Telomere Shortening in Three Diabetes Mellitus Types in a Mexican Sample
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients Data
2.2. Anthropometric and Laboratory Assessment
2.3. Measurement of Telomere Length
- Telomere-F 5′-CGG TTT GTT TGG GTT TGG GTT TGG GTT TGG GTT TGG GTT-3′
- Telomere-R 5′-GGC TTG CCT TAC CCT TAC CCT TAC CCT TAC CCT TAC CCT-3′
- SDHA-F 5′-TCT CCA GTG GCC AAC AGT GTT-3′
- SDHA-R 5′-GCC CTC TTG TTC CCA TCA AC-3′
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kharroubi, A.T.; Darwish, H.M. Diabetes mellitus: The epidemic of the century. World J. Diabetes 2015, 6, 850–867. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.Y.; Wong, J.L.M.; Sim, Y.J.; Wong, S.S.; Elhassan, S.A.M.; Tan, S.H.; Lim, G.P.L.; Tay, N.W.R.; Annan, N.C.; Bhattamisra, S.K.; et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab. Syndr. 2019, 13, 364–372. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45 (Suppl. S1), S17–S38. [Google Scholar] [CrossRef] [PubMed]
- IDF Diabetes Atlas, 10th ed.; International Diabetes Ferederation: Brussels, Belgium. 2021. Available online: https://www.diabetesatlas.org (accessed on 8 November 2022).
- Skyler, J.S.; Bakris, G.L.; Bonifacio, E.; Darsow, T.; Eckel, R.H.; Groop, L.; Groop, P.H.; Handelsman, Y.; Insel, R.A.; Mathieu, C.; et al. Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. Diabetes 2017, 66, 241–255. [Google Scholar] [CrossRef] [Green Version]
- Prasad, R.B.; Groop, L. Genetics of type 2 diabetes-pitfalls and possibilities. Genes 2015, 6, 87–123. [Google Scholar] [CrossRef] [Green Version]
- Hämäläinen, A.M.; Knip, M. Autoimmunity and familial risk of type 1 diabetes. Curr. Diab. Rep. 2002, 2, 347–353. [Google Scholar] [CrossRef]
- Groop, L.; Forsblom, C.; Lehtovirta, M.; Tuomi, T.; Karanko, S.; Nissén, M.; Ehrnström, B.O.; Forsén, B.; Isomaa, B.; Snickars, B.; et al. Metabolic consequences of a family history of NIDDM (the Botnia study): Evidence for sex-specific parental effects. Diabetes 1996, 45, 1585–1593. [Google Scholar] [CrossRef]
- Kim, J.H.; Nam, C.M.; Lee, D.; Bang, H.; Ko, J.H.; Lim, I.; Kim, G.J.; Koes, B.W.; Lee, D.C. Heritability of telomere length across three generations of Korean families. Pediatr. Res. 2020, 87, 1060–1065. [Google Scholar] [CrossRef]
- Shay, J.W.; Wright, W.E. Telomeres and telomerase: Three decades of progress. Nat. Rev. Genet. 2019, 20, 299–309. [Google Scholar] [CrossRef]
- Srinivas, N.; Rachakonda, S.; Kumar, R. Telomeres and Telomere Length: A General Overview. Cancers 2020, 12, 558. [Google Scholar] [CrossRef] [Green Version]
- Gruber, H.J.; Semeraro, M.D.; Renner, W.; Herrmann, M. Telomeres and Age-Related Diseases. Biomedicines 2021, 9, 1335. [Google Scholar] [CrossRef] [PubMed]
- Qi Nan, W.; Ling, Z.; Bing, C. The influence of the telomere-telomerase system on diabetes mellitus and its vascular complications. Expert Opin. Ther. Targets 2015, 19, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.K.; Masutomi, K.; Hahn, W.C. Telomerase: Regulation, function and transformation. Crit. Rev. Oncol. Hematol. 2005, 54, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Collins, K.; Mitchell, J.R. Telomerase in the human organism. Oncogene 2002, 21, 564–579. [Google Scholar] [CrossRef] [Green Version]
- Dudinskaya, E.N.; Tkacheva, O.N.; Shestakova, M.V.; Brailova, N.V.; Strazhesko, I.D.; Akasheva, D.U.; Isaykina, O.Y.; Sharashkina, N.V.; Kashtanova, D.A.; Boytsov, S.A. Short telomere length is associated with arterial aging in patients with type 2 diabetes mellitus. Endocr. Connect. 2015, 3, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Jeanclos, E.; Krolewski, A.; Skurnick, J.; Kimura, M.; Aviv, H.; Warram, J.H.; Aviv, A. Shortened telomere length in white blood cells of patients with IDDM. Diabetes 1998, 47, 482–486. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, Z.; Zhang, C.; Xia, H.; Jie, Z.; Han, X.; Chen, Y.; Ji, L. Effects of Acarbose on the Gut Microbiota of Prediabetic Patients: A Randomized, Double-blind, Controlled Crossover Trial. Diabetes Ther. 2017, 8, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Mutowo, M.; Gowda, U.; Mangwiro, J.C.; Lorgelly, P.; Owen, A.; Renzaho, A. Prevalence of diabetes in Zimbabwe: A systematic review with meta-analysis. Int. J. Public Health 2015, 60, 1–11. [Google Scholar] [CrossRef]
- Elks, C.E.; Scott, R.A. The long and short of telomere length and diabetes. Diabetes 2014, 63, 65–67. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Yu, X.; Zhang, C.; Wang, Y.; Sun, Y.; Sun, H.; Zhang, H.; Shi, Y.; He, X. Telomeres and Mitochondrial Metabolism: Implications for Cellular Senescence and Age-related Diseases. Stem Cell Rev. Rep. 2022, 18, 2315–2327. [Google Scholar] [CrossRef]
- Gavia-García, G.; Rosado-Pérez, J.; Arista-Ugalde, T.L.; Aguiñiga-Sánchez, I.; Santiago-Osorio, E.; Mendoza-Núñez, V.M. Telomere Length and Oxidative Stress and Its Relation with Metabolic Syndrome Components in the Aging. Biology 2021, 10, 253. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dong, X.; Cao, L.; Sun, Y.; Qiu, Y.; Zhang, Y.; Cao, R.; Covasa, M.; Zhong, L. Association between telomere length and diabetes mellitus: A meta-analysis. J. Int. Med. Res. 2016, 44, 1156–1173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Q.; Zhao, X.; Yu, L.; Zhang, Z.; Zhou, D.; Kan, M.; Zhang, D.; Cao, L.; Xing, Q.; Yang, Y.; et al. Association of leukocyte telomere length with type 2 diabetes in mainland Chinese populations. J. Clin. Endocrinol. Metab. 2012, 97, 1371–1374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benetos, A.; Dalgård, C.; Labat, C.; Kark, J.D.; Verhulst, S.; Christensen, K.; Kimura, M.; Horvath, K.; Kyvik, K.O.; Aviv, A. Sex difference in leukocyte telomere length is ablated in opposite-sex co-twins. Int. J. Epidemiol. 2014, 43, 1799–1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wai, K.M.; Kaori, S.; Itoh, K.; Shinya, O.; Uchikawa, Y.; Hayashi, S.; Shiraki, A.; Murashita, K.; Nakaji, S.; Ihara, K. Telomere Length and Arterial Stiffness Reflected by BraWang chial-Ankle Pulse Wave Velocity: A Population-Based Cross-Sectional Study. J. Pers. Med. 2021, 12, 1278. [Google Scholar] [CrossRef]
- D’Mello, M.J.; Ross, S.A.; Briel, M.; Anand, S.S.; Gerstein, H.; Paré, G. Association between shortened leukocyte telomere length and cardiometabolic outcomes: Systematic review and meta-analysis. Circ. Cardiovasc. Genet. 2015, 1, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Gupta, A.; Thungapathra, M.; Bansal, R. Telomere mean length in patients with diabetic retinopathy. Sci. Rep. 2016, 5, 18368. [Google Scholar] [CrossRef]
- Wulaningsih, W.; Watkins, J.; Matsuguchi, T.; Hardy, R. Investigating the associations between adiposity, life course overweight trajectories, and telomere length. Aging 2016, 8, 2689–2701. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Peng, X.; Dong, K.; Tao, J.; Yang, Y. The Association between Antidiabetic Agents and Leukocyte Telomere Length in the Novel Classification of Type 2 Diabetes Mellitus. Gerontology 2021, 67, 60–68. [Google Scholar] [CrossRef]
- Liu, J.; Ge, Y.; Wu, S.; Ma, D.; Xu, W.; Zhang, Y.; Yang, Y. Association between antidiabetic agents use and leukocyte telomere shortening rates in patients with type 2 diabetes. Aging 2019, 11, 741–755. [Google Scholar] [CrossRef]
- Jiang, X.; Ruan, X.L.; Xue, Y.X.; Yang, S.; Shi, M.; Wang, L.N. Metformin Reduces the Senescence of Renal Tubular Epithelial Cells in Diabetic Nephropathy via the MBNL1/miR-130a-3p/STAT3 Pathway. Oxidative Med. Cell. Longev. 2020, 2020, 8708236. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.R.; Morrison, V.L.; Levin, D.; Mohan, M.; Forteath, C.; Beall, C.; McNeilly, A.D.; Balfour, D.J.; Savinko, T.; Wong, A.K.; et al. Anti-Inflammatory Effects of Metformin Irrespective of Diabetes Status. Circ. Res. 2016, 119, 652–665. [Google Scholar] [CrossRef] [Green Version]
- Uziel, O.; Singer, J.A.; Danicek, V.; Sahar, G.; Berkov, E.; Luchansky, M.; Fraser, A.; Ram, R.; Lahav, M. Telomere dynamics in arteries and mononuclear cells of diabetic patients: Effect of diabetes and of glycemic control. Exp. Gerontol. 2007, 42, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Barzilai, N.; Crandall, J.P.; Kritchevsky, S.B.; Espeland, M.A. Metformin as a Tool to Target Aging. Cell Metab. 2016, 23, 1060–1065. [Google Scholar] [CrossRef] [Green Version]
- Hu, D.; Xie, F.; Xiao, Y.; Lu, C.; Zhong, J.; Huang, D.; Chen, J.; Wei, J.; Jiang, Y.; Zhong, T. Metformin: A Potential Candidate for Targeting Aging Mechanisms. Aging Dis. 2021, 12, 480–493. [Google Scholar] [CrossRef] [PubMed]
- de Kreutzenberg, S.V.; Ceolotto, G.; Cattelan, A.; Pagnin, E.; Mazzucato, M.; Garagnani, P.; Borelli, V.; Bacalini, M.G.; Franceschi, C.; Fadini, G.P.; et al. Metformin improves putative longevity effectors in peripheral mononuclear cells from subjects with prediabetes. A randomized controlled trial. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.S.; Gubbi, S.; Barzilai, N. Benefits of Metformin in Attenuating the Hallmarks of Aging. Cell Metab. 2020, 32, 15–30. [Google Scholar] [CrossRef]
- Mohammed, I.; Hollenberg, M.D.; Ding, H.; Triggle, C.R. A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Front. Endocrinol. 2021, 12, 718942. [Google Scholar] [CrossRef]
- Al-Thuwaini, T.M. Association of antidiabetic therapy with shortened telomere length in middle-aged Type 2 diabetic patients. J. Diabetes Metab. Disord. 2021, 20, 1161–1168. [Google Scholar] [CrossRef]
- Ma, D.; Yu, Y.; Yu, X.; Zhang, M.; Yang, Y. The changes of leukocyte telomere length and telomerase activity after sitagliptin intervention in newly diagnosed type 2 diabetes. Diabetes Metab. Res. Rev. 2015, 31, 256–261. [Google Scholar] [CrossRef]
- Dandona, P.; Aljada, A.; Mohanty, P.; Ghanim, H.; Hamouda, W.; Assian, E.; Ahmad, S. Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: Evidence for an anti-inflammatory effect? J. Clin. Endocrinol. Metab. 2001, 86, 3257–3265. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.B.; Liu, H.B.; Ping, F.; Li, W.; Li, Y.X. Insulin treatment affects leukocyte telomere length in patients with type 2 diabetes: 6-year longitudinal study. J. Diabetes Complicat. 2019, 3, 363–367. [Google Scholar] [CrossRef] [PubMed]
LADA | LADY | T2DM | Total | p Value | |
---|---|---|---|---|---|
n= 115 (%) | 72 (62.61) | 13 (11.30) | 30 (26.09) | 115 (100) | |
Age (yrs) | 53.69 | 44.62 | 58.27 | 55.30 | 0.0007 |
Gender | F = 54 (75) M = 18 (25) | F = 11 (84.62) M = 2 (15.38) | F = 17 (56.67) M = 13 (43.33) | F = 82 (71.30) M = 33 (28.70) | 0.0931 |
BMI (kg/m2) | 30.01 | 28.05 | 31.32 | 29.79 | 0.0235 |
HbA1c (%) | 6.46 | 5.64 | 5.28 | 5.79 | 0.8736 |
Fasting plasma glucose (mg/dL) | 124.01 | 98.85 | 128.47 | 117.11 | 0.0663 |
Hypertension | 29 (25.22) | 6 (5.22) | 17 (14.78) | 52 (45.22) | 0.3164 |
Dyslipidemia | 19 (16.52) | 1 (0.87) | 8 (6.96) | 28 (24.35) | 0.3315 |
Neuropathy | 4 (3.48) | 1 (0.87) | 0 (0) | 5 (4.35) | 0.3742 |
GADA | 19.43 ± 17.28 | 17.88 ± 11.09 | 2.60 ± 1.05 | 17.92 ± 16.64 | 0.05 |
LADA | LADY | T2D | Total (%) | p Value | |
---|---|---|---|---|---|
Metformin | 68 | 13 | 29 | 110 (95.65) | 0.6320 |
Glibenclamide | 29 | 4 | 12 | 45 (39.13) | 0.8470 |
DPP-4 Inhibitors | 14 | 3 | 12 | 29 (25.22) | 0.0916 |
Insulin | 58 | 12 | 14 | 84 (73.04) | 0.0005 |
Characteristic | r Value | p Value |
---|---|---|
Age | 0.02665 | 0.7774 |
Body mass index | 0.1111 | 0.2370 |
HbA1c | 0.1189 | 0.2842 |
Characteristic | p Value |
---|---|
Age | 0.0001 |
Age of diagnosis | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuevas Diaz, P.; Nicolini, H.; Nolasco-Rosales, G.A.; Juarez Rojop, I.; Tovilla-Zarate, C.A.; Rodriguez Sanchez, E.; Genis-Mendoza, A.D. Telomere Shortening in Three Diabetes Mellitus Types in a Mexican Sample. Biomedicines 2023, 11, 730. https://doi.org/10.3390/biomedicines11030730
Cuevas Diaz P, Nicolini H, Nolasco-Rosales GA, Juarez Rojop I, Tovilla-Zarate CA, Rodriguez Sanchez E, Genis-Mendoza AD. Telomere Shortening in Three Diabetes Mellitus Types in a Mexican Sample. Biomedicines. 2023; 11(3):730. https://doi.org/10.3390/biomedicines11030730
Chicago/Turabian StyleCuevas Diaz, Pavel, Humberto Nicolini, German Alberto Nolasco-Rosales, Isela Juarez Rojop, Carlos Alfonso Tovilla-Zarate, Ester Rodriguez Sanchez, and Alma Delia Genis-Mendoza. 2023. "Telomere Shortening in Three Diabetes Mellitus Types in a Mexican Sample" Biomedicines 11, no. 3: 730. https://doi.org/10.3390/biomedicines11030730
APA StyleCuevas Diaz, P., Nicolini, H., Nolasco-Rosales, G. A., Juarez Rojop, I., Tovilla-Zarate, C. A., Rodriguez Sanchez, E., & Genis-Mendoza, A. D. (2023). Telomere Shortening in Three Diabetes Mellitus Types in a Mexican Sample. Biomedicines, 11(3), 730. https://doi.org/10.3390/biomedicines11030730