Terminalia chebula-Assisted Silver Nanoparticles: Biological Potential, Synthesis, Characterization, and Ecotoxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Plant Extract
2.3. Synthesis of T. chebula-Mediated Silver Nanoparticles: TCF-AgNPs
2.4. Characterization of Green Synthesized AgNPs
2.5. Biomedical Applications
Antioxidant Activity—DPPH Assay
2.6. Protein Leakage Analysis or Bradford Assay
2.7. Time-Kill Curve Assay
2.8. Antibacterial Activity
2.9. Zebrafish Embryonic Toxicology Evaluation of T. chebula-Mediated Silver Nanoparticles
2.9.1. Fish Maintenance and AgNP Exposure
2.9.2. Zebrafish Embryo Evaluation
2.10. Statistical Analysis
3. Results and Discussion
3.1. Visual Observation
3.2. UV-Visible Spectroscopy
3.3. SEM and TEM Analysis
3.4. FT-IR
3.5. Antioxidant Activity
DPPH Radical Scavenging Potential
3.6. Antibacterial Activity
3.7. Protein Leakage Analysis
3.8. Time-Kill Curve Assay
3.9. Zebrafish Study
Hatching and Viability Rate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Assad, H.; Kaya, S.; Kumar, P.S.; Vo, D.V.; Sharma, A.; Kumar, A. Insights into the role of nanotechnology on the performance of biofuel cells and the production of viable biofuels: A review. Fuel 2022, 323, 124277. [Google Scholar] [CrossRef]
- Banumathi, B.; Vaseeharan, B.; Ishwarya, R.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Toxicity of herbal extracts used in ethno-veterinary medicine and green-encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitol. Res. 2017, 116, 1637–1651. [Google Scholar] [CrossRef] [PubMed]
- Karthika, V.; Kaleeswarran, P.; Gopinath, K.; Arumugam, A.; Govindarajan, M.; Alharbi, N.S.; Khaled, J.M.; Alanbr, M.N.; Benelli, G. Biocompatible properties of nano-drug carriers using TiO2-Au embedded on multiwall carbon nanotubes for targeted drug delivery. Mater. Sci. Eng. C 2018, 90, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Barman, J.; Tirkey, A.; Batra, S.; Paul, A.A.; Panda, K.; Deka, R.; Babu, P.J. The Role of Nanotechnology-Based Wearable Electronic Textiles in Biomedical and Healthcare Applications. Mater. Today Commun. 2022, 16, 104055. [Google Scholar] [CrossRef]
- Bulbul, M.R.; Chowdhury, M.N.; Naima, T.A.; Sami, S.A.; Imtiaj, M.S.; Huda, N.; Uddin, M.G. A comprehensive review of the diverse pharmacological perspectives of Terminalia chebula Retz. Heliyon 2022, 14, 10220. [Google Scholar] [CrossRef]
- Rakesh, B.; Srinatha, N.; Rajesh kumar, K.J.; Madhu, A.; Suresh kumar, M.R.; Praveen, N. Antibacterial activity and spectroscopic characteristics of silver nanoparticles synthesized via plant and invitro leaf-derived callus extracts of Mucuna pruriens (L.) DC. S. Afr. J. Bot. 2022, 148, 251–258. [Google Scholar]
- Ji, Q.; Yan, Z.; Zheng, Y.; Cai, L.; Xu, K.; Li, Y.; Zeng, F. Preparation of silver nanoparticles on carbon nano tubes via photo thermal heating and their field emission characteristics. J. Alloys Compd. 2021, 866, 158788. [Google Scholar] [CrossRef]
- Dhingra, A.K.; Chopra, B.; Grewal, A.S.; Guarve, K. Pharmacological properties of Chebulinic acid and related ellagitannins from nature: An emerging contemporary bioactive entity. Pharmacol. Res. Mod. Chin. Med. 2022, 16, 100163. [Google Scholar] [CrossRef]
- HabeebRahuman, H.B.; Dhandapani, R.; Narayanan, S.; Palanivel, V.; Paramasivam, R.; Subbarayalu, R.; Thangavelu, S.; Muthupandian, S. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol. 2022, 16, 115–144. [Google Scholar] [CrossRef]
- Sadeghnia, H.R.; Jamshidi, R.; Afshari, A.R.; Mollazadeh, H.; Forouzanfar, F.; Rakhshandeh, H. Terminalia chebula attenuates quinolinate-induced oxidative PC12 and OLN-93 cell death. Mult. Sclera. Relat. Disord. 2017, 14, 60–67. [Google Scholar] [CrossRef]
- Oves, M.; Rauf, M.A.; Aslam, M.; Qari, H.A.; Sonbol, H.; Ahmad, I.; Zaman, G.S.; Saeed, M. Green synthesis of silver nanoparticles by Conocarpus lancifolius plant extract and their antimicrobial and anticancer activities. Saudi J. Biol. Sci. 2022, 29, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Selvaraju, G.D.; Umapathy, V.R.; Sumathi Jones, C.; Cheema, M.S.; Jayamani, D.R.; Dharani, R.; Sneha, S.; Yamuna, M.; Gayathiri, E.; Yadav, S. Fabrication and characterization of surgical sutures with propolis silver nanoparticles and analysis of its antimicrobial properties. J. King Saud Univ. Sci. 2022, 34, 102082. [Google Scholar] [CrossRef]
- Liu, W.; Mu, F.; Liu, T.; Xu, H.; Chen, J.; Jia, N.; Zhang, Y.; Dou, F.; Shi, L.; Li, Y.; et al. Ultra performance liquid chromatography/quadrupole time-of-flight mass spectrometry–based metabonomics reveal protective effect of Terminalia chebula extract on ischemic stroke rats. Rejuvenation Res. 2018, 21, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Sanmuga Priya, E.; Senthamil Selvan, P.; Ajay, B. Tannin rich fraction from Terminalia chebula fruits as Anti-inflammatory agent. J. Herbs Spices Med. Plants. 2018, 24, 74–86. [Google Scholar] [CrossRef]
- Liaqat, N.; Jahan, N.; Anwar, T.; Qureshi, H. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Front. Chem. 2022, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rajeshkumar, S.; Tharani, M.; Jeevitha, M.; Santhoshkumar, J. Anticariogenic Activity of Fresh Aloe Vera Gel Mediated Copper Oxide Nanoparticles. Indian J. Public Health Res. Dev. 2019, 10, 3664–3667. [Google Scholar] [CrossRef]
- Mulwandari, M.; Asysyafiiyah, L.; Sirajuddin, M.I.; Cahyandaru, N. Direct Synthesis of Lemongrass (Cymbopogon citratus L.) Essential Oil-Silver Nanoparticles (EO-AgNPs) as Biopesticides and Application for Lichen Inhibition on Stones. Heliyon 2022, 10, e09701. [Google Scholar]
- Prakash, P.; Gnanaprakasam, P.; Emmanuel, R.; Arokiyaraj, S.; Saravanan, M. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids Surf. B 2013, 108, 255–259. [Google Scholar] [CrossRef]
- Amirjani, A.; Firouzi, F.; Haghshenas, D.F. Predicting the size of silver nanoparticles from their optical properties. Plasmonics 2020, 5, 1077–1082. [Google Scholar] [CrossRef]
- Ishwarya, R.; Vaseeharan, B.; Anuradha, R.; Rekha, R.; Govindarajan, M.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Benelli, G. Eco-friendly fabrication of Ag nanostructures using the seed extract of Pedalium murex, an ancient Indian medicinal plant: Histopathological effects on the Zika virus vector Aedes aegypti and inhibition of biofilm forming pathogenic bacteria. J. Photochem. Photobiol. B. Biol. 2017, 174, 133–143. [Google Scholar] [CrossRef]
- Deivanathan, S.K.; Prakash, J.T. Green synthesis of silver nanoparticles using aqueous leaf extract of Guettarda speciosa and its antimicrobial and anti-oxidative properties. Chem. Data Collect. 2022, 38, 100831. [Google Scholar] [CrossRef]
- Soleimani, F.F.; Saleh, T.; Shojaosadati, S.A.; Poursalehi, R. Green synthesis of different shapes of silver nanostructures and evaluation of their antibacterial and cytotoxic activity. Bionanoscience 2018, 8, 72–80. [Google Scholar] [CrossRef]
- Ejidike, I.P.; Clayton, H.S. Green synthesis of silver nanoparticles mediated by Daucus carota L.: Antiradical, antimicrobial potentials, in vitro cytotoxicity against brain glioblastoma cells. Green Chem. Lett. Rev. 2022, 15, 298–311. [Google Scholar] [CrossRef]
- Rautela, A.; Rani, J. Green synthesis of silver nanoparticles from Tectona grandis seeds extract: Characterization and mechanism of antimicrobial action on different microorganisms. J. Anal. Sci. Technol. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Badar, W.; Ullah Khan, M.A. Analytical study of biosynthesised silver nanoparticles against multi-drug resistant biofilm-forming pathogens. IET Nanobiotechnol. 2020, 14, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Baláž, M.; Balážová, Ľ.; Daneu, N.; Dutková, E.; Balážová, M.; Bujňáková, Z.; Shpotyuk, Y. Plant-mediated synthesis of silver nanoparticles and their stabilization by wet stirred media milling. Nanoscale Res. Lett. 2017, 12, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bupesh, G.; Manikandan, E.; Thanigaiarul, K.; Magesh, S.; Senthilkumar, V. Enhanced antibacterial, anticancer activity from Terminalia chebula medicinal plant rapid extract by phytosynthesis of silver nanoparticles core-shell structures. J. Nanomed. Nanotechnol. 2016, 7, 355. [Google Scholar]
- Muthusamy, N.; Kanniah, P.; Vijayakumar, P.; Murugan, U.; Raj, D.S.; Sankaran, U. Green-inspired fabrication of silver nanoparticles and examine its potential in-vitro cytotoxic and antibacterial activities. J. Inorg. Organomet. Polym. Mater. 2021, 31, 4693–4709. [Google Scholar] [CrossRef]
- Jaidev, L.R.; Narasimha, G. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf. B 2010, 81, 430–433. [Google Scholar] [CrossRef]
- Ali, F.; Younas, U.; Nazir, A.; Hassan, F.; Iqbal, M.; Mukhtar, S.; Khalid, A.; Ishfaq, A. Biosynthesis and characterization of silver nanoparticles using strawberry seed extract and evaluation of their antibacterial and antioxidant activities. J. Saudi Chem. Soc. 2022, 22, 101558. [Google Scholar] [CrossRef]
- Rajeshkumar, S. Citrus Lemon Juice Mediated Preparation of AgNPs/Chitosan-Based Bionanocomposites and Its Antimicrobial and Antioxidant Activity. J. Nanomater. 2021, 6, 2021. [Google Scholar] [CrossRef]
- Zare-Bidaki, M.; Aramjoo, H.; Mizwari, Z.M.; Mohammadparast-Tabas, P.; Javanshir, R.; Mortazavi-Derazkola, S. Cytotoxicity, antifungal, antioxidant, antibacterial and photodegradation potential of silver nanoparticles mediated via Medicago sativa extract. Arb. J. Chem. 2022, 15, 103842. [Google Scholar] [CrossRef]
- Mohanta, Y.K.; Panda, S.K.; Jayabalan, R.; Sharma, N.; Bastia, A.K.; Mohanta, T.K. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Front. Mol. Biosci. 2017, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Majoumouo, M.S.; Tincho, M.B.; Yimta, Y.D.; Adekiya, T.A.; Aruleba, R.T.; Ayawei, N.; Boyom, F.F.; Morris, T. Biosynthesis of Silver Nanoparticles Using Bersamaeng leriana Fruits Extracts and Their Potential Inhibitory Effect on Resistant Bacteria. Crystals 2022, 12, 1010. [Google Scholar] [CrossRef]
- Roy, S.; Sarkhel, S.; Bisht, D.; Hanumantharao, S.N.; Rao, S.; Jaiswal, A. Antimicrobial Mechanisms of Biomaterials: From Macro to Nano. Biomater. Sci. 2022, 16, 4392–4423. [Google Scholar] [CrossRef]
- Chellakannu, M.; Panneerselvam, T.; Rajeshkumar, S. Kinetic study on the herbal synthesis of silver nanoparticles and its antioxidant and antibacterial effect against gastrointestinal pathogens. Int. J. Res. Pharm. Sci. 2019, 10, 407–414. [Google Scholar]
- Elbasuney, S.; El-Sayyad, G.S. Silver nanoparticles coated medical fiber synthesized by surface engineering with bio-inspired mussel powered polydopamine: An investigated antimicrobial potential with bacterial membrane leakage reaction mechanism. Microb. Pathog. 2022, 169, 105680. [Google Scholar] [CrossRef]
- Folorunso, A.; Akintelu, S.; Oyebamiji, A.K.; Ajayi, S.; Abiola, B.; Abdusalam, I.; Morakinyo, A. Biosynthesis, characterization and antimicrobial activity of gold nanoparticles from leaf extracts of Annona muricata. J. Nanostruct. Chem. 2019, 9, 111–117. [Google Scholar] [CrossRef]
- Alshameri, A.W.; Owais, M.; Altaf, I.; Farheen, S. Rumex nervosus mediated green synthesis of silver nanoparticles and evaluation of its in vitro antibacterial, and cytotoxic activity. OpenNano 2022, 8, 100084. [Google Scholar] [CrossRef]
- Giri, R.; Sharma, K. Biogenic Synthesis of Silver Nanoparticles Using Terminalia chebula Retz. Leaf Extract and Evaluation of Biological Activities. J. Nepal Chem. Soc. 2022, 43, 54–68. [Google Scholar]
- Gurunathan, S.; Han, J.W.; Kwon, D.N.; Kim, J.H. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res. Lett. 2014, 9, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Machado, S.; González-Ballesteros, N.; Gonçalves, A.; Magalhães, L.; de Passos, M.S.; Rodríguez-Argüelles, M.C.; Gomes, A.C. Toxicity in vitro and in zebrafish embryonic development of gold nanoparticles biosynthesized using Cystoseiram acroalgae extracts. Int. J. Nanomed. 2021, 16, 5017. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Di, T.; Zhou, X.; Gu, N. Toxicity Assessment of Silver Nanoparticles using Zebrafish Embryos. In Proceedings of the 2017 6th International Conference on Energy and Environmental Protection (ICEEP 2017), Zhuhai, China, 29–30 June 2017; Atlantis Press: Amsterdam, The Netherlands; pp. 477–482. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tharani, M.; Rajeshkumar, S.; Al-Ghanim, K.A.; Nicoletti, M.; Sachivkina, N.; Govindarajan, M. Terminalia chebula-Assisted Silver Nanoparticles: Biological Potential, Synthesis, Characterization, and Ecotoxicity. Biomedicines 2023, 11, 1472. https://doi.org/10.3390/biomedicines11051472
Tharani M, Rajeshkumar S, Al-Ghanim KA, Nicoletti M, Sachivkina N, Govindarajan M. Terminalia chebula-Assisted Silver Nanoparticles: Biological Potential, Synthesis, Characterization, and Ecotoxicity. Biomedicines. 2023; 11(5):1472. https://doi.org/10.3390/biomedicines11051472
Chicago/Turabian StyleTharani, Munusamy, Shanmugam Rajeshkumar, Khalid A. Al-Ghanim, Marcello Nicoletti, Nadezhda Sachivkina, and Marimuthu Govindarajan. 2023. "Terminalia chebula-Assisted Silver Nanoparticles: Biological Potential, Synthesis, Characterization, and Ecotoxicity" Biomedicines 11, no. 5: 1472. https://doi.org/10.3390/biomedicines11051472
APA StyleTharani, M., Rajeshkumar, S., Al-Ghanim, K. A., Nicoletti, M., Sachivkina, N., & Govindarajan, M. (2023). Terminalia chebula-Assisted Silver Nanoparticles: Biological Potential, Synthesis, Characterization, and Ecotoxicity. Biomedicines, 11(5), 1472. https://doi.org/10.3390/biomedicines11051472