The Cause and Effect Relationship of Diabetes after Acute Pancreatitis
Abstract
:1. Introduction
2. Acute Pancreatitis
3. The Type 3c Diabetes Mellitus
4. Clinical Severity of Acute Pancreatitis and the Development of T3cDM
5. The Impaired Glucose Homeostasis after AP
6. Exocrine Pancreatic Dysfunction and the Development of T3cDM
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barreto, S.G.; Rodrigues, J. Acute pancreatitis in Goaea hospital-based study. J. Indian Med. Assoc. 2008, 106, 575–576. [Google Scholar] [PubMed]
- Barreto, S.G.; Rodrigues, J. Comparison of APACHE II and Imrie Scoring Systems in predicting the severity of Acute Pancreatitis. World J. Emerg. Surg. 2007, 2, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lankisch, P.G.; Apte, M.; Banks, P.A. Acute pancreatitis. Lancet 2015, 386, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Gillies, N.A.; Pendharkar, S.A.; Singh, R.G.; Asrani, V.M.; Petrov, M.S. Lipid metabolism in patients with chronic hyperglycemia after an episode of acute pancreatitis. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11 (Suppl. S1), S233–S241. [Google Scholar] [CrossRef]
- Das, S.L.; Singh, P.P.; Phillips, A.R.; Murphy, R.; Windsor, J.A.; Petrov, M.S. Newly diagnosed diabetes mellitus after acute pancreatitis: A systematic review and meta-analysis. Gut 2014, 63, 818–831. [Google Scholar] [CrossRef]
- Cho, J.; Scragg, R.; Petrov, M.S. Risk of mortality and hospitalization after post-pancreatitis diabetes mellitus vs type 2 diabetes mellitus: A population-based matched cohort study. Am. J. Gastroenterol. 2019, 114, 804–812. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45 (Suppl. S1), S17–S38. [Google Scholar] [CrossRef]
- Ibars, E.P.; Sánchez de Rojas, E.A.; Quereda, L.A.; Ramis, R.F.; Sanjuan, V.M.; Peris, R.T. Pancreatic function aft er acute biliary pancreatitis: Does it change? World J. Surg. 2002, 26, 479–486. [Google Scholar] [CrossRef]
- Uomo, G.; Gallucci, F.; Madrid, E.; Miraglia, S.; Manes, G.; Rabitti, P.G. Pancreatic functional impairment following acute necrotizing pancreatitis: Long-term outcome of a non-surgically treated series. Dig. Liver Dis. 2010, 42, 149–152. [Google Scholar] [CrossRef]
- Singer, M.V.; Gyr, K.; Sarles, H. Revised classification of pancreatitis. Report of the Second International Symposium on the Classification of Pancreatitis in Marseille, France, March 28–30, 1984. Gastroenterology 1985, 89, 683–685. [Google Scholar] [CrossRef]
- Shen, H.N.; Yang, C.C.; Chang, Y.H.; Lu, C.L.; Li, C.Y. Risk of diabetes mellitus after first-attack acute pancreatitis: A national population-based study. Am. J. Gastroenterol. 2015, 110, 1698–1706. [Google Scholar] [CrossRef]
- Yasuda, T.; Ueda, T.; Takeyama, Y.; Shinzeki, M.; Sawa, H.; Nakajima, T.; Kuroda, Y. Long-term outcome of severe acute pancreatitis. J. Hepato-Biliary-Pancreat. Sci. 2008, 15, 397–402. [Google Scholar] [CrossRef]
- Lee, Y.K.; Huang, M.Y.; Hsu, C.Y.; Su, Y.C. Bidirectional Relationship Between Diabetes and Acute Pancreatitis: A Population-Based Cohort Study in Taiwan. Medicine 2016, 95, e2448. [Google Scholar] [CrossRef] [PubMed]
- Gapp, J.; Tariq, A.; Chandra, S. Acute Pancreatitis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Banks, P.A.; Bollen, T.L.; Dervenis, C.; Gooszen, H.G.; Johnson, C.D.; Sarr, M.G.; Tsiotos, G.G.; Vege, S.S.; Acute Pancreatitis Classification Working Group. Classification of acute pancreatitis--2012: Revision of the Atlanta classification and definitions by international consensus. Gut 2013, 62, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Petrov, M.S.; Yadav, D. Global epidemiology and holistic prevention of pancreatitis. Nat. Rev. Gastroenterol. Hepatol. 2018, 16, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Lankisch, P.G.; Burchard-Reckert, S.; Lehnick, D. Underestimation of acute pancreatitis: Patients with only a small increase in amylase/lipase levels can also have or develop severe acute pancreatitis. Gut 1999, 44, 542–544. [Google Scholar] [CrossRef] [Green Version]
- Trivedi, C.D.; Pitchumoni, C.S. Drug-induced pancreatitis: An update. J. Clin. Gastroenterol. 2005, 39, 709–716. [Google Scholar] [CrossRef]
- Badalov, N.; Baradarian, R.; Iswara, K.; Li, J.; Steinberg, W.; Tenner, S. Drug-induced acute pancreatitis: An evidence-based review. Clin. Gastroenterol. Hepatol. 2007, 5, 648–661.e3. [Google Scholar] [CrossRef]
- Kochar, B.; Akshintala, V.S.; Afghani, E.; Elmunzer, B.J.; Kim, K.J.; Lennon, A.M.; Khashab, M.A.; Kalloo, A.N.; Singh, V.K. Incidence, severity, and mortality of post-ERCP pancreatitis: A systematic review by using randomized, controlled trials. Gastrointest. Endosc. 2015, 81, 143–149.e9. [Google Scholar] [CrossRef]
- Njei, B.; McCarty, T.R.; Muniraj, T.; Sharma, P.; Jamidar, P.A.; Aslanian, H.R.; Varadarajulu, S.; Navaneethan, U. Comparative effectiveness of pharmacologic and endoscopic interventions for prevention of post-ERCP pancreatitis: A network meta-analysis. Endosc. Int. Open 2020, 8, E29–E40. [Google Scholar] [CrossRef] [Green Version]
- Lowenfels, A.B.; Maisonneuve, P.; Sullivan, T. The changing character of acute pancreatitis: Epidemiology, etiology, and prognosis. Curr. Gastroenterol. Rep. 2009, 11, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, R.; Smith, A.; Sutton, R. COVID-19-related pancreatic injury. Br. J. Surg. 2020, 107, e190. [Google Scholar] [CrossRef] [PubMed]
- Szatmary, P.; Arora, A.; Thomas Raraty, M.G.; Joseph Dunne, D.F.; Baron, R.D.; Halloran, C.M. Emerging Phenotype of Severe Acute Respiratory Syndrome-Coronavirus 2-associated Pancreatitis. Gastroenterology 2020, 159, 1551–1554. [Google Scholar] [CrossRef]
- Pandanaboyana, S.; Moir, J.; Leeds, J.S.; Oppong, K.; Kanwar, A.; Marzouk, A.; Belgaumkar, A.; Gupta, A.; Siriwardena, A.K.; Haque, A.R.; et al. COVID PAN collaborative group. SARS-CoV-2 infection in acute pancreatitis increases disease severity and 30-day mortality: COVID PAN collaborative study. Gut 2021, 70, 1061–1069. [Google Scholar] [CrossRef]
- Singh, V.K.; Bollen, T.L.; Wu, B.U.; Repas, K.; Maurer, R.; Yu, S.; Mortele, K.J.; Conwell, D.L.; Banks, P.A. An assessment of the severity of interstitial pancreatitis. Clin. Gastroenterol. Hepatol. 2011, 9, 1098–1103. [Google Scholar] [CrossRef]
- Chen, C.C.; Wang, S.S.; Tsay, S.H.; Lee, F.Y.; Lu, R.H.; Chang, F.Y.; Lee, S.D. Effects of gabexatemesilate on serum inflammatory cytokines in rats with acute necrotizing pancreatitis. Cytokine 2006, 33, 95–99. [Google Scholar] [CrossRef]
- Caglayan, K.; Güngör, B.; CinarAvci, B.; Gur, S.; Arslan, N. Effects of oleuropein on serum inflammatory cytokines and histopathological changes in rats with pancreatitis. Adv. Clin. Exp. Med. 2015, 24, 213–218. [Google Scholar] [CrossRef]
- Wu, D.; Xu, Y.; Zeng, Y.; Wang, X. Endocrine pancreatic function changes after acute pancreatitis. Pancreas 2011, 40, 1006–1011. [Google Scholar] [CrossRef]
- Pezzilli, R.; Simoni, P.; Casadei, R.; Morselli-Labate, A.M. Exocrine pancreatic function during the early recovery phase of acute pancreatitis. Hepatobiliary Pancreat. Dis. Int. 2009, 8, 316–319. [Google Scholar]
- Rickels, M.R.; Bellin, M.; Toledo, F.G.; Robertson, R.P.; Andersen, D.K.; Chari, S.T.; Brand, R.; Frulloni, L.; Anderson, M.A.; Whitcomb, D.C. Pancreas Fest Recommendation Conference Participants. Detection, evaluation and treatment of diabetes mellitus in chronic pancreatitis: Recommendations from Pancreas Fest 2012. Pancreatology 2013, 13, 336–342. [Google Scholar] [CrossRef] [Green Version]
- Woodmansey, C.; McGovern, A.P.; McCullough, K.A.; Whyte, M.B.; Munro, N.M.; Correa, A.C.; Gatenby, P.A.C.; Jones, S.A.; de Lusignan, S. Incidence, Demographics, and Clinical Characteristics of Diabetes of the Exocrine Pancreas (Type 3c): A Retrospective Cohort Study. Diabetes Care 2017, 40, 1486–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendharkar, S.A.; Mathew, J.; Petrov, M.S. Age- and sex-specific prevalence of diabetes associated with diseases of the exocrine pancreas: A population-based study. Dig. Liver Dis. 2017, 49, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Ewald, N.; Bretzel, R.G. Diabetes mellitus secondary to pancreatic diseases (Type 3c)—Are we neglecting an important disease? Eur. J. Intern. Med. 2013, 24, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Ewald, N.; Kaufmann, C.; Raspe, A.; Kloer, H.U.; Bretzel, R.G.; Hardt, P.D. Prevalence of diabetes mellitus secondary to pancreatic diseases (type 3c). Diabetes Metab. Res. Rev. 2012, 28, 338–342. [Google Scholar] [CrossRef]
- Vonderau, J.S.; Desai, C.S. Type 3c: Understanding pancreatogenic diabetes. JAAPA 2022, 35, 20–24. [Google Scholar] [CrossRef]
- Valdez-Hernández, P.; Pérez-Díaz, I.; Soriano-Rios, A.; Gómez-Islas, V.; García-Fong, K.; Hernández-Calleros, J.; Uscanga-Dominguez, L.; Pelaez-Luna, M. Pancreas. Pancreatogenic Diabetes, 2 Onset Forms and Lack of Metabolic Syndrome Components Differentiate It from Type 2 Diabetes. Pancreas 2021, 50, 1376–1381. [Google Scholar] [CrossRef]
- Ghosh, I.; Mukhopadhyay, P.; Das, K.; Anne, M.B.; Ali Mondal, S.; Basu, M.; Nargis, T.; Pandit, K.; Chakrabarti, P.; Ghosh, S. Incretins in fibrocalculous pancreatic diabetes: A unique subtype of pancreatogenic diabetes. J. Diabetes 2020, 13, 506–511. [Google Scholar] [CrossRef]
- Hart, P.A.; Bellin, M.D.; Andersen, D.K.; Bradley, D.; Cruz-Monserrate, Z.; Forsmark, C.E.; Goodarzi, M.O.; Habtezion, A.; Korc, M.; Kudva, Y.C.; et al. Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer(CPDPC). Type 3c (pancreatogenic) diabetes mellitus secondary to chronic pancreatitis and pancreatic cancer. Lancet Gastroenterol. Hepatol. 2016, 1, 226–237. [Google Scholar] [CrossRef] [Green Version]
- Malka, D.; Hammel, P.; Sauvanet, A.; Rufat, P.; O’Toole, D.; Bardet, P.; Belghiti, J.; Bernades, P.; Ruszniewski, P.; Lévy, P. Risk factors for diabetes mellitus in chronic pancreatitis. Gastroenterology 2000, 119, 1324–1332. [Google Scholar] [CrossRef]
- Rebours, V.; Boutron-Ruault, M.-C.; Schnee, M.; Ferec, C.; Le Marechal, C.; Hentic, O.; Maire, F.; Hammel, P.; Ruszniewski, P.; Levy, P. The natural history of hereditary pancreatitis: A national series. Gut 2009, 58, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Guo, Y.; Liao, Z.; Zou, D.W.; Jin, Z.D.; Zou, D.J.; Jin, G.; Hu, X.G.; Li, Z.S. Occurrence of and risk factors for diabetes mellitus in Chinese patients with chronic pancreatitis. Pancreas 2011, 40, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Hart, P.A.; Kudva, Y.C.; Yadav, D.; Andersen, D.K.; Li, Y.; Toledo, F.G.S.; Wang, F.; Bellin, M.D.; Bradley, D.; Brand, R.E.; et al. A reduced pancreatic polypeptide response is associated with new onset pancreatogenic diabetes versus type 2 diabetes. J. Clin. Endocrinol. Metab. 2022, 21, dgac670. [Google Scholar] [CrossRef] [PubMed]
- Bellin, M.D. Pancreatogenic Diabetes in Children with Recurrent Acute and Chronic Pancreatitis: Risks, Screening, and Treatment (Mini-Review). Front. Pediatr. 2022, 10, 884668. [Google Scholar] [CrossRef] [PubMed]
- Vipperla, K.; Papachristou, G.I.; Slivka, A.; Whitcomb, D.C.; Yadav, D. Risk of New-Onset Diabetes Is Determined by Severity of Acute Pancreatitis. Pancreas 2016, 45, e14–e15. [Google Scholar] [CrossRef] [Green Version]
- Śliwińska-Mossoń, M.; Marek, G.; Milnerowicz, H. The role of pancreatic polypeptide in pancreatic diseases. Adv. Clin. Exp. Med. 2017, 26, 1447–1455. [Google Scholar] [CrossRef] [Green Version]
- Wynne, K.; Devereaux, B.; Dornhorst, A. Diabetes of the exocrine pancreas. J. Gastroenterol. Hepatol. 2019, 34, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Ciochina, M.; Balaban, D.V.; Manucu, G.; Jinga, M.; Gheorghe, C. The Impact of Pancreatic Exocrine Diseases on the β-Cell and Glucose Metabolism—A Review with Currently Available Evidence. Biomolecules 2022, 12, 618. [Google Scholar] [CrossRef]
- Richardson, A.; Park, W.G. Acute pancreatitis and diabetes mellitus: A review. Korean J. Intern. Med. 2021, 36, 15–24. [Google Scholar] [CrossRef]
- Hart, P.A.; Bradley, D.; Conwell, D.L.; Dungan, K.; Krishna, S.G.; Wyne, K.; Bellin, M.D.; Yadav, D.; Andersen, D.K.; Serrano, J.; et al. Diabetes following acute pancreatitis. Lancet Gastroenterol. Hepatol. 2021, 6, 668–675. [Google Scholar] [CrossRef]
- Amuedo, S.; Bellido, V.; Mangas Cruz, M.Á.; Gros Herguido, N.; López Gallardo, G.; Pérez Morales, A.; Soto Moreno, A. Successful Use of an Advanced Hybrid Closed-loop System in a Patient With Type 3c Pancreatogenic Diabetes Secondary to Nesidioblastosis. Can. J. Diabetes 2022. [Google Scholar] [CrossRef]
- Roeyen, G.; De Block, C. A plea for more practical and clinically applicable criteria defining type 3c diabetes. Pancreatology 2017, 17, 875. [Google Scholar] [CrossRef]
- Chakravarthy, M.D.; Thangaraj, P.; Saraswathi, S. Missed Case of Pancreatogenic Diabetes Diagnosed Using Ultrasound. J. Med. Ultrasound 2021, 29, 218–220. [Google Scholar] [CrossRef] [PubMed]
- Andersen, D.K.; Korc, M.; Petersen, G.M.; Eibl, G.; Li, D.; Rickels, M.R.; Chari, S.T.; Abbruzzese, J.L. Diabetes, Pancreatogenic Diabetes, and Pancreatic Cancer. Diabetes 2017, 66, 1103–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattamisra, S.K.; Siang, T.C.; Rong, C.Y.; Annan, N.C.; Sean, E.H.Y.; Xi, L.W.; Lyn, O.S.; Shan, L.H.; Choudhury, H.; Pandey, M.; et al. Type-3c Diabetes Mellitus, Diabetes of Exocrine Pancreas—An Update. Curr. Diabetes Rev. 2019, 15, 382–394. [Google Scholar] [CrossRef]
- Girman, C.J.; Kou, T.D.; Cai, B.; Alexander, C.M.; O’Neill, E.A.; Williams-Herman, D.E.; Katz, L. Patients with type 2 diabetes mellitus have higher risk for acute pancreatitis compared with those without diabetes. Diabetes Obes. Metab. 2010, 12, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Urushihara, H.; Taketsuna, M.; Liu, Y.; Oda, E.; Nakamura, M.; Nishiuma, S.; Maeda, R. Increased risk of acute pancreatitis in patients with type 2 diabetes: An observational study using a Japanese hospital database. PLoS ONE 2012, 7, e53224. [Google Scholar] [CrossRef] [Green Version]
- Lai, S.W.; Muo, C.H.; Liao, K.F.; Sung, F.C.; Chen, P.C. Risk of acute pancreatitis in type 2 diabetes and risk reduction on anti-diabetic drugs: A population-based cohort study in Taiwan. Am. J. Gastroenterol. 2011, 106, 1697–1704. [Google Scholar] [CrossRef]
- Noel, R.A.; Braun, D.K.; Patterson, R.E.; Bloomgren, G.L. Increased risk of acute pancreatitis and biliary disease observed in patients with type 2 diabetes: A retrospective cohort study. Diabetes Care 2009, 32, 834–838. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Corona, E.; Sikora, M.; Dudley, J.T.; Morgan, A.A.; Moreno-Estrada, A.; Nilsen, G.B.; Ruau, D.; Lincoln, S.E.; Bustamante, C.D.; et al. Type 2 diabetes risk alleles demonstrate extreme directional differentiation among human populations, compared to other diseases. PLoS Genet. 2012, 8, e1002621. [Google Scholar] [CrossRef] [Green Version]
- Hayden, M.R.; Patel, K.; Habibi, J.; Gupta, D.; Tekwani, S.S.; Whaley-Connell, A.; Sowers, J.R. Attenuation of endocrine-exocrine pancreatic communication in type 2 diabetes: Pancreatic extracellular matrix ultrastructural abnormalities. J. Cardiometab. Syndr. 2008, 3, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Yadav, R.; Bhartiya, J.P.; Verma, S.K.; Nandkeoliar, M.K. The evaluation of serum amylase in the patients of type 2 diabetes mellitus, with a possible correlation with the pancreatic functions. J. Clin. Diagn. Res. 2013, 7, 1291–1294. [Google Scholar] [CrossRef] [PubMed]
- Wautier, J.L.; Guillausseau, P.J. Diabetes, advanced glycation endproducts and vascular disease. Vasc. Med. 1998, 3, 131–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jandhyala, S.M.; Madhulika, A.; Deepika, G.; Rao, G.V.; Reddy, D.N.; Subramanyam, C.; Sasikala, M.; Talukdar, R. Altered intestinal microbiota in patients with chronic pancreatitis: Implications in diabetes and metabolic abnormalities. Sci. Rep. 2017, 7, 43640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bibbò, S.; Dore, M.P.; Pes, G.M.; Delitala, G.; Delitala, A.P. Is there a role for gut microbiota in type 1 diabetes pathogenesis? Ann. Med. 2017, 49, 11–22. [Google Scholar] [CrossRef]
- Sasikala, M.; Ravikanth, V.V.; Murali Manohar, K.; Deshpande, N.; Singh, S.; Pavan Kumar, P.; Talukdar, R.; Ghosh, S.; Aslam, M.; Rao, G.V.; et al. Bach2 repression mediates Th17 cell induced inflammation and associates with clinical features of advanced disease in chronic pancreatitis. United Eur. Gastroenterol. J. 2018, 6, 272–282. [Google Scholar] [CrossRef] [Green Version]
- Talukdar, R.; Sarkar, P.; Jakkampudi, A.; Sarkar, S.; Aslam, M.; Jandhyala, M.; Deepika, G.; Unnisa, M.; Reddy, D.N. The gut microbiome in pancreatogenic diabetes differs from that of Type 1 and Type 2 diabetes. Sci. Rep. 2021, 11, 10978. [Google Scholar] [CrossRef]
- Moran, A.; Brunzell, C.; Cohen, R.C.; Katz, M.; Marshall, B.C.; Onady, G.; Robinson, K.A.; Sabadosa, K.A.; Stecenko, A.; Slovis, B.; et al. Clinical care guidelines for cystic fibrosis-related diabetes: A position statement of the American Diabetes Association and a clinical practice guideline of the Cystic Fibrosis Foundation, endorsed by the Pediatric Endocrine Society. Diabetes Care 2010, 33, 2697–2708. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Lai, S.T.; Xie, L.; Zhao, J.D.; Ma, N.Y.; Zhu, J.; Ren, Z.G.; Jiang, G.L. Metformin is associated with reduced risk of pancreatic cancer in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2014, 106, 19–26. [Google Scholar] [CrossRef]
- Maida, A.; Lamont, B.J.; Cao, X.; Drucker, D.J. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice. Diabetologia 2011, 54, 339–349. [Google Scholar] [CrossRef]
- Sadeghi, N.; Abbruzzese, J.L.; Yeung, S.C.; Hassan, M.; Li, D. Metformin use is associated with better survival of diabetic patients with pancreatic cancer. Clin. Cancer Res. 2012, 18, 2905–2912. [Google Scholar] [CrossRef] [Green Version]
- Makuc, J. Management of pancreatogenic diabetes: Challenges and solutions. Diabetes Metab. Syndr. Obes. 2016, 9, 311–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, J.; Scragg, R.; Petrov, M.S. Postpancreatitis Diabetes Confers Higher Risk for Pancreatic Cancer Than Type 2 Diabetes: Results from a Nationwide Cancer Registry. Diabetes Care 2020, 43, 2106–2112. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Yang, Y.; Zhang, J.; Yang, Q.; Lu, G.; Li, B.; Tong, Z.; Ke, L.; Li, W.; Li, J. Effect of the disease severity on the risk of developing new-onset diabetes after acute pancreatitis. Medicine 2018, 97, e10713. [Google Scholar] [CrossRef] [PubMed]
- Connor, S.; Alexakis, N.; Raraty, M.G.; Ghaneh, P.; Evans, J.; Hughes, M.; Garvey, C.J.; Sutton, R.; Neoptolemos, J.P. Early and late complications after pancreatic necrosectomy. Surgery 2005, 137, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Umapathy, C.; Raina, A.; Saligram, S.; Tang, G.; Papachristou, G.I.; Rabinovitz, M.; Chennat, J.; Zeh, H.; Zureikat, A.H.; Hogg, M.E.; et al. Natural History After Acute Necrotizing Pancreatitis: A Large, U.S. Tertiary Care Experience. J. Gastrointest. Surg. 2016, 20, 1844–1853. [Google Scholar] [CrossRef] [PubMed]
- Bavare, C.; Prabhu, R.; Supe, A. Early morphological and functional changes in pancreas following necrosectomy for acute severe necrotizing pancreatitis. Indian J. Gastroenterol. 2004, 23, 203–205. [Google Scholar] [PubMed]
- Tsiotos, G.G.; Luque-de León, E.; Sarr, M.G. Long-term outcome of necrotizing pancreatitis treated by necrosectomy. Br. J. Surg. 1998, 85, 1650–1653. [Google Scholar] [CrossRef] [PubMed]
- Winter Gasparoto, R.C.; Racy Mde, C.; De Campos, T. Long-term outcomes after acute necrotizing pancreatitis: What happens to the pancreas and to the patient? JOP 2015, 16, 159–166. [Google Scholar] [CrossRef]
- Boreham, B.; Ammori, B.J. A prospective evaluation of pancreatic exocrine function in patients with acute pancreatitis: Correlation with extent of necrosis and pancreatic endocrine insufficiency. Pancreatology 2003, 3, 303–308. [Google Scholar] [CrossRef]
- Chandrasekaran, P.; Gupta, R.; Shenvi, S.; Kang, M.; Rana, S.S.; Singh, R.; Bhasin, D.K. Prospective comparison of long term outcomes in patients with severe acute pancreatitis managed by operative and non operative measures. Pancreatology 2015, 15, 478–484. [Google Scholar] [CrossRef]
- Gupta, R.; Wig, J.D.; Bhasin, D.K.; Singh, P.; Suri, S.; Kang, M.; Rana, S.S.; Rana, S. Severe acute pancreatitis: The life after. J. Gastrointest. Surg. 2009, 13, 1328–1336. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, V.K. Complications of pancreato-duodenectomy. Perspect. Surg. 2016, 95, 53–59. [Google Scholar]
- Kahl, S.; Malfertheiner, P. Exocrine and endocrine pancreatic insufficiency after pancreatic surgery. Best Pract. Res. Clin. Gastroenterol. 2004, 18, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Roeyen, G.; Jansen, M.; Chapelle, T.; Bracke, B.; Hartman, V.; Ysebaert, D.; De Block, C. Diabetes mellitus and pre-diabetes are frequently undiagnosed and underreported in patients referred for pancreatic surgery. A prospective observational study. Pancreatology 2016, 16, 671–676. [Google Scholar] [CrossRef]
- Hamad, A.; Hyer, J.M.; Thayaparan, V.; Salahuddin, A.; Cloyd, J.M.; Pawlik, T.M.; Ejaz, A. Pancreatogenic Diabetes after Partial Pancreatectomy: A Common and Understudied Cause of Morbidity. J. Am. Coll. Surg. 2022, 235, 838–845. [Google Scholar] [CrossRef]
- Avanesov, M.; Löser, A.; Smagarynska, A.; Keller, S.; Guerreiro, H.; Tahir, E.; Karul, M.; Adam, G.; Yamamura, J. Clinico-radiological comparison and short-term prognosis of single acute pancreatitis and recurrent acute pancreatitis including pancreatic volumetry. PLoS ONE 2018, 13, e0206062. [Google Scholar] [CrossRef]
- Zhi, M.; Zhu, X.; Lugea, A.; Waldron, R.T.; Pandol, S.J.; Li, L. Incidence of New Onset Diabetes Mellitus Secondary to Acute Pancreatitis: A Systematic Review and Meta-Analysis. Front. Physiol. 2019, 10, 637. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Tao, J.; Yu, J.; Hu, N.; Zhang, X.; Wang, G.; Feng, J.; Xiong, X.; Li, M.; Chai, D.; et al. Inhibition of Notch activity promotes pancreatic cytokeratin 5-positive cell differentiation to beta cells and improves glucose homeostasis following acute pancreatitis. Cell Death Dis. 2021, 12, 867. [Google Scholar] [CrossRef]
- Ho, T.W.; Wu, J.M.; Kuo, T.C.; Yang, C.Y.; Lai, H.S.; Hsieh, S.H.; Lai, F.; Tien, Y.W. Change of Both Endocrine and Exocrine Insufficiencies After Acute Pancreatitis in Non-Diabetic Patients: A Nationwide Population-Based Study. Medicine 2015, 94, e1123. [Google Scholar] [CrossRef]
- Nikkola, J.; Laukkarinen, J.; Lahtela, J.; Seppänen, H.; Järvinen, S.; Nordback, I.; Sand, J. The Long-term Prospective Follow-up of Pancreatic Function After the First Episode of Acute Alcoholic Pancreatitis: Recurrence Predisposes One to Pancreatic Dysfunction and Pancreatogenic Diabetes. J. Clin. Gastroenterol. 2017, 51, 183–190. [Google Scholar] [CrossRef]
- Arvan, P.; Pietropaolo, M.; Ostrov, D.; Rhodes, C.J. Islet autoantigens: Structure, function, localization, and regulation. Cold Spring Harb. Perspect. Med. 2021, 2, a007658. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Wang, X.; Li, Z.; Li, H.; Li, X.; Zhou, Z. Insulin autoantibody could help to screen latent autoimmune diabetes in adults in phenotypic type 2 diabetes mellitus in Chinese. Acta Diabetol. 2012, 49, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Petrov, M.S. Panorama of mediators in postpancreatitis diabetes mellitus. Curr. Opin. Gastroenterol. 2020, 36, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Gillies, N.; Pendharkar, S.A.; Asrani, V.M.; Mathew, J.; Windsor, J.A.; Petrov, M.S. Interleukin-6 is associated with chronic hyperglycemia and insulin resistance in patients after acute pancreatitis. Pancreatology 2016, 16, 748–755. [Google Scholar] [CrossRef]
- Lesina, M.; Wörmann, S.M.; Neuhöfer, P.; Song, L.; Algül, H. Interleukin-6 in inflammatory and malignant diseases of the pancreas. Semin. Immunol. 2014, 26, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Jivanji, C.J.; Asrani, V.M.; Windsor, J.A.; Petrov, M.S. New-Onset Diabetes After Acute and Critical Illness: A Systematic Review. Mayo Clin. Proc. 2017, 92, 762–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sliwinska-Mosson, M.; Marek, G.; Grzebieniak, Z.; Milnerowicz, H. Relationship between somatostatin and interleukin-6: A cross-sectional study in patients with acute pancreatitis. Pancreatology 2018, 18, 885–891. [Google Scholar] [CrossRef]
- Lüscher, T.F.; Wenzel, R.R. Endothelin and endothelin antagonists: Pharmacology and clinical implications. Agents Actions Supply 1995, 45, 237–253. [Google Scholar] [CrossRef]
- Sehgal, A.; Behl, T.; Singh, S.; Sharma, N.; Albratty, M.; Alhazmi, H.A.; Meraya, A.M.; Aleya, L.; Sharma, A.; Bungau, S. Exploring the pivotal role of endothelin in rheumatoid arthritis. Inflammopharmacology 2022, 30, 1555–1567. [Google Scholar] [CrossRef]
- Sliwińska-Mossoń, M.; Sciskalska, M.; Karczewska-Górska, P.; Milnerowicz, H. The effect of endothelin-1 on pancreatic diseases in patients who smoke. Adv. Clin. Exp. Med. 2013, 22, 745–752. [Google Scholar]
- Petrov, M.S. Editorial: Abdominal fat: A key player in metabolic acute pancreatitis. Am. J. Gastroenterol. 2013, 108, 140–142. [Google Scholar] [CrossRef]
- Smith, S.C., Jr. Multiple risk factors for cardiovascular disease and diabetes mellitus. Am. J. Med. 2007, 120, S3–S11. [Google Scholar] [CrossRef]
- Corcoy, R. Diabetes and obesity—An international problem. Int. J. Gynecol. Obstet. 2012, 119, S178. [Google Scholar] [CrossRef]
- Mentula, P.; Kylänpää, M.L.; Kemppainen, E.; Puolakkainen, P. Obesity correlates with early hyperglycemia in patients with acute pancreatitis who developed organ failure. Pancreas 2008, 36, e21–e25. [Google Scholar] [CrossRef]
- Cho, J.; Scragg, R.; Pandol, S.J.; Petrov, M.S. Exocrine Pancreatic Dysfunction Increases the Risk of New-Onset Diabetes Mellitus: Results of a Nationwide Cohort Study. Clin. Transl. Sci. 2021, 14, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, L.; Pittas, A.G.; Del Gobbo, L.C.; Zhang, C.; Manson, J.E.; Hu, F.B. Blood 25-hydroxy vitamin D levels and incident type 2 diabetes: A meta-analysis of prospective studies. Diabetes Care 2013, 36, 1422–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klapdor, S.; Richter, E.; Klapdor, R. Vitamin D status and per-oral vitamin D supplementation in patients suffering from chronic pancreatitis and pancreatic cancer disease. Anticancer Res. 2012, 32, 1991–1998. [Google Scholar] [PubMed]
- Sikkens, E.C.; Cahen, D.L.; Koch, A.D.; Braat, H.; Poley, J.-W.; Kuipers, E.J.; Bruno, M.J. The prevalence of fat-soluble vitamin deficiencies and a decreased bone mass in patients with chronic pancreatitis. Pancreatology 2013, 13, 238–242. [Google Scholar] [CrossRef]
- Ehrampoush, E.; Mirzay Razzaz, J.; ArjmandHGhaemi, A.; RaeisiShahraki, H.; Ebrahim Babaei, A.; Osati, S.; Homayounfar, R. The association of vitamin D levels and insulin resistance. Clin. Nutr. ESPEN 2021, 42, 325–332. [Google Scholar] [CrossRef]
- Singh, A.; Aggarwal, M.; Garg, R.; Stevens, T.; Chahal, P. Post-pancreatitis diabetes mellitus: Insight on optimal management with nutrition and lifestyle approaches. Ann. Med. 2022, 54, 1776–1786. [Google Scholar] [CrossRef]
- Gornik, I.; Vujaklija, A.; Lukić, E.; Madzarac, G.; Gasparović, V. Hyperglycemia in sepsis is a risk factor for development of type II diabetes. J. Crit. Care 2010, 25, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Petrov, M.S.; Basina, M. Diagnosis of endocrine disease: Diagnosing and classifying diabetes in diseases of the exocrine pancreas. Eur. J. Endocrinol. 2021, 184, R151–R163. [Google Scholar] [CrossRef] [PubMed]
- Petrov, M.S.; Zagainov, V.E. Influence of enteral versus parenteral nutrition on blood glucose control in acute pancreatitis: A systematic review. Clin. Nutr. 2007, 26, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Balzano, G.; Dugnani, E.; Pasquale, V.; Capretti, G.; Radaelli, M.G.; Garito, T.; Stratta, G.; Nini, A.; Di Fenza, R.; Castoldi, R.; et al. Clinical signature and pathogenetic factors of diabetes associated with pancreas disease (T3cDM): A prospective observational study in surgical patients. Acta Diabetol. 2014, 51, 801–811. [Google Scholar] [CrossRef]
- Czakó, L.; Hegyi, P.; Rakonczay, Z., Jr.; Wittmann, T.; Otsuki, M. Interactions between the endocrine and exocrine pancreas and their clinical relevance. Pancreatology 2009, 9, 351–359. [Google Scholar] [CrossRef]
- Das, S.L.; Kennedy, J.I.; Murphy, R.; Phillips, A.R.; Windsor, J.A.; Petrov, M.S. Relationship between the exocrine and endocrine pancreas after acute pancreatitis. World J. Gastroenterol. 2014, 20, 17196–17205. [Google Scholar] [CrossRef]
- Huang, W.; de la Iglesia-García, D.; Baston-Rey, I.; Calviño-Suarez, C.; Lariño-Noia, J.; Iglesias-Garcia, J.; Shi, N.; Zhang, X.; Cai, W.; Deng, L.; et al. Exocrine Pancreatic Insufficiency Following Acute Pancreatitis: Systematic Review and Meta-Analysis. Dig. Dis. Sci. 2019, 64, 1985–2005. [Google Scholar] [CrossRef] [Green Version]
- Hollemans, R.A.; Hallensleben, N.D.L.; Mager, D.J.; Kelder, J.C.; Besselink, M.G.; Bruno, M.J.; Verdonk, R.C.; van Santvoort, H.C.; Dutch Pancreatitis Study Group. Pancreatic exocrine insufficiency following acute pancreatitis: Systematic review and study level meta-analysis. Pancreatology 2018, 18, 253–262. [Google Scholar] [CrossRef]
- Tu, J.; Zhang, J.; Ke, L.; Yang, Y.; Yang, Q.; Lu, G.; Li, B.; Tong, Z.; Li, W.; Li, J. Endocrine and exocrine pancreatic insufficiency after acute pancreatitis: Long-term follow-up study. BMC Gastroenterol. 2017, 17, 114. [Google Scholar] [CrossRef] [Green Version]
- Leeds, J.S.; Oppong, K.; Sanders, D.S. The role of fecal elastase-1 in detecting exocrine pancreatic disease. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 405–415. [Google Scholar] [CrossRef]
- Vanga, R.R.; Tansel, A.; Sidiq, S.; El-Serag, H.B.; Othman, M.O. Diagnostic Performance of Measurement of Fecal Elastase-1 in Detection of Exocrine Pancreatic Insufficiency: Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2018, 16, 1220–1228.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, J.; Cho, J.; Petrov, M.S. Low serum amylase, lipase, and trypsin as biomarkers of metabolic disorders: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2020, 159, 107974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, F.; Kacprowski, T.; Rühlemann, M.; Bülow, R.; Kühn, J.P.; Franke, A.; Heinsen, F.A.; Pietzner, M.; Nauck, M.; Völker, U.; et al. Impaired Exocrine Pancreatic Function Associates with Changes in Intestinal Microbiota Composition and Diversity. Gastroenterology 2019, 156, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ 2018, 361, k2179. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, F.H.; Tremaroli, V.; Nookaew, I.; Bergström, G.; Behre, C.J.; Fagerberg, B.; Nielsen, J.; Bäckhed, F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 2013, 498, 99–103. [Google Scholar] [CrossRef]
- Qin, J.; Li, Y.; Cai, Z.; Li, S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–60. [Google Scholar] [CrossRef]
- Lee, A.A.; Baker, J.R.; Wamsteker, E.J.; Saad, R.; Di Magno, M.J. Small Intestinal Bacterial Overgrowth Is Common in Chronic Pancreatitis and Associates with Diabetes, Chronic Pancreatitis Severity, Low Zinc Levels, and Opiate Use. Am. J. Gastroenterol. 2019, 114, 1163–1171. [Google Scholar] [CrossRef]
- Kumar, K.; Ghoshal, U.C.; Srivastava, D.; Misra, A.; Mohindra, S. Small intestinal bacterial overgrowth is common both among patients with alcoholic and idiopathic chronic pancreatitis. Pancreatology 2014, 14, 280–283. [Google Scholar] [CrossRef]
At Least Two of the Following Criteria Are Fulfilled | |
---|---|
1 | Abdominal pain |
2 | An increase in serum lipase (or amylase) activity at least three times the upper limit of normal |
3 | Characteristic findings of acute pancreatitis in contrast-enhanced CT or, less often, MRI or transabdominal ultrasonography |
Frequent | Rare | Very Rare (<1%) |
---|---|---|
Alcohol Gallstones Idiopathic | Iatrogenic (after ERCP) Abdominal trauma Medications (e.g., azathioprine) Smoking | Hereditary pancreatitis Infection (viral, bacterial, parasitic) Hypercalcemia (hyperparathyroidism, excess vitamin D) Hypertriglyceridemia Birth defects (e.g., bifid pancreas) Sphincter of Oddi dysfunction Pancreatic tumors Poisons (e.g., scorpion venom) Vasculitis Autoimmune pancreatitis |
Major Criteria (All Must Be Fulfilled): | |
---|---|
1 | Evidence of exocrine pancreatic insufficiency (faeces elastase 1 (FE1) < 200 µg/g or incorrect direct function testing) |
2 | Pathological pancreatic imaging (endoscopic ultrasound, magnetic resonance imaging, and computed tomography) |
3 | Absence of type 1 diabetes mellitus-associated autoimmune markers. |
Minor Criteria: | |
1 | Impaired beta cell function (e.g., HOMA-B, C-peptide/glucose-ratio) |
2 | No excessive insulin resistance (e.g., HOMA-IR) |
3 | Impaired incretin secretion (e.g., GLP-1, pancreatic polypeptide) |
4 | Low serum levels of lipid soluble vitamins (A, D, E, and K) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Śliwińska-Mossoń, M.; Bil-Lula, I.; Marek, G. The Cause and Effect Relationship of Diabetes after Acute Pancreatitis. Biomedicines 2023, 11, 667. https://doi.org/10.3390/biomedicines11030667
Śliwińska-Mossoń M, Bil-Lula I, Marek G. The Cause and Effect Relationship of Diabetes after Acute Pancreatitis. Biomedicines. 2023; 11(3):667. https://doi.org/10.3390/biomedicines11030667
Chicago/Turabian StyleŚliwińska-Mossoń, Mariola, Iwona Bil-Lula, and Grzegorz Marek. 2023. "The Cause and Effect Relationship of Diabetes after Acute Pancreatitis" Biomedicines 11, no. 3: 667. https://doi.org/10.3390/biomedicines11030667
APA StyleŚliwińska-Mossoń, M., Bil-Lula, I., & Marek, G. (2023). The Cause and Effect Relationship of Diabetes after Acute Pancreatitis. Biomedicines, 11(3), 667. https://doi.org/10.3390/biomedicines11030667