Prognostic Value of the Selected Polymorphisms in the CD36 Gene in the Domain-Encoding Lipid-Binding Region at a 10-Year Follow-Up for Early-Onset CAD Patients
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berger, M.; Naseem, K.M. Oxidised Low-Density Lipoprotein-Induced Platelet Hyperactivity—Receptors and Signalling Mechanisms. Int. J. Mol. Sci. 2022, 23, 9199. [Google Scholar] [CrossRef]
- Manning-Tobin, J.J.; Moore, K.J.; Seimon, T.A.; Bell, S.A.; Sharuk, M.; Alvarez-Leite, J.I.; de Winther, M.P.; Tabas, I.; Freeman, M.W. Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, M.; Jung, M.; Yabluchanskiy, A.; Cannon, P.L.; Iyer, R.P.; Flynn, E.R.; DeLeon-Pennell, K.Y.; Valerio, F.M.; Harrison, C.L.; Ripplinger, C.M.; et al. Exogenous CXCL4 infusion inhibits macrophage phagocytosis by limiting CD36 signalling to enhance post-myocardial infarction cardiac dilation and mortality. Cardiovasc. Res. 2019, 115, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Yazdanpanah, Z.Z.; Mozaffari-Khosravi, H.; Mirzaei, M.; Sheikhha, M.H.; Salehi-Abargouei, A. A systematic review and meta-analysis on the association between CD36 rs1761667 polymorphism and cardiometabolic risk factors in adults. Sci. Rep. 2022, 12, 5916. [Google Scholar] [CrossRef]
- Xiao, S.; Kuang, C. Identification of crucial genes that induce coronary atherosclerosis through endothelial cell dysfunction in AMI-identifying hub genes by WGCNA. Am. J. Transl. Res. 2022, 14, 8166–8174. [Google Scholar] [PubMed]
- Podrez, E.A.; Byzova, T.V.; Febbraio, M.; Salomon, R.G.; Ma, Y.; Valiyaveettil, M.; Poliakov, E.; Sun, M.; Finton, P.J.; Curtis, B.R.; et al. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat. Med. 2007, 13, 1086–1095. [Google Scholar] [CrossRef]
- Yang, M.; Li, W.; Harberg, C.; Chen, W.; Yue, H.; Ferreira, R.B.; Wynia-Smith, S.L.; Carroll, K.S.; Zielonka, J.; Flaumenhaft, R.; et al. Cysteine sulfenylation by CD36 signaling promotes arterial thrombosis in dyslipidemia. Blood Adv. 2020, 4, 4494–4507. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Kholmukhamedov, A.; Schulte, M.L.; Cooley, B.C.; Scoggins, N.I.O.; Wood, J.P.; Cameron, S.J.; Morrell, C.N.; Jobe, S.M.; Silverstein, R.L. Platelet CD36 signaling through ERK5 promotes caspase-dependent procoagulant activity and fibrin deposition in vivo. Blood Adv. 2018, 2, 2848–2861. [Google Scholar] [CrossRef]
- Zuurbier, C.; Bertrand, L.; Beauloye, C.R.; Andreadou, I.; Ruiz-Meana, M.; Jespersen, N.R.; Kula-Alwar, D.; Prag, H.A.; Eric Botker, H.; Dambrova, M.; et al. Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J. Cell. Mol. Med. 2020, 24, 5937–5954. [Google Scholar] [CrossRef]
- Liu, W.; Yin, Y.; Zhou, Z.; He, M.; Dai, Y. OxLDL-induced IL-1 beta secretion promoting foam cells formation was mainly via CD36 mediated ROS production leading to NLRP3 inflammasome activation. Inflamm. Res. 2014, 63, 33–43. [Google Scholar] [CrossRef]
- Ghosh, A.; Murugesan, G.; Chen, K.; Zhang, L.; Wang, Q.; Febbraio, M.; Anselmo, R.M.; Marchant, K.; Barnard, J.; Silverstein, R.L. Platelet CD36 surface expression levels affect functional responses to oxidized LDL and are associated with inheritance of specific genetic polymorphisms. Blood 2011, 117, 6355–6366. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Hu, L.; Zhang, J.; Yang, W.; Liu, X.; Jia, D.; Yao, Z.; Chang, L.; Pan, G.; Zhong, H.; et al. PCSK9 (Proprotein Convertase Subtilisin/Kexin 9) Enhances Platelet Activation, Thrombosis, and Myocardial Infarct Expansion by Binding to Platelet CD36. Circulation 2021, 143, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Rac, M.; Safranow, K.; Kurzawski, G.; Krzystolik, A.; Chlubek, D. Is CD36 gene polymorphism in region encoding lipid-bin ding domain associated with early onset CAD? Gene 2013, 530, 134–137. [Google Scholar] [CrossRef]
- Rac, M.; Suchy, J.; Kurzawski, G.; Kurlapska, A.; Safranow, K.; Rać, M.; Sagasz-Tysiewicz, D.; Krzystolik, A.; Poncyljusz, W.; Jakubowska, K.; et al. Polymorphism of the CD36 Gene and Cardiovascular Risk Factors in Patients with Coronary Artery Disease Manifested at a Young Age. Biochem. Genet. 2012, 50, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Rac, M.; Kurzawski, G.; Safranow, K.; Rac, M.; Sagasz-Tysiewicz, D.; Krzystolik, A.; Poncyljusz, W.; Olszewska, M.; Dawid, G.; Chlubek, D. Association of CD36 gene polymorphisms with echo- and electrocardiographic parameters in patients with early onset coronary artery disease. Arch. Med. Sci. 2013, 9, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Rac, M.; Safranow, K.; Rac, M.; Kurzawski, G.; Krzystolik, A.; Sagasz, D.; Jakubowska, K.; Poncyljusz, W.; Chlubek, D. CD36 gene is associated with thickness of atheromatous plaque and ankle -brachial index in patients with early coronary artery disease. Kardiol. Pol. 2012, 70, 918–923. [Google Scholar]
- Garner, C. The use of random controls in genetic association studies. Hum. Hered. 2006, 61, 22–26. [Google Scholar] [CrossRef]
- Moskvina, V.; Holmans, P.; Schmidt, K.M.; Craddock, N. Design of case-controls studies with unscreened controls. Ann. Hum. Genet. 2005, 69 Pt 5, 566–576. [Google Scholar] [CrossRef]
- Rac, M.; Suchy, J.; Kurzawski, G.; Safranow, K.; Jakubowska, K.; Olszewska, M.; Garanty-Bogacka, B.; Rać, M.; Poncyljusz, W.; Chlubek, D. Analysis of human CD36 gene sequence alterations in the oxidized low-density lipoprotein-binding region using denaturing high-performance liquid chromatography. Genet. Test. Mol. Biomark. 2010, 14, 551–557. [Google Scholar] [CrossRef]
- Guo, S.W.; Thompson, E.A. Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 1992, 48, 361–372. [Google Scholar] [CrossRef]
- Fry, A.E.; Ghansa, A.; Small, K.S.; Palma, A.; Auburn, S.; Diakite, M.; Green, A.; Campino, S.; Teo, Y.Y.; Clark, T.G.; et al. Positive selection of a CD36 nonsense variant in sub -Saharan Africa, but no association with severe malaria phenotypes. Hum. Mol. Genet. 2009, 18, 2683–2692. [Google Scholar] [CrossRef]
- Yuan, H.Y.; Chiou, J.J.; Tseng, W.H.; Liu, C.H.; Liu, C.K.; Lin, Y.J.; Wang, H.H.; Yao, A.; Chen, Y.T.; Hsu, C.N. FASTSNP: An always up-to-date and extendable service for SNP function analysis and prioritization. Nucleic Acids Res. 2006, 34, W635–W641. [Google Scholar] [CrossRef] [PubMed]
- Love-Gregory, L.; Sherva, R.; Schappe, T.; Qi, J.S.; McCrea, J.; Klein, S.; Connelly, M.A.; Abumrad, N.A. Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile. Hum. Mol. Genet. 2011, 20, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, A.; Tanaka, K.; Nakamura, S. 2-Year follow-up of a patient with CD36 deficiency and takotsubo cardiomyopathy. J. Nucl. Cardiol. 2020, 27, 330–332. [Google Scholar] [CrossRef] [PubMed]
- Kintaka, T.; Tanaka, T.; Imai, M.; Adachi, I.; Narabayashi, I.; Kitaura, Y. CD36 genotype and long-chain fatty acid uptake in the heart. Circ. J. 2002, 66, 819–825. [Google Scholar] [CrossRef]
- Tanaka, T.; Nakata, T.; Oka, T.; Ogawa, T.; Okamoto, F.; Kusaka, Y.; Sohmiya, K.; Shimamoto, K.; Itakura, K. Defect in human myocardial long-chain fatty acid uptake is caused by FAT/CD36 mutations. J. Lipid Res. 2001, 42, 751–759. [Google Scholar] [CrossRef] [PubMed]
- Parra-Reyna, B.; Padilla-Gutiérrez, J.R.; Aceves-Ramírez, M.; García-Garduño, T.C.; Martínez-Fernández, D.E.; Jacobo-García, J.J.; Valdés-Alvarado, E.; Valle, Y. Genetic variants, gene expression, and soluble CD36 analysis in acute coronary syndrome: Differential protein concentration between ST-segment elevation myocardial infarction and unstable angina. J. Clin. Lab. Anal. 2022, 36, e24529. [Google Scholar] [CrossRef]
- Nishikawa, R.; Furuhashi, M.; Hori, M.; Ogura, M.; Harada-Shiba, M.; Okada, T.; Koseki, M.; Kujiraoka, T.; Hattori, H.; Ito, R.; et al. A Resuscitated Case of Acute Myocardial Infarction with both Familial Hypercholesterolemia Phenotype Caused by Possibly Oligogenic Variants of the PCSK9 and ABCG5 Genes and Type I CD36 Deficiency. J. Atheroscler. Thromb. 2022, 29, 551–557. [Google Scholar] [CrossRef]
- Ma, X.; Bacci, S.; Mlynarski, W.; Gottardo, L.; Soccio, T.; Menzaghi, C.; Iori, E.; Lager, R.A.; Shroff, A.R.; Gervino, E.V.; et al. A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Hum. Mol. Genet. 2004, 13, 2197–2205. [Google Scholar] [CrossRef] [PubMed]
- Goyenechea, E.; Collins, L.J.; Parra, D.; Liu, G.; Snieder, H.; Swaminathan, R.; Spector, T.D.; Martínez, J.A.; O’Dell, S.D. CD36 gene promoter polymorphisms are associated with low density lipoprotein cholesterol in normal twins and after a low-calorie diet in obese subjects. Twin Res. Hum. Genet. 2008, 11, 621–628. [Google Scholar] [CrossRef]
- Knowles, J.W.; Wang, H.; Itakura, H.; Southwick, A.; Myers, R.M.; Iribarren, C.; Fortmann, S.P.; Go, A.S.; Quertermous, T.; Hlatky, M.A. Association of polymorphisms in platelet and hemostasis system genes with acute myocardial infarction. Am. Heart J. 2007, 154, 1052–1058. [Google Scholar] [CrossRef]
- Boghdady, A.; Arafa, U.A.; Sabet, E.A.; Salama, E.; El Sharawy, A.; Elbadry, M.I. Association between rs1761667 polymorphism of CD36 gene and risk of coronary atherosclerosis in Egyptian population. Cardiovasc. Diagn. Ther. 2016, 6, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Prins, B.P.; Lagou, V.; Asselbergs, F.W.; Snieder, H.; Fu, J. Genetics of coronary artery disease: Genome-wide association studies and beyond. Atherosclerosis 2012, 222, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ikram, M.A.; Seshadri, S.; Bis, J.C.; Fornage, M.; DeStefano, A.L.; Aulchenko, Y.S.; Debette, S.; Lumley, T.; Folsom, A.R.; Van Den Herik, E.G.; et al. Genomewide association studies of stroke. N. Engl. J. Med. 2009, 360, 1718–1728. [Google Scholar] [CrossRef] [PubMed]
CD36 Exon/Intron (Position) rs Number DNA Sequence/Protein Alteration | Genotype/Minor Allele Frequency | ||
---|---|---|---|
Allele | Newborns | dbSNP Base | |
intron 3 (80285850) rs3173798 IVS3-6 T/C | TT | 249 (81.3%) | |
TC | 55 (18.0%) | ||
CC | 2 (0.70%) | ||
T | 553 (90.4%) | 93.8–90% | |
C | 59 (9.60%) | 6.2–10% | |
intron 4 (80290369) rs3211892 IVS4-10 G/A | GG | 282 (92.2%) | |
GA | 24 (7.80%) | ||
G | 588 (96.1%) | 92.3–99.2% | |
A | 24 (3.90%) | 0.8–2.7% | |
exon 5 (80290408) no rs number C311T/Thr104Ile | CC | 306 (100%) | |
CT | 0 (0%) | ||
C | 612 (100%) | ||
T | 0 (0%) | lack of data | |
exon 6 (80292426) rs138897347 G550A/Asp184Asn | GG | 305 (99.7%) | |
GA | 1 (0.30%) | ||
G | 611 (99.8%) | 99.8–99.9% | |
A | 1 (0.20%) | 0.1–0.2% | |
exon 6 (80292448) rs143150225 C572T/Pro191Leu | CC | 305 (99.7%) | |
CT | 1 (0.30%) | ||
C | 1 (0.20%) | 99.8–99.9% | |
T | 1 (0.20%) | 0.1–0.2% | |
exon 6 (80292449) rs5956 G573A/Pro191Pro | GG | 290 (94.8%) | |
GA | 16 (5.20%) | ||
G | 596 (97.4%) | 95.5–97.3% | |
A | 16 (2.60%) | 2.7–4.5% | |
exon 6 (80292467) rs141680676 A591T/Thr197Thr | AA | 303 (99%) | |
AT | 3 (1.00%) | ||
A | 609 (99.5%) | 99.8% | |
T | 3 (0.50%) | 0.2% |
Position in CD36 Exon/Intron Number of rs DNA Sequence Protein Alteration | Genotype | |
---|---|---|
Allele | ||
intron 3 (80285850) rs3173798 IVS3-6 T/C | TT | 81 (81.0%) |
TC | 19 (19.0%) | |
CC | 0 (0%) | |
T | 181 (90.5%) | |
C | 19 (9.50%) | |
intron 4 (80290369) rs3211892 IVS4-10 G/A | GG | 93 (93.0%) |
GA | 7 (7.00%) | |
G | 193 (96.5%) | |
A | 7 (3.50%) | |
exon 6 (80292449) rs5956 G573A/Pro191Pro | GG | 94 (94%) |
GA | 6 (6.00%) | |
G | 194 (97.0%) | |
A | 6 (3.00%) | |
exon 6 (80292467) rs141680676 A591T/Thr197Thr | AA | 96 (96%) |
AT | 4 (4.00%) | |
A | 195 (98.0%) | |
T | 4 (2.00%) |
Parameters | Value |
---|---|
% of males | 74% |
Age of CAD patients (years) | 49.9 ± 5.91 |
Systolic BP (mmHg) | 127 ± 14.0 |
Diastolic BP (mmHg) | 77.0 ± 9.0 |
MAP (mmHg) | 93.8 ± 9.4 |
WHR | 0.96 ± 0.09 |
BMI (kg/m2) | 28.1 ± 4.0 |
Waist (cm) | 98.3 ± 12.5 |
Hip (cm) | 103 ± 9 |
Hypertension | 66% |
Age of hypertension diagnosis (years) | 42.6 ± 8.6 |
MI | 70% |
Age of the first MI (years) | 44.0 ± 5.6 |
Current smoking | 15% |
Past smoking | 89% |
Years of smoking | 18.9 ± 9.8 |
PTCA | 71% |
CABG | 37% |
Statins | 96% |
Beta-blockers | 88% |
ACEI | 80% |
ARB | 17% |
Calcium channel blockers | 18% |
Diuretics | 31% |
hsCRP (mg/L) | 1.20 ± 0.27 |
glucose (mg/dL) | 101 ± 2.49 |
CHc (mg/dL) | 163 ± 4.06 |
HDL (mg/dL) | 47.0 ± 1.16 |
LDL (mg/dL) | 93.0 ± 3.64 |
TG (mg/dL) | 128 ± 5.74 |
LP(a) (mg/dL) | 20.3 ± 4.96 |
ApoA1 (mg/dL) | 146 ± 3.85 |
ApoB (mg/dL) | 74.0 ± 2.25 |
ApoB/ApoA1 | 0.52 ± 0.02 |
VEGF (pg/mL) | 236 ± 17.2 |
IL-6 (pg/mL) | 1.69 ± 2.77 |
Platelets (G/L) | 216 ± 4.58 |
CD36 µg/mL | 15.78 ± 12.9 |
Parameter | IVS3-6 T/C | IVS4-10 G/A | Exon 6 G573A | Exon 6 A591T | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TT n = 81 | TC n = 19 | GG n = 93 | GA n = 7 | GG n = 94 | GA n = 6 | AA n = 96 | AT n = 4 | |||||
p | p | p | p | |||||||||
Death during observation | 8 | 1 | 1.00 | 8 | 1 | 0.51 | 8 | 1 | 0.46 | 9 | 0 | 1.00 |
Death for cardiological reasons | 6 | 1 | 1.00 | 7 | 0 | 1.00 | 6 | 1 | 0.37 | 7 | 0 | 1.00 |
Myocardial infarctions during the 10-year observation | 11 | 2 | 1.00 | 13 | 0 | 0.59 | 12 | 1 | 0.59 | 13 | 0 | 1.00 |
All cardiovascular events | 23 | 3 | 0.38 | 25 | 1 | 0.67 | 25 | 1 | 1.00 | 26 | 0 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartoszewicz, M.; Rać, M. Prognostic Value of the Selected Polymorphisms in the CD36 Gene in the Domain-Encoding Lipid-Binding Region at a 10-Year Follow-Up for Early-Onset CAD Patients. Biomedicines 2023, 11, 1332. https://doi.org/10.3390/biomedicines11051332
Bartoszewicz M, Rać M. Prognostic Value of the Selected Polymorphisms in the CD36 Gene in the Domain-Encoding Lipid-Binding Region at a 10-Year Follow-Up for Early-Onset CAD Patients. Biomedicines. 2023; 11(5):1332. https://doi.org/10.3390/biomedicines11051332
Chicago/Turabian StyleBartoszewicz, Michał, and Monika Rać. 2023. "Prognostic Value of the Selected Polymorphisms in the CD36 Gene in the Domain-Encoding Lipid-Binding Region at a 10-Year Follow-Up for Early-Onset CAD Patients" Biomedicines 11, no. 5: 1332. https://doi.org/10.3390/biomedicines11051332
APA StyleBartoszewicz, M., & Rać, M. (2023). Prognostic Value of the Selected Polymorphisms in the CD36 Gene in the Domain-Encoding Lipid-Binding Region at a 10-Year Follow-Up for Early-Onset CAD Patients. Biomedicines, 11(5), 1332. https://doi.org/10.3390/biomedicines11051332