersen, E.K.; Vedeler, C.A.; et al. Antibodies to Multiple Receptors Are Associated with Neuropsychiatric Symptoms and Mortality in Alzheimer’s Disease: A Longitudinal Study. J. Alzheimer’s Dis. 2018, 64, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.-M.; Koh, Y.H.; Kim, J.-H.; Jeon, J.-P. A Combination of Multiple Autoantibodies Is Associated with the Risk of Alzheimer’s Disease and Cognitive Impairment. Sci. Rep. 2022, 12, 1312. [Google Scholar] [CrossRef]
- Prüss, H. Autoantibodies in Neurological Disease. Nat. Rev. Immunol. 2021, 21, 798–813. [Google Scholar] [CrossRef]
Antibody Target (Ref.) | N. of Patients Gender and Age | Time from Disease Onset (Months) | Frequency of Cognitive Impairment during the Chronic Phase | Features of Cognitive Impairment (Main Affected Domain) | NPS Testing | Predictors of Cognitive Outcome |
---|---|---|---|---|---|---|
NMDAR [100] | 9 (8 F) mean age 28.4 y, range 21–44 | Median 43 m, range 23–69 | 78% of patients exhibited residual cognitive impairment | Deficits in attention, memory (working and episodic) and executive function | Full NPS assessment 1 | Better cognitive outcome in patients with early immunotherapy |
NMDAR [101] | 24 (21 F) mean age 27.9 ± 1.6 y | Median 35, range 9–63 | 79% of patients exhibited residual cognitive impairment | Deficits in attention, memory (working and episodic) and executive function | Full NPS assessment 1 | none |
NMDAR [102] | 7 (6 F), mean age 26.42 ± 8.54 y | Median 19, range 7–34 | All patients had subjective cognitive impairment | Verbal/visual memory, working memory, attention, processing speed, executive functioning, and social cognition | Full NPS assessment 1 | NA |
NMDAR [103] | 40 (35 F) mean age 28.5 ± 7.2 | Median 2.3, (0.3–7.0) years at first visit, 4.9 (2.3–9.4) at second visit | 73% of the patients at first and 50% at second study visit reported subjective cognitive complaints | Deficits of verbal episodic memory, working memory, and executive function | Full NPS assessment 1 | Treatment delay, long hospitalization times, disease severity, need for ICU admission associated with a worse outcome |
NMDAR [99] | 56 (49 F), 44 at 2 years FU | Median 45, (range, 1–116) | 24 (62%) continued to have some sort of sequelae | Memory disorders (16/39, 41%), psychotic symptoms (8/39, 21%), speech disorders (4/39, 10%), 27 (61%) returned to their previous work or school life | Questionnaire | NA |
LGI1 [21] | 76 (mean age 61 years (range 32–80)), 48 with data at 2-years follow-up | 2 years FU | 29% had moderate to severe cognitive problems | NA | In-house cognitive performance score | Failure to respond to firs line immunotherapy associated with cognitive impairment |
LGI1 [104] | 30 (11 F), mean age, 65.7 ± 12.3 | Median 23.3 months | NA | Verbal and visuospatial memory deficits compared to controls | Full NPS assessment 1 | The latency between disease onset and initiation of immunotherapy correlated with verbal and visuospatial memory deficits |
LGI1 [22] | 38 (13 F) 21 with FU > 2 years | Median 42 months | 86% had persistent amnesia for the disease period | Altered spatial recognition | Cambridge Neuropsychological Test Automated Battery (performed in 11 patients) | NA |
LGI1 [20] | 103 (64 M) median age 64, range 22–92 | 48 months | 78% of patients developed cognitive impairment | NA | MMSE/MoCA, ACE-R | FBDS correlated with cognitive impairment |
LGI1/ CASPR2 [60] | 95 (89 with outcome) | Median 35 months, range 57–456) | Severe dementia was documented in 9%. However, at last follow-up, 62% (51 of 82) with central involvement had residual cognitive/personality disturbance | NA | CDR | NA |
GABABR [105] | 22 (4 F) 64 years (range 55–85) | 12 months (13 patients), 24 months (6 patients) | At 12 months all had anterograde amnesia, temporal and spatial disorientation and 54% had neurospychiatric symptoms. None recovered to pre-morbid status and occupation | Severe amnestic dysfunction with mild dysexecutive troubles | MMSE, FAB; most had a MoCA or a more extensive neuropsychological test (ADAS-Cog) | NA |
GABABR [106] | 31 (19 M) median age 52 (18–75) | 18 (range: 6–63 months | At 24 months FU, 57.1% (8/14) had CPS > 2 and 50.0% (5/ 10) had MoCA < 26. Eight (80%) patients exhibited cognitive deficits in the cognitive tests. 50% (7/14) had persistent neuropsychiatric symptoms | Impairment in working memory, visual memory, attention, executive functions and nonverbal reasoning | CRS, MoCA, NPI, full NPS 1 | Age of disease onset ≥45 years was a risk factor for long-term cognitive deficits |
AMPAR [33] | 7 (4 F), median age 56 y (21–92) | Median 12 m (2–31) | 57% had cognitive impairment | Memory disorder | NA | Worst outcome in patients with fulminant encephalitis |
DPPX [39] | 9 (7 M) median 57 (36–59) | Median 19 (6–72 m) | 22% mild cognitive deficits | NA | NA | NA |
Antibody Target (Ref.) | N. of Patients Gender and Age | Time from Disease Onset (Months) | Features of Cognitive Impairment (Main Affected Domain) | NPS Testing | MR Technique | MR Features | Correlation with NPS |
---|---|---|---|---|---|---|---|
NMDAR [101] | 24 (21 F), mean age 27.9 ± 1.6 years) | Median 35, range 9–63 | Deficits in attention, memory (working and episodic) and executive function. | Full NPS assessment 1 | DTI, VBM, hippocampal volumetry, Rest-fMRI | Reduced functional connectivity of the hippocampus with the aDMN. Extensive WMC, most prominent in the cingulum | Connectivity of both hippocampi predicted memory performance in patients. WMC correlated with disease severity |
NMDAR [116] | 40 (36 F); mean age, 28.0 ± 1.6 years | Mean 26.6 ± 3.3 months | Verbal and visuospatial memory deficits | RAVLT, ROCF | Hippocampal volumetry and DTI | Reduced hippocampal volumes; bilateral atrophy of the input and output regions of the hippocampal circuit. Impaired microstructural integrity | Hippocampal volumetric and microstructural integrity measures correlated with memory performance |
NMDAR [115] | 46 (40 F) age, mean 26.67 ± 8.45 | 27.6 ± 4.6 months after symptom onset | Impairments in working, verbal, visuospatial memory and attention | Full NPS assessment 1 | DTI, vertex-based analyses | Non-recovered patients showed widespread superficial WM damage. Damage predominated in frontal and temporal lobes | Persistent cognitive impairment correlated with damage of the superficial WM |
NMDAR [117] | 15 (8 M); age 29.20 ± 11.63 | 4.41 ± 1.78 months | Patients MoCA lower than controls, especially in executive function, fluency, delayed recall and visual perception items | MoCA | DTI | FA reduction in right MTG, left MCP, right PC, and an MD increase in left medial temporal gyrus and left frontal lobe | The FA value of right PC positively correlated with total MoCA score and fluency score. The MD of left frontal lobe negatively correlated with total MoCA score, and MD of the left MTG positively correlated with delayed recall |
NMDAR [118] | 57 (27 M); median age 31, IQR 23,46 | 15.44 ± 9.08 months | Significantly decreased MoCA scores | MoCA | DTI and DKI | Decreased RK in the right extranucleus in WM and notably decreased KFA in the right PC, the right SPG, the left PC, left MOG, and left SOG in GM. GM regions with decreased KFA in the left MTG, STG, SMG, POCG, IPL and ANG | The KFA and RK in the left ANG, IPL and POCG correlated positively with MoCA scores |
NMDAR [119] | 22 (10 males); mean age 30.54 ± 10.79 | 46.91 ± 19.59 days | Significantly lower scores in MoCA, Auditory Verbal Learning Test-Immediate Recall (AVLT_IR), and Auditory Verbal Learning Test-Delayed Recall (AVLT_DR) | MoCA; AVLT | VBM, rest-fMRI | Significant GM atrophy in the bilateral triIFG and right PC, decreased connectivity between: left triIFG and bilateral HES, between right triIFG and HES, between right PC and left cerebellum, and increased connectivity between right triIFG and left SFG. | GM volume in right triIFG and decreased connectivity between left triIFG and right HES were associated with decreased memory scores |
NMDAR [120] | 24 (12 M); mean age 29.41 ± 10.99 | Mean 15.16 months | Trend of decreased MMSE and significantly decreased AVLT_IR and AVLT_DR | MMSE and AVLT | Surface-based morphometry, Hippocampal volumetry, and subfield segmentation | Decreased cortical volume mainly in language network and DMN and decreased GM volume in left CA1 body of hippocampus | Decreased cortical thickness in the right SFG associated with decreased cognitive scores; decreased cortical volume in the right pars triangularis and decreased surface area in the right pars opercularis associated with decreased memory scores |
NMDAR [121] | 40 (16 males; age 27.33 ± 9.31) | Mean 19.55 ± 14.42 months | Significantly lower MoCA scores and significantly higher executive control scores | MoCA, ANT | VBM | Decreased GM volume in bilateral thalamus, left mPFC, left STG, and left rectus gyrus. Lower GM volume in the left PC and right posterior cerebellar lobe in patients with disease duration >2 years | “Executive control score was negatively correlated with GM volume in mPFC and the right thalamus. STG GM volume was positively correlated with MoCA score |
VGKC [123] | 24 (14 LG1, 4 LGI1/CASPR2, 6 VGKC); (20 male; mean (SD) age 62.36 (12.09) years) | Mean (SD) 5.22 (3.77) years | Patients were impaired on visual and verbal recall and verbal recognition memory measures | Full NPS assessment 1 | Volumetry, VBM, rest-fMRI | Focal hippocampal atrophy within the medial temporal lobes, correlative atrophy in the mediodorsal thalamus, and additional volume reduction in the posteromedial cortex | There was no association between regional volumes and memory performance. Instead, patients demonstrated reduced posteromedial cortico-hippocampal and interhippocampal connectivity, which correlated with memory scores |
LGI1 [104] | 30 (11 F), mean age, 65.7 ± 12.3 years | Median, 23.3 months; IQR 6.4–35.4 months | Significant and persisting verbal and visuospatial memory deficits | Full NPS assessment 1 | DTI, VBM, hippocampal and basal ganglia volumetry | Hippocampal atrophy, including subfields CA2/3 and CA4/DG, as well as impaired hippocampal microstructural integrity. No abnormalities of cortical GM or WM were found | Higher disease severity correlated with larger verbal memory deficits, decreased volumes of left hippocampus and left CA2/3 and CA4/DG subfields, and impaired left hippocampal microstructural integrity. Decreased volume of the left CA2/3 subfield and impaired left hippocampal microstructural integrity correlated with verbal memory deficits |
LGI1 [113] | 15 (9 M) mean age: 64.47 ± 3.28 years | 3.53 ± 0.65 years after onset | Overall memory deficit including a significant reduction in pattern separation performance | Full NPS assessment 1 | Hippocampal volumetry and subfield segmentation | Global hippocampal volume reduction | Deficits in pattern separation performance were best predicted by the DG, whereas CA1 was highly predictive of recognition memory deficits. |
LGI1 [124] | 18 (mean age: 64.0 ± 2.55 years; range: 24–71; 15 male) | Median 4 years | Selective and severe loss of internal (episodic) but no loss of external (semantic) autobiographical memory detail in the patients compared to the controls | Full NPS assessment 1 | Hippocampal volumetry and subfield segmentation, VBM | Hippocampal volume loss confined to bilateral CA3 | CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume |
LGI1 [125] | 9 (5 M) mean age 59.9 ± 14.5 | 33.1 ± 18 months | ACE score 83 at 24 months in 5 patients | MMSE and ACE 24 months after onset | DTI and MRS, volumetric analysis | DTI showed widespread changes in the cerebral and cerebellar WM, most prominent in the anterior parts of the corona radiata, capsula interna and CC. MRS revealed lower glutamine/glutamate WM levels. Significantly smaller volume in several brain areas (i.e., cerebellum, brain stem, accumbens, hippocampus, CC, cerebral WM) | Higher putaminal volume was associated with better cognition by ACE test at 24 months |
LGI1 [126] | 27 (18 M) mean age 65.8 ± 11.4 years | 25.9 ± 16.7 months | Significantly impaired working memory, verbal and visual learning and episodic memory; executive dysfunction and decreased semantic fluency | Full NPS assessment 1 | DTI, VBM, hippocampal volumetry, Rest-fMRI | Reduced hippocampal volume. Functional connectivity alterations in several large-scale networks, including the DMN. Impaired connectivity in the sensorimotor, salience and higher visual networks | Increased connectivity in ventral and dorsal DMN regions significantly correlated with better memory performance. Stronger connectivity of the insula with the salience network and DMN was linked to impaired memory function |
Study | Autoimmune Encephalitis | Other Diagnostic Categories | Biological Fluids | Biomarkers | Main Findings |
---|---|---|---|---|---|
Chang et al., 2022 [134] | n = 15 (with known antibodies, n = 8: LGI1, n = 2; neuronal intermediate filaments, n = 2; NMDAR, n = 1; CASPR2, n = 1; DPP6, n = 1; IgLON5, n = 1) | sCJD (n = 11) | CSF | Aβ42, Aβ40, Aβ42/Aβ40 ratio, T-tau, P-tau181 | In AE, levels of T-tau and P-tau181 are normal The median level of Aβ42 in AE is low (i.e., below the cutoff for AD) T-tau discriminates well between AE and sCJD |
Constantinescu et al., Eur J Neurol 2016 [135] | n = 25 (with known antibodies, n = 12: Ma2, n = 2; NMDAR, n = 4; GAD, n = 5; TPO, n = 4, LGI1, n = 1; GABABR, n = 1) | NA | CSF | NFL, T-tau, GFAP | NFL initially increased in 19/24 patients, still high in most cases at 3-month follow-up, and normalized in one-third of cases at 12-month follow-up T-tau initially increased in 17/22 patients, lower at 3-month follow-up, and in almost cases normal at 12-month follow-up GFAP: no significant differences NFL at all timepoints (initial evaluation, 3-month follow-up and 12-month follow-up) and T-tau at 3-month follow-up and at 12-month follow-up correlate with final disability (mRS score at 12-month follow-up) |
Constantinescu et al., J Neuroimmunol 2017 [136] | Paraneoplastic neurological syndromes (in most cases with brain involvement), n = 16 (with overt malignancy, n = 12) Non-paraneoplastic AE, n = 21 (NMDAR, n = 3) | NA | CSF | NFL, T-tau, GFAP | NFL and T-tau are increased in both paraneoplastic neurological syndromes and non-paraneoplastic AE. GFAP is not increased NFL is higher in paraneoplastic neurological syndromes compared to non-paraneoplastic AE NFL correlates with disability at last follow-up |
Day et al., Neurology 2021 [137] | n = 45 (NMDAR, n = 34; LGI1, n = 7; CASPR2, n = 4) | Neurologically healthy controls (n = 39) | CSF | T-tau, VILIP-1, YKL-40, SNAP-25, neurogranin | After correction for age, T-tau does not differ between AE and controls NFL is increased in NMDAR AE but not in LGI1/CASPR2 AE YKL-40 is increased in AE SNAP-25 and neurogranin are reduced in AE VILIP-1 is reduced in NMDAR AE compared to LGI1/CASPR2 AE VILIP-1 and SNAP-25 correlate negatively with worst mRS score Higher SNAP-25, neurogranin and YKL-40 levels are associated with higher mRS scores at 12-mont follow-up VILIP-1 and SNAP-25 are lower in patients admitted to ICU and in patients with neoplasia (features which are more common in NMDAR AE) NFL is lower in patients with neoplasia. |
Grüter et al., Brain 2022 [46] | IgLON5 disease, n = 53 | NA | CSF, serum | Aβ42, Aβ40, Aβ42/Aβ40 ratio, T-tau, P-tau181 (CSF) NFL, GFAP (serum) | CSF T-tau is increased in 1/25 patients. CSF P-tau181 is increased in 3/20 patients. Aβ42 is decreased in 2/27 patients. Aβ42/Aβ40 ratio is decreased in 1/16 patients. However, no patient has a typical AD pattern (i.e., decreased Aβ42 and increased P-tau181) sNFL and sGFAP at first evaluation correlate moderately with each other and correlate negatively with CSF cell count sGFAP at first evaluation is lower in patients with subacute onset and with paucisymptomatic phenotype sNFL at first evaluation correlates moderately with CSF T-tau Lower sNFL at first evaluation is an independent predictor of response to long-term immunotherapy |
Guasp et al., Neurology 2022 [138] | NMDAR AE, n = 118 (patients with isolated psychosis, n = 33) | Patients with first episode of psychosis of psychiatric origin, n = 45 HSE, n = 36 Neurologically healthy controls, n = 36 | Serum, CSF | NFL | sNFL in NMDAR AE is higher compared to psychiatric patients and controls and lower compared to HSE sNFL discriminates between NMDAR AE with isolated psychosis and psychiatric patients (AUC = 0.93; with a cutoff of 15 pg/mL, Se = 85% and Sp = 96%) In NMDAR AE, higher CSF NFL is associated with prodromal symptoms, seizures/status epilepticus, ICU admission, CSF pleocytosis, absence of immunosuppressive treatment in the first 4 weeks, and subsequent second-line immunosuppressive treatment, while for sNFL the only significant associations are those with ICU admission and absence of immunosuppressive treatment in the first 4 weeks |
Körtvelyessy et al., Front Neurol 2018 [139] | n = 38 (NMDAR, n = 18; LGI1, n = 10; CASPR2, n = 8; GABABR, n = 1; AMPAR, n = 1) | Non-neurodegenerative and non-inflammatory neurological controls, n = 45 | CSF | NFL, T-tau | 7/23 patients have high NFL levels. Of these 7, 5 have MRI abnormalities in limbic structures which subside following immunosuppressive treatment; this is paralleled by a normalization in NFL levels High initial levels of NFL and T-tau are associated with temporal FLAIR hyperintensities followed by hippocampal sclerosis in MRI. T-tau is more strongly predictive of hippocampal sclerosis compared to NFL T-tau is reduced after immunosuppressive treatment T-tau is not influenced by presence of neoplasia |
Lardeux et al., J Neurol 2022 [140] | LGI1 AE, n = 24 | sCJD, n = 20 Psychiatric patients, n = 20 AD, n = 39 | CSF | NFL, Aβ42, T-tau, P-tau181 | 8/20 patients with LG1 AE have increased T-tau levels 1/20 patients with LGI1 AE have increased P-tau181 6/19 patients with LGI1 AE have decreased Aβ42. However, no patient has a typical AD profile (i.e., decreased Aβ42 and increased T-tau and P-tau181) In general, the biomarkers in LGI1 AE are longitudinally stable T-tau and P-tau181 in LGI1 AE are similar to psychiatric patients and lower compared to AD and sCJD Aβ42 in LGI1 AE is similar to psychiatric patients and sCJD and higher compared to AD NFL is LGI1 AE is similar to AD, higher than in psychiatric patients and lower than in sCJD In LGI1 AE, NFL is higher in patients with seizures (clinical or EEG) compared to patients without seizures In LGI1 AE, the biomarkers are not associated with FBDS, temporo-mesial T2 hyperintensity on MRI, mRS score, or immunosuppressive treatment In LGI1 AE, Aβ42 correlates with longitudinal MMSE score |
Ma et al., Neurol Sci 2022 [141] | NMDAR AE, n = 64 | Neurologically healthy controls (n = 84) | Serum | NFL | In NMDAR AE, NFL is higher than in controls Patients with mRS scores >3 have higher NFL levels than patients with mRS scores ≤3 Patients with good response to treatment have lower NFL levels than patients with poor response to treatment NFL levels correlate with mRS score at 1-year follow-up AUC for the prediction of mRS score at 1-year follow-up (mRS score >2 vs. ≤2): 0.697 |
Nissen et al., Front Immunol 2021 [142] | NMDAR AE, n = 37 (idiopathic/teratoma-associated, n = 27; secondary post-HSE, n = 5; SCLC and limbic encephalitis with anti-Hu antibodies, n = 1; PCNSL (B-cell), n = 1; MS, n = 2; ADEM; n = 1) LGI1 AE, n = 16 | NA | CSF | NFL | NFL is lower in idiopathic/teratoma-associated NMDAR AE compared to LGI1 AE NFL levels in idiopathic/teratoma-associated NMDAR AE decreased longitudinally, while the course is more heterogeneous in LGI1 AE NFL correlates with final mRS score in idiopathic/teratoma-associated NMDAR AE and LGI1 AE NFL is lower in idiopathic/teratoma-associated NMDAR AE compared to secondary NMDAR AE In idiopathic/teratoma-associated NMDAR AE, NFL is associated with intensity of antibody positivity in serum In idiopathic/teratoma-associated NMDAR AE, higher NFL levels are associated with abnormal MRI, involuntary movements and higher mRS score at last follow-up In LGI1 AE, higher NFL levels are associated with abnormal CSF findings and hyponatremia In NMDAR AE, PLEX alone or combined with IVIG is associated with greater longitudinal decrease of NFL compared to IVIG alone |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannoccaro, M.P.; Verde, F.; Morelli, L.; Rizzo, G.; Ricciardiello, F.; Liguori, R. Neural Surface Antibodies and Neurodegeneration: Clinical Commonalities and Pathophysiological Relationships. Biomedicines 2023, 11, 666. https://doi.org/10.3390/biomedicines11030666
Giannoccaro MP, Verde F, Morelli L, Rizzo G, Ricciardiello F, Liguori R. Neural Surface Antibodies and Neurodegeneration: Clinical Commonalities and Pathophysiological Relationships. Biomedicines. 2023; 11(3):666. https://doi.org/10.3390/biomedicines11030666
Chicago/Turabian StyleGiannoccaro, Maria Pia, Federico Verde, Luana Morelli, Giovanni Rizzo, Fortuna Ricciardiello, and Rocco Liguori. 2023. "Neural Surface Antibodies and Neurodegeneration: Clinical Commonalities and Pathophysiological Relationships" Biomedicines 11, no. 3: 666. https://doi.org/10.3390/biomedicines11030666
APA StyleGiannoccaro, M. P., Verde, F., Morelli, L., Rizzo, G., Ricciardiello, F., & Liguori, R. (2023). Neural Surface Antibodies and Neurodegeneration: Clinical Commonalities and Pathophysiological Relationships. Biomedicines, 11(3), 666. https://doi.org/10.3390/biomedicines11030666