Tissue Engineering Supporting Regenerative Strategies to Enhance Clinical Orthodontics and Dentofacial Orthopaedics: A Scoping, Perspective Review
Abstract
:1. Introduction
2. Stem Cell-Based Regenerative Strategies in Orthognathic Dentistry
3. Scaffolding-Based, Cell-Free Regenerative Strategies on Maxillofacial and Orthognathic Surgery
4. The Application of MSCs in Dentofacial Anomalies
5. The Potential Utilization of Stem Cell-Based Innovations in Clinical and Research Orthodontics
5.1. Alveolar Bone Augmentation Enabling Induction and Acceleration of Orthodontic Tooth Movement
5.2. SCs in Management of External Root Resorption
5.3. The Enhanced Regeneration of Periodontal Structures during Orthodontic Treatment
6. The Role of Growth Factors in Regenerative Dentofacial Orthopaedics
7. Constraints and Pitfalls of RDM
8. Future Implications and Prospects
9. Limitations of Scoping Review
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reed, J.A.; Patarca, R. Regenerative dental medicine: Stem cells and tissue engineering in dentistry. J. Environ. Pathol. Toxicol. Oncol. 2006, 25, 537–569. [Google Scholar] [CrossRef]
- Tatullo, M.; Codispoti, B.; Sied, J.; Makeeva, I.; Paduano, F.; Marrelli, M.; Spagnuolo, G. Stem Cells-based and Molecular-based Approaches in Regenerative Dentistry: A Topical Review. Curr. Stem. Cell Res. Ther. 2019, 14, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Tatullo, M.; Codispoti, B.; Paduano, F.; Nuzzolese, M.; Makeeva, I. Strategic Tools in Regenerative and Translational Dentistry. Int. J. Mol. Sci. 2019, 20, 1879. [Google Scholar] [CrossRef] [Green Version]
- Safari, S.; Mahdian, A.; Motamedian, S.R. Applications of stem cells in orthodontics and dentofacial orthopedics: Current trends and future perspectives. World J. Stem Cells 2018, 10, 66–77. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, M.; He, J. A review of biomimetic scaffolds for bone regeneration: Toward a cell-free strategy. Bioeng. Transl. Med. 2020, 6, e10206. [Google Scholar] [CrossRef]
- Du, Y.; Guo, J.L.; Wang, J.; Mikos, A.G.; Zhang, S. Hierarchically designed bone scaffolds: From internal cues to external stimuli. Biomaterials 2019, 218, 119334. [Google Scholar] [CrossRef]
- Yelick, P.C.; Sharpe, P.T. Tooth Bioengineering and Regenerative Dentistry. J. Dent. Res. 2019, 98, 1173–1182. [Google Scholar] [CrossRef]
- Amrollahi, P.; Shah, B.; Seifi, A.; Tayebi, L. Recent advancements in regenerative dentistry: A review. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 1383–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Cai, X.; Shen, Y.; Meng, L. Cell-scaffold interactions in tissue engineering for oral and craniofacial reconstruction. Bioact. Mater. 2022, 23, 16–44. [Google Scholar] [CrossRef] [PubMed]
- Abou Neel, E.A.; Chrzanowski, W.; Salih, V.M.; Kim, H.W.; Knowles, J.C. Tissue engineering in dentistry. J. Dent. 2014, 42, 915–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obregon, F.; Vaquette, C.; Ivanovski, S.; Hutmacher, D.W.; Bertassoni, L.E. Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering. J. Dent. Res. 2015, 94 (Suppl. S9), 143S–152S. [Google Scholar] [CrossRef]
- Cicciù, M. Growth Factor Applied to Oral and Regenerative Surgery. Int. J. Mol. Sci. 2020, 21, 7752. [Google Scholar] [CrossRef]
- Herford, A.S.; Miller, M.; Signorino, F. Maxillofacial Defects and the Use of Growth Factors. Oral Maxillofac. Surg. Clin. N. Am. 2017, 29, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Schliephake, H. Clinical efficacy of growth factors to enhance tissue repair in oral and maxillofacial reconstruction: A systematic review. Clin. Implant Dent. Relat. Res. 2015, 17, 247–273. [Google Scholar] [CrossRef] [PubMed]
- Bartolucci, A.A.; Hillegass, W.B. Overview, Strengths, and Limitations of Systematic Reviews and Meta-Analyses. In Evidence-Based Practice: Toward Optimizing Clinical Outcomes; Chiappelli, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Yuan, Y.; Hunt, R.H. Systematic reviews: The good, the bad, and the ugly. Am. J. Gastroenterol. 2009, 104, 1086–1092. [Google Scholar] [CrossRef] [PubMed]
- Khojasteh, A.; Motamedian, S.R. Mesenchymal stem cell therapy for treatment of craniofacial bone defects: 10 years of experience. J. Regen. Reconstr. Restor. (Triple R) 2016, 1, 1. [Google Scholar]
- Mafi, R.; Hindocha, S.; Mafi, P.; Griffin, M.; Khan, W.S. Sources of Adult Mesenchymal Stem Cells Applicable for Musculoskeletal Applications—A Systematic Review of the Literature. Open Orthop. J. 2011, 5, 242. [Google Scholar] [CrossRef]
- Hass, R.; Kasper, C.; Bohm, S.; Jacobs, R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal. 2011, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Hilkens, P.; Driesen, R.; Wolfs, E.; Grevois, P.; Vangansewinkel, T.; Ratajczak, J.; Dillen, Y.; Bronchaers, A.; Lambrichts, I. Cryopreservation and banking of dental stem cells. Biobanking Cryopreserv. Stem Cell 2016, 951, 199–235. [Google Scholar]
- Zeitlin, B.D. Banking on teeth–Stem cells and the dental office. Biomed. J. 2020, 43, 124–133. [Google Scholar] [CrossRef]
- Sharma, A.; Clemens, R.; Garcia, O.; Lansing Taylor, D.; Wagner, N.L.; Shepard, K.A.; Gupta, A.; Malany, S.; Grodzinsky, A.J.; Kearns-Jonker, M.; et al. Biomanufacturing in low Earth orbit for regenerative medicine. Stem. Cell Rep. 2021, 17, 1–13. [Google Scholar] [CrossRef]
- Ferrarotti, F.; Romano, F.; Gamba, M.N.; Quirico, A.; Giraudi, M.; Audaga, M.; Aimetti, M. Human intrabony defect regeneration with micrografts containing dental pulp stem cells: A randomized controlled clinical trial. J. Clin. Periodontol. 2018, 45, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Alongi, D.J.; Yamaza, T.; Song, Y.; Fouad, A.F.; Romberg, E.E.; Shi, S.; Tuan, R.S.; Huang, G.T.-J. Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen. Med. 2010, 5, 617–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.C.; Kim, J.M.; Jung, I.H.; Kim, J.C.; Choi, S.H.; Cho, K.S.; Kim, C.S. Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDL tissue: In vitro and in vivo evaluations. J. Clin. Periodontol. 2011, 38, 721–731. [Google Scholar] [CrossRef]
- Hung, T.-Y.; Lin, C.H.; Chan, Y.J.; Yuan, K. Isolating stromal stem cells from periodontal granulation tissues. Clin. Oral Investig. 2012, 16, 1171–1180. [Google Scholar] [CrossRef]
- Khojasteh, A.; Khreiri, L.; Motmedian, S.R.; Nadjmi, N. Regenerative medicine in the treatment of alveolar cleft defect: A systematic review of the literature. J. Cranio-Maxillofac. Surg. 2015, 43, 1608–1613. [Google Scholar] [CrossRef]
- Jafari, M.; Paknejad, Z.; Rad, M.R.; Motamedian, S.R.; Eghbal, M.J.; Nadjami, N.; Khojasteh, A. Polymeric scaffolds in tissue engineering: A literature review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 431–459. [Google Scholar] [CrossRef]
- Hosseinpour, S.; Ahsaie, M.G.; Rad, M.R.; Baghani, M.T.; Motamedian, S.R.; Khojasteh, A. Application of selected scaffolds for bone tissue engineering: A systematic review. Oral Maxillofac. Surg. 2017, 21, 109–129. [Google Scholar] [CrossRef]
- Chew, J.R.J.; Prakash, R.; Khan, W. Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomater. 2019, 89, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Novello, S.; Pellen-Mussi, P.; Jeanne, S. Mesenchymal stem cell-derived small extracellular vesicles as cell-free therapy: Perspectives in periodontal regeneration. J. Periodontal. Res. 2021, 56, 433–442. [Google Scholar] [CrossRef]
- Leung, K.S.; Shirazi, S.; Cooper, L.F.; Ravindran, S. Biomaterials and Extracellular Vesicle Delivery: Current Status, Applications and Challenges. Cells 2022, 11, 2851. [Google Scholar] [CrossRef]
- Huang, C.C.; Kang, M.; Shirazi, S.; Lu, Y.; Cooper, L.F.; Gajendrareddy, P.; Ravindran, S. 3D Encapsulation and tethering of functionally engineered extracellular vesicles to hydrogels. Acta Biomater. 2021, 126, 199–210. [Google Scholar] [CrossRef]
- Huang, C.C.; Kang, M.; Lu, Y.; Shirazi, S.; Diaz, J.I.; Cooper, L.F.; Gajendrareddy, P.; Ravindran, S. Functionally engineered extracellular vesicles improve bone regeneration. Acta Biomater. 2020, 109, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, S.; Huang, C.C.; Kang, M.; Lu, Y.; Ravindra, S.; Cooper, L.F. The importance of cellular and exosomal miRNAs in mesenchymal stem cell osteoblastic differentiation. Sci. Rep. 2021, 11, 5953. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Huang, C.C.; Gajendrareddy, P.; Lu, Y.; Shirazi, S.; Ravindran, S.; Cooper, L.F. Extracellular Vesicles From TNFα Preconditioned MSCs: Effects on Immunomodulation and Bone Regeneration. Front. Immunol. 2022, 13, 878194. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Huang, C.C.; Lu, Y.; Shirazi, S.; Gajendrareddy, P.; Ravindran, S.; Cooper, L.F. Bone regeneration is mediated by macrophage extracellular vesicles. Bone 2020, 141, 115627. [Google Scholar] [CrossRef]
- Atsawasuwan, P.; Lazari, P.; Chen, Y.; Zhou, X.; Viana, G.; Evans, C.A. Secretory microRNA-29 expression in gingival crevicular fluid during orthodontic tooth movement. PLoS ONE 2018, 13, e0194238. [Google Scholar] [CrossRef] [Green Version]
- Malik, O.H.; Waring, D.T.; Lloyd, R.; Misra, S.; Paice, E. An Overview of the Surgical Correction of Dentofacial Deformity. Dent. Update 2016, 43, 550–552, 555–558, 561–562. [Google Scholar] [CrossRef]
- Warren, S.M.; Fong, K.D.; Chen, C.M.; Loboa, E.G.; Cowan, C.M.; Lorenz, H.P.; Longaker, M.T. Tools and techniques for craniofacial tissue engineering. Tissue Eng. 2003, 9, 187–200. [Google Scholar] [CrossRef]
- Bayerlein, T.; Proff, P.; Heinrich, A.; Kaduk, W.; Norbert, H.; Gedrange, T. Evaluation of bone availability in the cleft area following secondary osteoplasty. J. Cranio-Maxillofac. Surg. 2006, 34, 57–61. [Google Scholar] [CrossRef]
- Cowan, C.M.; Shi, Y.Y.; Aalami, O.O. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat. Biotechnol. 2004, 22, 560–567. [Google Scholar] [CrossRef]
- Hibi, H.; Yamada, Y.; Endo, Y. Alveolar cleft osteoplasty using tissue-engineered osteogenic material. Int. J. Oral Maxillofac. Surg. 2006, 35, 551–555. [Google Scholar] [CrossRef]
- Miura, M.; Miura, Y.; Sonoyama, W.; Yamaza, T.; Grothos, S.; Shi, S. Bone marrow-derived mesenchymal stem cells for regenerative medicine in craniofacial region. Oral. Dis. 2006, 12, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, S.; Ravindran, S.; Cooper, L.F. Topography-mediated immunomodulation in osseointegration; Ally or Enemy. Biomaterials 2022, 291, 121903. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Thalji, G.; Huang, C.C.; Shirazi, S.; Lu, Y.; Ravindran, S.; Cooper, L.F. Macrophage Control of Incipient Bone Formation in Diabetic Mice. Front. Cell Dev. Biol. 2021, 8, 59662. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Ma, K.; Zhang, C.; Fu, X. Therapeutic angiogenesis using stem cell-derived extracellular vesicles: An emerging approach for treatment of ischemic diseases. Stem. Cell Res. Ther. 2019, 10, 158. [Google Scholar] [CrossRef] [Green Version]
- Todorova, D.; Simoncini, S.; Lacroix, R.; Sabatier, F.; Dignat-George, F. Extracellular Vesicles in Angiogenesis. Circ. Res. 2017, 120, 1658–1673. [Google Scholar] [CrossRef]
- Atsawasuwan, P.; Shirazi, S. Advances in Orthodontic Tooth Movement: Gene Therapy and Molecular Biology Aspect. In Current Approaches in Orthodontics; Intechopen: London, UK, 2018. [Google Scholar]
- Rabie, A.; Wong, L.; Hägg, U. Correlation of replicating cells and osteogenesis in the glenoid fossa during stepwise advancement. Am. J. Orthod. Dentofac. Orthop. 2003, 123, 521–526. [Google Scholar] [CrossRef]
- Ackerman, J.L.; Proffit, W.R. Soft tissue limitations in orthodontics: Treatment planning guidelines. Angle Orthod. 1997, 67, 327–336. [Google Scholar]
- Proffit, W.R. Equilibrim theory revisited: Factors influencing position of the teeth. Angle Orthod. 1978, 48, 175–186. [Google Scholar]
- Preoteasa, C.T.; Ionescu, E.; Preoteasa, E. Risks and complications associated with orthodontic treatment. In Orthodontics-Basic Aspects and Clinical Considerations; Intechopen: London, UK, 2012; pp. 403–428. [Google Scholar]
- Hollinger, J.O.; Einhorn, T.A.; Doll, B.; Sfeir, C. Bone Tissue Engineering; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Rickert, D.; Sauerbier, S.; Nagursky, H.; Menne, D.; Vissink, A.; Raghoebar, G.M. Maxillary sinus floor elevation with bovine bone mineral combined with either autogenous bone or autogenous stem cells: A prospective randomized clinical trial. Clin. Oral Implant. Res. 2011, 22, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Nakamura, S.; Ueda, M.; Ito, K. Osteotome technique with injectable tissue-engineered bone and simultaneous implant placement by cell therapy. Clin. Oral Implant. Res. 2013, 24, 468–474. [Google Scholar] [CrossRef]
- Miguita, L.; Mantesso, A.; Pannuti, C.M.; Deboni, M.C.Z. Can stem cells enhance bone formation in the human edentulous alveolar ridge? A systematic review and meta-analysis. Cell Tissue Bank. 2017, 18, 217–228. [Google Scholar] [CrossRef]
- Dolce, C.; Malone, J.S.; Wheeler, T.T. Current Concepts in the Biology of Orthodontic Tooth Movement. In Seminars in Orthodontics; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Rody, W.J., Jr.; King, G.J.; Gu, G. Osteoclast recruitment to sites of compression in orthodontic tooth movement. Am. J. Orthod. Dentofac. Orthop. 2001, 120, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, T.; Suda, T. Differentiation and function of osteoclasts. Keio J. Med. 2003, 52, 4–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zainal Ariffin, S.H.; Yamamoto, Z.; Zainol Abidin, I.Z.; Abdul Wahab, R.M.; Ariffin, Z.Z. Cellular and molecular changes in orthodontic tooth movement. Sci. World J. 2011, 11, 1788–1803. [Google Scholar] [CrossRef]
- Abid, M. Can we move teeth faster? The effectiveness of different approaches. Ann. Dent. Oral Health 2018, 1, 1001. [Google Scholar] [CrossRef]
- Almpani, K.; Kantarci, A. Nonsurgical methods for the acceleration of the orthodontic tooth movement. Tooth movement. Front. Oral. Biol. 2016, 18, 80–91. [Google Scholar]
- Alfawal, A.M.; Hajeer, M.Y.; Ajaj, M.A.; Hamadah, O.; Brad, B. Effectiveness of minimally invasive surgical procedures in the acceleration of tooth movement: A systematic review and meta-analysis. Prog. Orthod. 2016, 17, 33. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Yang, R.; Liu, D.; Wang, X.; Song, Y.; Cao, H.; He, D.; Gan, Y.; Kou, X.; Zhou, Y. PDL progenitor–mediated PDL recovery contributes to orthodontic relapse. J. Dent. Res. 2016, 95, 1049–1056. [Google Scholar] [CrossRef]
- Holliday, L.; McHugh, K.P.; Zuo, J.; Aguirre, J.I.; Neubert, J.K.; Rody, W.J., Jr. Exosomes: Novel regulators of bone remodelling and potential therapeutic agents for orthodontics. Orthod. Craniofacial Res. 2017, 20, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Kaklamanos, E.G.; Makrygiannakis, M.A.; Athanasiou, A.E. Could medications and biologic factors affect post-orthodontic tooth movement changes? A systematic review of animal studies. Orthod. Craniofacial Res. 2021, 24, 39–51. [Google Scholar] [CrossRef]
- Zahrowski, J.; Jeske, A. Apical root resorption is associated with comprehensive orthodontic treatment but not clearly dependent on prior tooth characteristics or orthodontic techniques. J. Am. Dent. Assoc. 2011, 142, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; He, S.; Gu, T.; Chen, S. Genetic and clinical risk factors of root resorption associated with orthodontic treatment. Am. J. Orthod. Dentofac. Orthop. 2016, 150, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Ahangari, Z.; Nasser, M.; Fedorowicz, Z.; Marchesan, M.A. Interventions for the management of external root resorption. Cochrane Database Syst. Rev. 2015, 11, CD008003. [Google Scholar] [CrossRef] [PubMed]
- Shinagawa-Ohama, R.; Mochizuki, M.; Tamaki, Y.; Suda, N.; Nakahara, T. Heterogeneous human periodontal ligament-committed progenitor and stem cell populations exhibit a unique cementogenic property under in vitro and in vivo conditions. Stem. Cells Dev. 2017, 26, 632–645. [Google Scholar] [CrossRef]
- Ikeda, E.; Morita, R.; Nakao, K.; Ishida, K.; Nakamura, T.; Takano-Yamamoto, T.; Ogawa, M.; Mizuno, M.; Kasungi, S.; Tsuji, T. Fully functional bioengineered tooth replacement as an organ replacement therapy. Proc. Natl. Acad. Sci. USA 2009, 106, 13475–13480. [Google Scholar] [CrossRef] [Green Version]
- Ono, M.; Oshima, M.; Ogawa, M.; Sonoyama, W.; Hara, E.S.; Oida, Y.; Shinkawa, S.; Nakajima, R.; Mine, A.; Hayano, S.; et al. Practical whole-tooth restoration utilizing autologous bioengineered tooth germ transplantation in a postnatal canine model. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, M.A.; Aichelmann-Reidy, M.E.; Branh-Mays, G.L.; Gunsolley, J.C. The efficacy of bone replacement grafts in the treatment of periodontal osseous defects. A systematic review. Ann. Periodontol. 2003, 8, 227–265. [Google Scholar] [CrossRef]
- Duan, X.; Tu, Q.; Zhang, J.; Ye, J.; Sommer, C.; Motoslavsky, G.; Kaplin, D.; Yang, P.; Chen, J. Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. J. Cell. Physiol. 2011, 226, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Nagata, M.; Iwasaki, K.; Akazawa, K.; Komaki, M.; Yokoyama, N.; Izumi, Y.; Morita, I. Conditioned medium from periodontal ligament stem cells enhances periodontal regeneration. Tissue Eng. Part A 2017, 23, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Li, S.; Song, Y.; Tang, L.; Ma, D.; Liu, B.; Jin, Y. The biological effect of dentin noncollagenous proteins (DNCPs) on the human periodontal ligament stem cells (HPDLSCs) in vitro and in vivo. Tissue Eng. Part A 2008, 14, 2059–2068. [Google Scholar] [CrossRef] [PubMed]
- Grimm, W.-D.; Dannan, A.; Becher, S.; Gassmann, G.; Arnold, W.; Varga, G.; Ditmar, T. The ability of human periodontium-derived stem cells to regenerate periodontal tissues: A preliminary in vivo investigation. Int. J. Periodontics Restor. Dent. 2011, 31, 631. [Google Scholar]
- Ding, G.; Wang, Y.; Wei, F.; Liu, D.; Fan, Z.; An, Y.; Zhang, C.; Wang, S. Allogeneic periodontal ligament stem cell therapy for periodontitis in swine. Stem Cells 2010, 28, 1829–1838. [Google Scholar] [CrossRef] [Green Version]
- Fiorillo, L.; Cervino, G.; Galindo-Moreno, P.; Herford, A.S.; Spagnuolo, G.; Cicciù, M. Growth Factors in Oral Tissue Engineering: New Perspectives and Current Therapeutic Options. Biomed. Res. Int. 2021, 2021, 8840598. [Google Scholar] [CrossRef] [PubMed]
- Schilephake, H. Bone growth factors in maxillofacial skeletal reconstruction. Int. J. Oral. Maxillofac. Surg. 2002, 31, 469–484. [Google Scholar] [CrossRef]
- Kim, S.G.; Zhou, J.; Solomon, C.; Zheng, Y.; Suzuki, T.; Chen, M.; Song, S.; Jiang, N.; Cho, S.; Mao, J.J. Effects of growth factors on dental stem/progenitor cells. Dent. Clin. N. Am. 2012, 56, 563–575. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.K. Growth factors in oral and maxillofacial surgery: Potentials and challenges. J. Korean Assoc. Oral Maxillofac. Surg. 2013, 39, 255–256. [Google Scholar] [CrossRef] [Green Version]
- Janssen, N.G.; Weijs, W.L.; Koole, R.; Rosenberg, A.J.; Meijer, G.J. Tissue engineering strategies for alveolar cleft reconstruction: A systematic review of the literature. Clin. Oral Investig. 2014, 18, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, T.; Watabe, T. Bone Morphogenetic Proteins. Cold Spring Harb. Perspect Biol. 2016, 8, a021899. [Google Scholar] [CrossRef] [Green Version]
- Smojver, I.; Katalinić, I.; Bjelica, R.; Gabrić, D.; Matišić, V.; Molnar, V.; Primorac, D. Mesenchymal Stem Cells Based Treatment in Dental Medicine: A Narrative Review. Int. J. Mol. Sci. 2022, 23, 1662. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.L.; Kuriyama, A. How Often Do Systematic Reviews Exclude Articles Not Published in English? J. Gen. Intern. Med. 2019, 34, 1388–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, A.; Polisena, J.; Husereau, D.; Moulton, K.; Clark, M.; Fiander, M.; Mierzwinski-Urban, M.; Clifford, T.; Hutton, B.; Rabb, D. The effect of English-language restriction on systematic review-based meta-analyses: A systematic review of empirical studies. Int. J. Technol. Assess. Health Care 2012, 28, 138–144. [Google Scholar] [CrossRef] [PubMed]
Study | Year | Study Design | Type of Stem Cells Used | Primary Aim | The Main Outcome |
---|---|---|---|---|---|
Ma et al. | 2008 | In vitro and in vivo | Human periodontal ligament stem cells (HPDLSCs) | To investigate the biologic effect of dentin non-collagenous proteins on HPDLSCs | HPDLSCs enhance alkaline phosphatase activity, increase matrix mineralization, and upregulate expression of mineralization-associated genes |
Ding et al. | 2010 | Experimental animal | Periodontal ligaments stem cells (PDLSCs) | The use of PDLSCs sheet to cure periodontitis | PDLSCs possess low immunogenicity and marked immunosuppression via PGE2-induced T-cell anergy |
Grimm et al. | 2011 | Experimental animal | PDLSCs | To investigate the capability of PDLSCs to differentiate into osteogenic lineage | PDLSCs are capable of regenerating elements of bone and collage fibers |
Rickert et al. | 2011 | (Human) randomized clinical trial | Mesenchymal stem cells seeded on bone mineral (MSCs) | To assess bone formation after maxillary sinus lift using mesenchymal stem cells | MSCs can induce bone formation |
Duan et al. | 2011 | In vitro | Induced pluripotent stem (iPS) | To investigate the capabilities and advantages of periodontal tissue regeneration using iPS | iPS cells combined with enamel matrix derivatives promote the formation of new cementum, alveolar bone and periodontal ligament |
Yamada et al. | 2013 | (Human) cohort | Bone marrow-derived mesenchymal stem cells | The assessment of bone formation using tissue-engineered bone in cases of severe maxillary bone resorption | Tissue-engineered bone can regenerate bone formation |
Feng et al. | 2016 | Experimental animal | PDL stem/progenitor cells | The role of PDL stem cells in PDL remodeling after mechanical force application | PDL stem cells can respond to mechanical force and are required for PDL recovery |
Shinagawa-Ohama et al. | 2017 | In vitro and in vivo | Dental follicle and PDL-derived MSCs | To investigate cementogenic potential of dental follicle and PDL-derived MSCs | PDL stem cells potentially facilitate the de novo cellular cementogenesis |
Nagata et al. | 2017 | Experimental animal | PDL stem cells (PDLSCs) | To investigate the regenerative potential of PDLSCs in tooth-supporting tissues | PDLSCs enhance periodontal regeneration by suppressing response via TNF-α production |
Type of DSCs | Origin | Properties and Potential Applications |
---|---|---|
Dental pulp stem cells (DPSCs) | Isolated from the pulp tissue of extracted human teeth, mainly third molars | Confirmed potential for clinical application in various systemic diseases by differentiating into neurons, osteoblasts, liver cells, and β cells of the islet of the pancreas, as well as: human exfoliated deciduous teeth, apical papilla, periodontal ligament, dental follicle tissue |
Dental follicle progenitor cells (DFPCs) | Isolated from the loose mesenchymal tissue surrounding the developing tooth germ (dental follicle) | Capable of multipotent differentiation with high pluripotency DFPCs can differentiate into osteoblasts, adipocytes, chondrocytes, cementoblasts and periodontal ligament cells, as well as neuronal cells |
Stem cells from apical papilla (SCAP) | Present in the apical papilla of permanent immature teeth | Adult stem cells that have variable functions, including: reduction in inflammation, diminishment of scarring (fibrosis process), improvement of immune stability Broad potential for application in regenerative medicine, particularly maxillofacial surgery. Significant proliferative capacity compared to pulp-originating SCs (2–3× greater) |
Periodontal ligament stem cells (PDLSCs) | Present in the perivascular space of the periodontium | Responsible for the regeneration of periodontal components: the periodontal ligaments, alveolar bone, and cementum |
Stem cells from human exfoliated deciduous teeth (SHED) | Present within exfoliated deciduous tooth pulp tissue | Ability to differentiate into a broad range of various cell types, such as osteoblasts, adipocytes, and neurons |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abid, M.; Jamal, H.; Alsahafi, E.; Dziedzic, A.; Kubina, R. Tissue Engineering Supporting Regenerative Strategies to Enhance Clinical Orthodontics and Dentofacial Orthopaedics: A Scoping, Perspective Review. Biomedicines 2023, 11, 795. https://doi.org/10.3390/biomedicines11030795
Abid M, Jamal H, Alsahafi E, Dziedzic A, Kubina R. Tissue Engineering Supporting Regenerative Strategies to Enhance Clinical Orthodontics and Dentofacial Orthopaedics: A Scoping, Perspective Review. Biomedicines. 2023; 11(3):795. https://doi.org/10.3390/biomedicines11030795
Chicago/Turabian StyleAbid, Mushriq, Hasan Jamal, Elham Alsahafi, Arkadiusz Dziedzic, and Robert Kubina. 2023. "Tissue Engineering Supporting Regenerative Strategies to Enhance Clinical Orthodontics and Dentofacial Orthopaedics: A Scoping, Perspective Review" Biomedicines 11, no. 3: 795. https://doi.org/10.3390/biomedicines11030795
APA StyleAbid, M., Jamal, H., Alsahafi, E., Dziedzic, A., & Kubina, R. (2023). Tissue Engineering Supporting Regenerative Strategies to Enhance Clinical Orthodontics and Dentofacial Orthopaedics: A Scoping, Perspective Review. Biomedicines, 11(3), 795. https://doi.org/10.3390/biomedicines11030795