How Do Motor and Sensory Function Correlate with Daily Performance Recovery after Post-Stroke Robotic Intervention? A Secondary Analysis of a Non-Randomized Controlled Trial
Abstract
:1. Introduction
Novelty of This Work
2. Materials and Methods
2.1. Design and Ethical Aspects
2.2. Participants and Group Assignments
2.3. Measurements
2.4. Statistical Analyses
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. International Classification of Diseases 11th Revision. ICD-11 for Mortality and Morbidity Statistics (who.int). Available online: https://icd.who.int/browse11/l-m/en#/http://id.who.int/icd/entity/843843448 (accessed on 23 January 2023).
- World Health Organization. Regional Office for the Eastern Mediterranean. WHO EMRO|Stroke, Cerebrovascular Accident|Health Topics. Available online: https://www.emro.who.int/index.html (accessed on 8 January 2023).
- Purroy, F.; Montalá, N. Epidemiology of stroke in the last decade: Systematic review. Rev. Neurol. 2021, 73, 321–336. [Google Scholar]
- World Health Organization. International Classification of Functioning, Disability and Health; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Platz, T. Clinical Pathways in Stroke Rehabilitation. Evidence-Based Clinical Practice Recommendations; World Federation for NeuroRehabilitation; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Fallahpour, M.; Tham, K.; Joghataei, M.T.; Jonsson, H. Perceived participation and autonomy: Aspects of functioning and contextual factors predicting participation after stroke. J. Rehabil. Med. 2011, 43, 388–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wondergem, R.; Pisters, M.F.; Wouters, E.J.; Olthof, N.; de Bie, R.A.; Visser-Meily, J.M.A.; Veenhof, C. The Course of Activities in Daily Living: Who Is at Risk for Decline after First Ever Stroke? Cerebrovasc. Dis. 2017, 43, 1–8. [Google Scholar] [CrossRef]
- Chen, X.; He, Y.; Meng, X.; Gao, C.; Liu, Z.; Zhou, L. Perceived Participation and Its Correlates Among First-Stroke Survivors at Six Months After Discharge From a Tertiary Hospital in China. Arch. Phys. Med. Rehabil. 2018, 99, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Törnbom, K.; Hadartz, K.; Sunnerhagen, K.S. Self-Perceived Participation and Autonomy at 1-Year Post Stroke: A Part of the Stroke Arm Longitudinal Study at the University of Gothenburg (SALGOT Study). J. Stroke Cerebrovasc. Dis. 2018, 27, 1115–1122. [Google Scholar] [CrossRef]
- Silva, S.M.; Ferrari Corrêa, J.C.; Pereira, G.S.; Corrêa, F.I. Social participation following a stroke: An assessment in accordance with the international classification of functioning, disability and health. Disabil. Rehabil. 2019, 41, 879–886. [Google Scholar] [CrossRef] [PubMed]
- Ashaie, S.A.; Castro, N. Complexity of Participation Post-Stroke: Longitudinal Assessment of Community Participation, Positive Affect, Social Support and Functional Independence. J. Rehabil. Med. 2022, 54, jrm00335. [Google Scholar] [CrossRef]
- Wolf, S.; Holm, S.E.; Ingwersen, T.; Bartling, C.; Bender, G.; Birke, G.; Meyer, A.; Nolte, A.; Ottes, K.; Pade, O.; et al. Pre-stroke socioeconomic status predicts upper limb motor recovery after inpatient neurorehabilitation. Ann. Med. 2022, 54, 1265–1276. [Google Scholar] [CrossRef]
- Ingwersen, T.; Wolf, S.; Birke, G.; Schlemm, E.; Bartling, C.; Bender, G.; Meyer, A.; Nolte, A.; Ottes, K.; Pade, O.; et al. Long-term recovery of upper limb motor function and self-reported health: Results from a multicenter observational study 1 year after discharge from rehabilitation. Neurol. Res. Pract. 2021, 3, 66. [Google Scholar] [CrossRef]
- Ghaffari, A.; Rostami, H.R.; Akbarfahimi, M. Predictors of Instrumental Activities of Daily Living Performance in Patients with Stroke. Occup. Ther. Int. 2021, 2021, 6675680. [Google Scholar] [CrossRef]
- Yue, Z.; Zhang, X.; Wang, J. Hand Rehabilitation Robotics on Poststroke Motor Recovery. Behav. Neurol. 2017, 2017, 3908135. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Hernández, M.; Polonio-López, B.; Corregidor-Sánchez, A.I.; Martín-Conty, J.L.; Mohedano-Moriano, A.; Criado-Álvarez, J.J. Effects of Specific Virtual Reality-Based Therapy for the Rehabilitation of the Upper Limb Motor Function Post-Ictus: Randomized Controlled Trial. Brain Sci. 2021, 11, 555. [Google Scholar] [CrossRef] [PubMed]
- Mekbib, D.B.; Han, J.; Zhang, L.; Fang, S.; Jiang, H.; Zhu, J.; Roe, A.W.; Xu, D. Virtual Reality Therapy for Upper Limb Rehabilitation in Patients with Stroke: A Meta-Analysis of Randomized Clinical Trials. Brain Inj. 2020, 34, 456–465. [Google Scholar] [CrossRef] [PubMed]
- AMADEO®: The Pioneer in Finger-Hand-Rehabilitation| Tyrotherapy. Available online: https://tyromotion.com/en/products/amadeo/ (accessed on 30 January 2023).
- Stein, J.; Bishop, L.; Gillen, G.; Helbok, R. Robot-Assisted Exercise for Hand Weakness after Stroke: A Pilot Study. Am. J. Phys. Med. Rehabil. Assoc. Acad. Physiatr. 2011, 90, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Sale, P.; Mazzoleni, S.; Lombardi, V.; Galafate, D.; Massimiani, M.P.; Posteraro, F.; Damiani, C.; Franceschini, M. Recovery of Hand Function with Robot-Assisted Therapy in Acute Stroke Patients: A Randomized-Controlled Trial. Int. J. Rehabil. Res. 2014, 37, 236–242. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, M.P.; Sánchez-Herrera-Baeza, P.; Cano-de-la-Cuerda, R.; Camacho-Montaño, L.R.; Serrada-Tejeda, S.; Pérez-de-Heredia-Torres, M. Effects of Intensive Vibratory Treatment with a Robotic System on the Recovery of Sensation and Function in Patients with Subacute and Chronic Stroke: A Non-Randomized Clinical Trial. J. Clin. Med. 2022, 11, 3572. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.-E.; Yoo, J.S.; Kim, K.E.; Cho, S.T.; Jang, W.S.; Cho, K.H.; Lee, W.-H. Systematic Review of Appropriate Robotic Intervention for Gait Function in Subacute Stroke Patients. BioMed Res. Int. 2018, 2018, 4085298. [Google Scholar] [CrossRef]
- Kim, Y.-H. Robotic assisted rehabilitation therapy for enhancing gait and motor function after stroke. Precis. Future Med. 2019, 3, 103–115. [Google Scholar] [CrossRef]
- Doost, M.Y.; Herman, B.; Denis, A.; Sapin, J.; Galinski, D.; Riga, A.; Laloux, P.; Bihin, B.; Vandermeeren, Y. Bimanual motor skill learning and robotic assistance for chronic hemiparetic stroke: A randomized controlled trial. Neural Regen. Res. 2021, 16, 1566–1573. [Google Scholar]
- Keeling, A.B.; Piitz, M.; Semrau, J.A.; Hill, M.D.; Scott, S.H.; Dukelow, S.P. Robot enhanced stroke therapy optimizes rehabilitation (RESTORE): A pilot study. Neuro Eng. Rehabil. 2021, 18, 10. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Pendleton, H.M.; Schultz-Krohn, W. Pedretti’s Occupational Therapy: Practice Skills for Physical Dysfunction; Elsevier Health Sciences: St. Louis, MO, USA, 2013; pp. 10–28. [Google Scholar]
- Weinstein, S. Fifty Years of Somatosensory Research: From the Semmes-Weinstein Monofilaments to the Weinstein Enhanced Sensory Test. J. Hand Ther. 1993, 6, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Suda, M.; Kawakami, M.; Okuyama, K.; Ishii, R.; Oshima, O.; Hijikata, N.; Nakamura, T.; Oka, A.; Kondo, K.; Liu, M. Validity and Reliability of the Semmes-Weinstein Monofilament Test and the Thumb Localizing Test in Patients with Stroke. Front. Neurol. 2021, 11, 625917. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, K.; Fukutake, T.; Kawamura, M. “Thumb Localizing Test” for Detecting a Lesion in the Posterior Column-Medial Lemniscal System. J. Neurol. Sci. 1999, 167, 45–49. [Google Scholar] [CrossRef]
- Raji, P.; Ansari, N.N.; Naghdi, S.; Forogh, B.; Hasson, S. Relationship between Semmes-Weinstein Monofilaments Perception Test and Sensory Nerve Conduction Studies in Carpal Tunnel Syndrome. NeuroRehabilitation 2014, 35, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Pandian, S.; Arya, K.N. Stroke-Related Motor Outcome Measures: Do They Quantify the Neurophysiological Aspects of Upper Extremity Recovery? J. Bodyw. Mov. Ther. 2014, 18, 412–423. [Google Scholar] [CrossRef]
- Amano, S.; Umeji, A.; Uchita, A.; Hashimoto, Y.; Takebayashi, T.; Takahashi, K.; Uchiyama, Y.; Domen, K. Clinimetric Properties of the Fugl-Meyer Assessment with Adapted Guidelines for the Assessment of Arm Function in Hemiparetic Patients after Stroke. Top. Stroke Rehabil. 2018, 25, 500–508. [Google Scholar] [CrossRef]
- van der Lee, J.H.; Beckerman, H.; Knol, D.L.; de Vet, H.C.W.; Bouter, L.M. Clinimetric Properties of the Motor Activity Log for the Assessment of Arm Use in Hemiparetic Patients. Stroke 2004, 35, 1410–1414. [Google Scholar] [CrossRef] [Green Version]
- Uswatte, G.; Taub, E.; Morris, D.; Light, K.; Thompson, P.A. The Motor Activity Log-28: Assessing Daily Use of the Hemiparetic Arm after Stroke. Neurology 2006, 67, 1189–1194. [Google Scholar] [CrossRef]
- Duncan, P.W.; Bode, R.K.; Lai, S.M.; Perera, S. Rasch Analysis of a New Stroke-Specific Outcome Scale: The Stroke Impact Scale. Arch. Phys. Med. Rehabil. 2003, 84, 950–963. [Google Scholar] [CrossRef]
- Harris, J.E.; Eng, J.J. Paretic upper-limb strength best explains arm activity in people with stroke. Phys. Ther. 2007, 87, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Hiraga, Y.; Hayashi, T. Mediating Effect of Upper Limb Use on the Relationship Between Upper Limb Performance and Activities of Daily Living: A Longitudinal Mediation Analysis. Cureus 2022, 14, e30849. [Google Scholar] [CrossRef] [PubMed]
- Aprile, I.; Germanotta, M.; Cruciani, A.; Pecchioli, C.; Loreti, S.; Papadopoulou, D.; Montesano, A.; Galeri, S.; Diverio, M.; Falsini, C.; et al. Poststroke shoulder pain in subacute patients and its correlation with upper limb recovery after robotic or conventional treatment: A secondary analysis of a multicenter randomized controlled trial. Int. J. Stroke 2021, 16, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Park, G.; Shin, J.-H. Differences in Dual Task Performance After Robotic Upper Extremity Rehabilitation in Hemiplegic Stroke Patients. Front. Neurol. 2021, 12, 771185. [Google Scholar] [CrossRef] [PubMed]
- De Souza, F.R.; Sales, M.; Laporte, L.R.; Melo, A.; da Silva Ribeiro, N.M. Body Structure/Function Impairments and Activity limitations of Post-Stroke That Predict Social Participation: A Systematic Review. Top. Stroke Rehabil. 2022, 1–14, online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Faria-Fortini, I.; Basílio, M.L.; Scianni, A.A.; Faria, C.D.C.M.; Teixeira-Salmela, L.F. Performance and capacity-based measures of locomotion, compared to impairment-based measures, best predicted participation in individuals with hemiparesis due to stroke. Disabil. Rehabil. 2018, 40, 1791–1798. [Google Scholar] [CrossRef]
- Kapoor, A.; Lanctot, K.; Bayley, M.; Herrmann, N.; Murray, B.J.; Swartz, R.H. Screening for Post-Stroke Depression and Cognitive Impairment at Baseline Predicts Long-Term Patient-Centered Outcomes after Stroke. J. Geriatr. Psychiatry Neurol. 2019, 32, 40–48. [Google Scholar] [CrossRef]
- Menezes, K.P.; Nascimento, L.R.; Faria, C.D.C.M.; Avelino, P.R.; Scianni, A.A.; Polese, J.C.; Faria-Fortini, I.; Teixeira-Salmela, L. Deficits in motor coordination of the paretic lower limb best explained activity limitations after stroke. Physiother. Theory Pract. 2020, 36, 417–423. [Google Scholar] [CrossRef]
- Rodgers, H.; Bosomworth, H.; Krebs, H.I.; van Wijck, F.; Howel, D.; Wilson, N.; Finch, T.; Alvarado, N.; Ternent, L.; Fernandez-Garcia, C.; et al. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: The RATULS three-group RCT. Health Technol. Assess. 2020, 54, 1–232. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, G.; Ma, J.; Wang, S.; Cheng, L. Short and long-term effects of robot-assisted therapy on upper limb motor function and activity of daily living in patients post-stroke: A meta-analysis of randomized controlled trials. J. Neuroeng. Rehabil. 2022, 19, 76. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, Y.; Lu, X.; Wang, N.; Zhu, S.; Gong, J.; Wang, T.; Tang, S.-W. Vagus nerve stimulation paired with rehabilitation for motor function, mental health and activities of daily living after stroke: A systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2022. [Google Scholar] [CrossRef] [PubMed]
- Leong, S.C.; Tang, Y.M.; Toh, F.M.; Fong, K.N.K. Examining the effectiveness of virtual, augmented, and mixed reality (VAMR) therapy for upper limb recovery and activities of daily living in stroke patients: A systematic review and meta-analysis. J. Neuroeng. Rehabil. 2022, 19, 93. [Google Scholar] [CrossRef] [PubMed]
Control Group (n = 9) | Experimental Group (n = 9) | p-Value | |
---|---|---|---|
Age (M [SD]) | 72.89 (10.20) | 66.56 (9.88) | 0.200 |
Range of age (years) | 54–85 | 45–77 | - |
Sex | 0.046 * | ||
Male [N (%)] | 4 (44%) | 8 (89%) | |
Female [N (%)] | 5 (56%) | 1 (11%) | |
Disease duration in months (M (SD)) | 8.44 (4.64) | 9.22 (3.38) | 0.690 |
Range of disease duration (months) | 3–14 | 4–12 | - |
Variable | Median (Interquartile Range) | p-Value | ||
---|---|---|---|---|
Control Group (n = 9) | Experimental Group (n = 9) | |||
Upper extremity sensation (Semmes-Weinstein Monofilaments®) | Hand | 4.31 (5.65) | 3.61 (2.02) | 0.858 |
Forearm | 4.31 (5.65) | 4.31 (3.80) | 0.929 | |
Arm | 3.61 (6.65) | 4.31 (3.85) | 0.718 | |
Shoulder | 3.81 (6.15) | 4.31 (2.80) | 0.787 | |
Upper extremity motor and sensory impairment (FMA-UE) | Motor Function | 33.00 (47.50) | 14.00 (45.00) | 0.965 |
Sensation | 4.00 (9.00) | 6.00 (2.50) | 0.622 | |
Passive Joint Motion | 20.00 (7.50) | 20.00 (1.50) | 0.822 | |
Joint Pain | 20.00 (7.00) | 20.00 (6.50) | 0.436 | |
Upper extremity performance (MAL) | Amount Scale | 0.00 (22.00) | 15.00 (25.50) | 0.048 * |
How Well Scale | 0.00 (21.00) | 14.00 (15.50) | 0.079 | |
ADL and IADL performance (SIS-16) | Daily Impact | 53.00 (34.50) | 46.00 (19.00) | 0.536 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
1. Sensation Hand | - | |||||||||
2. Sensation Forearm | 0.809 | - | - | |||||||
3. Sensation Arm | 0.772 | 0.888 | - | |||||||
4. Sensation Shoulder | 0.774 | 0.808 | 0.971 | - | ||||||
5. FMA-UE Motor Function | 0.009 | 0.086 | 0.006 | 0.017 | - | |||||
6. FMA-UE Sensation | 0.317 | 0.203 | 0.335 | 0.344 | 0.519 | - | ||||
7. FMA-UE PJM | 0.072 | 0.018 | 0.071 | 0.088 | 0.591 | 0.710 | - | |||
8. FMA-UE Pain | 0.001 | 0.153 | 0.137 | 0.050 | 0.466 a | 0.479 | 0.733 | - | ||
9. MAL Amount | 0.151 | 0.202 | 0.128 | 0.135 | 0.567 | 0.445 | 0.523 | 0.370 | - | |
10. MAL How Well | 0.164 | 0.240 | 0.124 | 0.112 | 0.582 | 0.454 | 0.547 | 0.354 | 0.991 | - |
11. SIS-16 | 0.170 | 0.293 | 0.233 | 0.211 | 0.513 | 0.438 | 0.414 | 0.461 b | 0.274 | 0.324 |
MAL Amount Subscale (Post-Intervention) | |||
β (SE) | t | p-Value | |
MAL Amount Subscale (pre-intervention) | −0.59 (0.29) | −2.049 | 0.110 |
FMA-UE Motor Function (pre-intervention) | 0.85 (0.11) | 7.397 | 0.002 |
FMA-UE PJM (pre-intervention) | 1.61 (0.68) | 2.376 | 0.076 |
MAL How Well Subscale (pre-intervention) | 0.83 (0.43) | 1.924 | 0.127 |
Adjusted R2 (%) | 97.6% | ||
Model | F = 81.747; p < 0.001 | ||
MAL How Well Subscale (post-intervention) | |||
β (SE) | t | p-value | |
MAL How Well Subscale (pre-intervention) | 1.43 (0.26) | 5.412 | 0.006 |
FMA-UE Motor function (pre-intervention) | 0.89 (0.07) | 12.705 | <0.001 |
FMA-UE PJM (pre-intervention) | 1.59 (0.41) | 3.830 | 0.019 |
MAL Amount Subscale (pre-intervention) | −1.27 (0.18) | −7.139 | 0.002 |
Adjusted R2 (%) | 99.0% | ||
Model | F = 195.294; p < 0.001 | ||
SIS-16 ADL and IADL Impact (post-intervention) | |||
β (SE) | t | p-value | |
SIS-16 ADL and IADL Impact (pre-intervention) | 0.82 (0.19) | 4.384 | 0.007 |
FMA-UE Motor Function (pre-intervention) | 0.11 (0.10) | 1.097 | 0.323 |
FMA-UE Pain (pre-intervention) | −0.20 (0.38) | −0.520 | 0.625 |
Adjusted R2 (%) | 78.8% | ||
Model | F = 10.927; p = 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Pérez, M.P.; Sánchez-Herrera-Baeza, P.; Montes-Montes, R.; Cano-de-la-Cuerda, R.; Martínez-Piédrola, R.M.; Serrada-Tejeda, S.; Obeso-Benítez, P.; Pérez-de-Heredia-Torres, M. How Do Motor and Sensory Function Correlate with Daily Performance Recovery after Post-Stroke Robotic Intervention? A Secondary Analysis of a Non-Randomized Controlled Trial. Biomedicines 2023, 11, 853. https://doi.org/10.3390/biomedicines11030853
Rodríguez-Pérez MP, Sánchez-Herrera-Baeza P, Montes-Montes R, Cano-de-la-Cuerda R, Martínez-Piédrola RM, Serrada-Tejeda S, Obeso-Benítez P, Pérez-de-Heredia-Torres M. How Do Motor and Sensory Function Correlate with Daily Performance Recovery after Post-Stroke Robotic Intervention? A Secondary Analysis of a Non-Randomized Controlled Trial. Biomedicines. 2023; 11(3):853. https://doi.org/10.3390/biomedicines11030853
Chicago/Turabian StyleRodríguez-Pérez, Mª Pilar, Patricia Sánchez-Herrera-Baeza, Rebeca Montes-Montes, Roberto Cano-de-la-Cuerda, Rosa M. Martínez-Piédrola, Sergio Serrada-Tejeda, Paula Obeso-Benítez, and Marta Pérez-de-Heredia-Torres. 2023. "How Do Motor and Sensory Function Correlate with Daily Performance Recovery after Post-Stroke Robotic Intervention? A Secondary Analysis of a Non-Randomized Controlled Trial" Biomedicines 11, no. 3: 853. https://doi.org/10.3390/biomedicines11030853
APA StyleRodríguez-Pérez, M. P., Sánchez-Herrera-Baeza, P., Montes-Montes, R., Cano-de-la-Cuerda, R., Martínez-Piédrola, R. M., Serrada-Tejeda, S., Obeso-Benítez, P., & Pérez-de-Heredia-Torres, M. (2023). How Do Motor and Sensory Function Correlate with Daily Performance Recovery after Post-Stroke Robotic Intervention? A Secondary Analysis of a Non-Randomized Controlled Trial. Biomedicines, 11(3), 853. https://doi.org/10.3390/biomedicines11030853