Acute Kidney Injury in Kidney Transplant Patients in Intensive Care Unit: From Pathogenesis to Clinical Management
Abstract
:1. Introduction
2. Epidemiology of ICU Admission and AKI Occurrence in KTRs
Study ID | Year | Study Design | Patients | AKI Incidence | Mortality Rate | Additional Epidemiological Findings |
---|---|---|---|---|---|---|
Mehrotra et al. [19] | 2012 | Retrospective longitudinal cohort study; AKI incidence and outcomes in KTRs | 27,232 | 11.6% | 5.8% | AKI is an independent factor for graft loss (HR 2.74), death with functioning graft (HR 2.36) and graft loss (HR 3.17). AKI paradoxically associates with worse outcomes in early CKD stages. |
Filiponi et al. [11] | 2015 | Single-center, retrospective cohort study; 1-year graft survival in KTRs with AKI | 458 | 82.3% | 2.1% | CMV infection being the most common cause of hospitalization (20.3%), followed by urosepsis (14.4%). ICU admission OR: 8.9; contrast media use OR: 9.34. |
Panek et al. [17] | 2015 | Single-center retrospective cohort study; clinical outcomes of KTRs at 1 year post-transplantation | 326 | 21.0% | 1.2 deaths/100 PY | CNI toxicity is the leading cause of AKI (33%). The presence of AKI does not have any impact on mortality rate. |
Guinault et al. [18] | 2019 | Multicenter, retrospective observational study; outcomes in ICU admitted KTRs | 200 | 85.1% | 26.5% | Death occurring mostly within the first 6 months. CKD progression observed in 45.1% of survivors; 15.1% developed new anti-HLA antibodies. |
Cravedi et al. [26] | 2020 | International, multicenter, retrospective cohort study; clinical outcomes in COVID-19-positive KTRs | 144 | 51.0% | 32.0% | AKI occurred in 52% cases, with respiratory failure requiring intubation in 29%, and the mortality rate was 32%. Risk factors for mortality: older age, lower lymphocyte counts and baseline eGFR, higher serum lactate dehydrogenase, procalcitonin and IL-6. |
Camargo-Salamanca et al. [16] | 2020 | Retrospective cohort study; AKI incidence and risk factors | 179 | 58.1% | 3.9% | KTRs with higher baseline serum creatinine (OR, 2.6; 95% CI 1.5–4.5, p < 0.001) and hospital admission because of infections (OR, 2.4; 95% CI, 1.1–5.2; p = 0.020) were more likely to experience AKI. 19 recipients (10.6%) had graft loss with a significant AKI association (p = 0.003). |
Kremer et al. [25] | 2021 | Meta-analysis; clinical outcomes in COVID-19-infected KTRs | 5559 | 50.0% | 23.0% | Mortality rates are significantly increased in the early post-transplantation period (15 months post-TX). No differences are reported in AKI risk between early and late post-transplantation periods. |
3. Causes of AKI among KTRs
3.1. Infections
3.1.1. Urinary Tract Infections
3.1.2. Bloodstream Infections
3.1.3. Respiratory Tract
3.2. Drug Nephrotoxicity
4. Pathophysiology of AKI in Kidney Transplantation
COVID-19-Associated AKI in Kidney Transplantation
5. Biomarkers of AKI Applied in Kidney Transplantation
miRNA in AKI and Kidney Transplantation
6. Graft and Patients’ Outcomes
7. AKI Management in KTRs
Management of Immunosuppression in KTRs with AKI
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Czyzewski, L.; Sanko-Resmer, J.; Wyzgal, J.; Kurowski, A. Assessment of health-related quality of life of patients after kidney transplantation in comparison with hemodialysis and peritoneal dialysis. Ann. Transplant. 2014, 19, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Halloran, P.F. Immunosuppressive drugs for kidney transplantation. N. Engl. J. Med. 2004, 351, 2715–2729. [Google Scholar] [CrossRef] [PubMed]
- Canet, E.; Zafrani, L.; Azoulay, E. The Critically Ill Kidney Transplant Recipient: A Narrative Review. Chest 2016, 149, 1546–1555. [Google Scholar] [CrossRef]
- Fiorentino, M.; Tohme, F.A.; Wang, S.; Murugan, R.; Angus, D.C.; Kellum, J.A. Long-term survival in patients with septic acute kidney injury is strongly influenced by renal recovery. PLoS ONE 2018, 13, e0198269. [Google Scholar] [CrossRef] [PubMed]
- Peerapornratana, S.; Fiorentino, M.; Priyanka, P.; Murugan, R.; Kellum, J.A. Recovery after AKI: Effects on outcomes over 15 years. J. Crit. Care 2023, 76, 154280. [Google Scholar] [CrossRef]
- Hsu, R.K.; Hsu, C.Y. The Role of Acute Kidney Injury in Chronic Kidney Disease. Semin. Nephrol. 2016, 36, 283–292. [Google Scholar] [CrossRef]
- Ronco, C.; Bellomo, R.; Kellum, J.A. Acute kidney injury. Lancet 2019, 394, 1949–1964. [Google Scholar] [CrossRef]
- Fiorentino, M.; Castellano, G.; Kellum, J.A. Differences in acute kidney injury ascertainment for clinical and preclinical studies. Nephrol. Dial. Transplant. 2017, 32, 1789–1805. [Google Scholar] [CrossRef]
- Bige, N.; Zafrani, L.; Lambert, J.; Peraldi, M.N.; Snanoudj, R.; Reuter, D.; Legendre, C.; Chevret, S.; Lemiale, V.; Schlemmer, B.; et al. Severe infections requiring intensive care unit admission in kidney transplant recipients: Impact on graft outcome. Transpl. Infect. Dis. 2014, 16, 588–596. [Google Scholar] [CrossRef]
- Canet, E.; Osman, D.; Lambert, J.; Guitton, C.; Heng, A.E.; Argaud, L.; Klouche, K.; Mourad, G.; Legendre, C.; Timsit, J.F.; et al. Acute respiratory failure in kidney transplant recipients: A multicenter study. Crit. Care 2011, 15, R91. [Google Scholar] [CrossRef]
- Filiponi, T.C.; Requiao-Moura, L.R.; Tonato, E.J.; Carvalho de Matos, A.C.; E Silva-Filho, A.P.; de Souza Durao Junior, M. Hospital Admission following Acute Kidney Injury in Kidney Transplant Recipients Is Associated with a Negative Impact on Graft Function after 1-Year. PLoS ONE 2015, 10, e0138944. [Google Scholar] [CrossRef]
- Dudreuilh, C.; Aguiar, R.; Ostermann, M. Acute kidney injury in kidney transplant patients. Acute Med. 2018, 17, 31–35. [Google Scholar]
- Kamar, N.; Del Bello, A.; Belliere, J.; Rostaing, L. Calcineurin inhibitor-sparing regimens based on mycophenolic acid after kidney transplantation. Transpl. Int. 2015, 28, 928–937. [Google Scholar] [CrossRef]
- Susantitaphong, P.; Cruz, D.N.; Cerda, J.; Abulfaraj, M.; Alqahtani, F.; Koulouridis, I.; Jaber, B.L. World incidence of AKI: A meta-analysis. Clin. J. Am. Soc. Nephrol. 2013, 8, 1482–1493. [Google Scholar] [CrossRef]
- Castellano, G.; Intini, A.; Stasi, A.; Divella, C.; Gigante, M.; Pontrelli, P.; Franzin, R.; Accetturo, M.; Zito, A.; Fiorentino, M.; et al. Complement modulation of anti-aging factor klotho in ischemia/reperfusion injury and delayed graft function. Am. J. Transplant. 2016, 16, 325–333. [Google Scholar] [CrossRef]
- Camargo-Salamanca, A.; Garcia-Lopez, A.; Patino-Jaramillo, N.; Giron-Luque, F. Acute Kidney Injury in Hospitalized Kidney Transplant Recipients. Transplant. Proc. 2020, 52, 3209–3213. [Google Scholar] [CrossRef]
- Panek, R.; Tennankore, K.K.; Kiberd, B.A. Incidence, etiology, and significance of acute kidney injury in the early post-kidney transplant period. Clin. Transplant. 2016, 30, 66–70. [Google Scholar] [CrossRef]
- Guinault, D.; Del Bello, A.; Lavayssiere, L.; Nogier, M.B.; Cointault, O.; Congy, N.; Esposito, L.; Hebral, A.L.; Roques, O.; Kamar, N.; et al. Outcomes of kidney transplant recipients admitted to the intensive care unit: A retrospective study of 200 patients. BMC Anesth. 2019, 19, 130. [Google Scholar] [CrossRef]
- Mehrotra, A.; Rose, C.; Pannu, N.; Gill, J.; Tonelli, M.; Gill, J.S. Incidence and consequences of acute kidney injury in kidney transplant recipients. Am. J. Kidney Dis. 2012, 59, 558–565. [Google Scholar] [CrossRef]
- Crews, D.C.; Bello, A.K.; Saadi, G.; World Kidney Day Steering Committee. Burden, access and disparities in kidney disease. Clin. Kidney J. 2019, 12, 160–166. [Google Scholar] [CrossRef]
- Hoste, E.A.J.; Kellum, J.A.; Selby, N.M.; Zarbock, A.; Palevsky, P.M.; Bagshaw, S.M.; Goldstein, S.L.; Cerda, J.; Chawla, L.S. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 2018, 14, 607–625. [Google Scholar] [CrossRef] [PubMed]
- Jafari-Oori, M.; Fiorentino, M.; Castellano, G.; Ebadi, A.; Rahimi-Bashar, F.; Guest, P.C.; Vahedian-Azimi, A.; Sahebkar, A. Acute Kidney Injury and Covid-19: A Scoping Review and Meta-Analysis. Adv. Exp. Med. Biol. 2021, 1321, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Aziz, F.; Mandelbrot, D.; Singh, T.; Parajuli, S.; Garg, N.; Mohamed, M.; Astor, B.C.; Djamali, A. Early Report on Published Outcomes in Kidney Transplant Recipients Compared to Nontransplant Patients Infected With Coronavirus Disease 2019. Transplant. Proc. 2020, 52, 2659–2662. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, D.; Deb, S.; Bose, S.; Gandhi, C.; Modi, T.; Katyal, A.; Saxena, N.; Patil, A.; Thakare, S.; Pajai, A.E.; et al. Recovery of kidney function after AKI because of COVID-19 in kidney transplant recipients. Transpl. Int. 2021, 34, 1074–1082. [Google Scholar] [CrossRef]
- Kremer, D.; Pieters, T.T.; Verhaar, M.C.; Berger, S.P.; Bakker, S.J.L.; van Zuilen, A.D.; Joles, J.A.; Vernooij, R.W.M.; van Balkom, B.W.M. A systematic review and meta-analysis of COVID-19 in kidney transplant recipients: Lessons to be learned. Am. J. Transplant. 2021, 21, 3936–3945. [Google Scholar] [CrossRef]
- Cravedi, P.; Mothi, S.S.; Azzi, Y.; Haverly, M.; Farouk, S.S.; Perez-Saez, M.J.; Redondo-Pachon, M.D.; Murphy, B.; Florman, S.; Cyrino, L.G.; et al. COVID-19 and kidney transplantation: Results from the TANGO International Transplant Consortium. Am. J. Transplant. 2020, 20, 3140–3148. [Google Scholar] [CrossRef]
- Chavarot, N.; Gueguen, J.; Bonnet, G.; Jdidou, M.; Trimaille, A.; Burger, C.; Amrouche, L.; Weizman, O.; Pommier, T.; Aubert, O.; et al. COVID-19 severity in kidney transplant recipients is similar to nontransplant patients with similar comorbidities. Am. J. Transplant. 2021, 21, 1285–1294. [Google Scholar] [CrossRef]
- Kidney Disease Improving Global Outcomes (KDIGO). Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Intern. Suppl. 2012, 2, 1–138. [Google Scholar]
- Fishman, J.A.; AST Infectious Diseases Community of Practice. Introduction: Infection in solid organ transplant recipients. Am. J. Transplant. 2009, 9 (Suppl. S4), S3–S6. [Google Scholar] [CrossRef]
- Pelletier, S.J.; Crabtree, T.D.; Gleason, T.G.; Raymond, D.P.; Oh, C.K.; Pruett, T.L.; Sawyer, R.G. Characteristics of infectious complications associated with mortality after solid organ transplantation. Clin. Transplant. 2000, 14, 401–408. [Google Scholar] [CrossRef]
- Krolicki, T.; Bardowska, K.; Kudla, T.; Krolicka, A.; Letachowicz, K.; Mazanowska, O.; Krajewski, W.; Poznanski, P.; Krajewska, M.; Kaminska, D. Acute kidney injury secondary to urinary tract infection in kidney transplant recipients. Sci. Rep. 2022, 12, 10858. [Google Scholar] [CrossRef]
- Pourmand, G.; Salem, S.; Mehrsai, A.; Taherimahmoudi, M.; Ebrahimi, R.; Pourmand, M.R. Infectious complications after kidney transplantation: A single-center experience. Transpl. Infect. Dis. 2007, 9, 302–309. [Google Scholar] [CrossRef]
- Abu Jawdeh, B.G.; Govil, A. Acute Kidney Injury in Transplant Setting: Differential Diagnosis and Impact on Health and Health Care. Adv. Chronic Kidney Dis. 2017, 24, 228–232. [Google Scholar] [CrossRef]
- Fiorentino, M.; Pesce, F.; Schena, A.; Simone, S.; Castellano, G.; Gesualdo, L. Updates on urinary tract infections in kidney transplantation. J. Nephrol. 2019, 32, 751–761. [Google Scholar] [CrossRef]
- Pesce, F.; Martino, M.; Fiorentino, M.; Rollo, T.; Simone, S.; Gallo, P.; Stallone, G.; Grandaliano, G.; Schena, A.; Margiotta, M.; et al. Recurrent urinary tract infections in kidney transplant recipients during the first-year influence long-term graft function: A single-center retrospective cohort study. J. Nephrol. 2019, 32, 661–668. [Google Scholar] [CrossRef]
- Maanaoui, M.; Baes, D.; Hamroun, A.; Khedjat, K.; Vuotto, F.; Faure, E.; Lopez, B.; Bouyé, S.; Caes, T.; Lionet, A.; et al. Association between acute graft pyelonephritis and kidney graft survival: A single-center observational study. Am. J. Transplant. 2021, 21, 3640–3648. [Google Scholar] [CrossRef]
- Pacaud, M.; Colas, L.; Kerleau, C.; Le Borgne, F.; Giral, M.; Brouard, S.; Dantal, J. Impact of Late and Recurrent Acute Graft Pyelonephritis on Long-Term Kidney Graft Outcomes. Front. Immunol. 2022, 13, 824425. [Google Scholar] [CrossRef]
- Pelle, G.; Vimont, S.; Levy, P.P.; Hertig, A.; Ouali, N.; Chassin, C.; Arlet, G.; Rondeau, E.; Vandewalle, A. Acute pyelonephritis represents a risk factor impairing long-term kidney graft function. Am. J. Transplant. 2007, 7, 899–907. [Google Scholar] [CrossRef]
- Gerges-Knafl, D.; Pichler, P.; Zimprich, A.; Hotzy, C.; Barousch, W.; Lang, R.M.; Lobmeyr, E.; Baumgartner-Parzer, S.; Wagner, L.; Winnicki, W. The urinary microbiome shows different bacterial genera in renal transplant recipients and non-transplant patients at time of acute kidney injury-A pilot study. BMC Nephrol. 2020, 21, 117. [Google Scholar] [CrossRef]
- Ahmad, S.; Bromberg, J.S. Current status of the microbiome in renal transplantation. Curr. Opin. Nephrol. Hypertens. 2016, 25, 570–576. [Google Scholar] [CrossRef]
- Caggiano, G.; Stasi, A.; Franzin, R.; Fiorentino, M.; Cimmarusti, M.T.; Deleonardis, A.; Palieri, R.; Pontrelli, P.; Gesualdo, L. Fecal Microbiota Transplantation in Reducing Uremic Toxins Accumulation in Kidney Disease: Current Understanding and Future Perspectives. Toxins 2023, 15, 115. [Google Scholar] [CrossRef]
- Lee, J.R.; Muthukumar, T.; Dadhania, D.; Toussaint, N.C.; Ling, L.; Pamer, E.; Suthanthiran, M. Gut microbial community structure and complications after kidney transplantation: A pilot study. Transplantation 2014, 98, 697–705. [Google Scholar] [CrossRef]
- de Carvalho, M.A.; Freitas, F.G.; Silva Junior, H.T.; Bafi, A.T.; Machado, F.R.; Pestana, J.O. Mortality predictors in renal transplant recipients with severe sepsis and septic shock. PLoS ONE 2014, 9, e111610. [Google Scholar] [CrossRef] [PubMed]
- Brar, S.; Wang, Y.; Cannitelli, A.; Lambadaris, M.; Li, Y.; Famure, O.; Husain, S.; Kim, S.J. Bacteremia in kidney transplant recipients: Burden, causes, and consequences. Clin. Transplant. 2019, 33, e13479. [Google Scholar] [CrossRef]
- Silva, M., Jr.; Marra, A.R.; Pereira, C.A.; Medina-Pestana, J.O.; Camargo, L.F. Bloodstream infection after kidney transplantation: Epidemiology, microbiology, associated risk factors, and outcome. Transplantation 2010, 90, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Cia, C.T.; Li, M.J.; Li, C.W.; Lee, N.Y.; Chang, S.S.; Lee, C.C.; Ko, W.C. Community-onset bacteremia in kidney transplant recipients: The recipients fare well in terms of mortality and kidney injury. J. Microbiol. Immunol. Infect. 2016, 49, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Qiao, B.; Wu, J.; Wan, Q.; Zhang, S.; Ye, Q. Factors influencing mortality in abdominal solid organ transplant recipients with multidrug-resistant gram-negative bacteremia. BMC Infect. Dis 2017, 17, 171. [Google Scholar] [CrossRef]
- Helantera, I.; Schachtner, T.; Hinrichs, C.; Salmela, K.; Kyllonen, L.; Koskinen, P.; Lautenschlager, I.; Reinke, P. Current characteristics and outcome of cytomegalovirus infections after kidney transplantation. Transpl. Infect. Dis. 2014, 16, 568–577. [Google Scholar] [CrossRef]
- Tang, Y.; Guo, J.; Li, J.; Zhou, J.; Mao, X.; Qiu, T. Risk factors for cytomegalovirus infection and disease after kidney transplantation: A meta-analysis. Transpl. Immunol. 2022, 74, 101677. [Google Scholar] [CrossRef]
- Chang, Y.M.; Chou, Y.T.; Kan, W.C.; Shiao, C.C. Sepsis and Acute Kidney Injury: A Review Focusing on the Bidirectional Interplay. Int. J. Mol. Sci. 2022, 23, 9159. [Google Scholar] [CrossRef]
- Murugan, R.; Karajala-Subramanyam, V.; Lee, M.; Yende, S.; Kong, L.; Carter, M.; Angus, D.C.; Kellum, J.A. Acute kidney injury in non-severe pneumonia is associated with an increased immune response and lower survival. Kidney Int. 2010, 77, 527–535. [Google Scholar] [CrossRef]
- Schwartz, B.; Dupont, V.; Dury, S.; Carsin-Vu, A.; Thomas, G.; Caillard, S.; Frimat, L.; Sanchez, S.; Schvartz, B.; Bani-Sadr, F.; et al. Aetiology, clinical features, diagnostic studies, and outcomes of community-acquired pneumonia in kidney transplant recipients admitted to hospital: A multicentre retrospective French cohort study. Clin. Microbiol. Infect. 2023, 29, 542.e1–542.e5. [Google Scholar] [CrossRef]
- Braun, F.; Lutgehetmann, M.; Pfefferle, S.; Wong, M.N.; Carsten, A.; Lindenmeyer, M.T.; Norz, D.; Heinrich, F.; Meissner, K.; Wichmann, D.; et al. SARS-CoV-2 renal tropism associates with acute kidney injury. Lancet 2020, 396, 597–598. [Google Scholar] [CrossRef]
- Nicolai, L.; Leunig, A.; Brambs, S.; Kaiser, R.; Weinberger, T.; Weigand, M.; Muenchhoff, M.; Hellmuth, J.C.; Ledderose, S.; Schulz, H.; et al. Immunothrombotic Dysregulation in COVID-19 Pneumonia Is Associated with Respiratory Failure and Coagulopathy. Circulation 2020, 142, 1176–1189. [Google Scholar] [CrossRef]
- Santoriello, D.; Khairallah, P.; Bomback, A.S.; Xu, K.; Kudose, S.; Batal, I.; Barasch, J.; Radhakrishnan, J.; D’Agati, V.; Markowitz, G. Postmortem Kidney Pathology Findings in Patients with COVID-19. J. Am. Soc. Nephrol. 2020, 31, 2158–2167. [Google Scholar] [CrossRef]
- Caillard, S.; Chavarot, N.; Francois, H.; Matignon, M.; Greze, C.; Kamar, N.; Gatault, P.; Thaunat, O.; Legris, T.; Frimat, L.; et al. Is COVID-19 infection more severe in kidney transplant recipients? Am. J. Transplant. 2021, 21, 1295–1303. [Google Scholar] [CrossRef]
- Chan, L.; Chaudhary, K.; Saha, A.; Chauhan, K.; Vaid, A.; Zhao, S.; Paranjpe, I.; Somani, S.; Richter, F.; Miotto, R.; et al. AKI in Hospitalized Patients with COVID-19. J. Am. Soc. Nephrol 2021, 32, 151–160. [Google Scholar] [CrossRef]
- Busauschina, A.; Schnuelle, P.; van der Woude, F.J. Cyclosporine nephrotoxicity. Transplant. Proc. 2004, 36, 229S–233S. [Google Scholar] [CrossRef]
- Nankivell, B.J.; Borrows, R.J.; Fung, C.L.; O’Connell, P.J.; Chapman, J.R.; Allen, R.D. Calcineurin inhibitor nephrotoxicity: Longitudinal assessment by protocol histology. Transplantation 2004, 78, 557–565. [Google Scholar] [CrossRef]
- Liptak, P.; Ivanyi, B. Primer: Histopathology of calcineurin-inhibitor toxicity in renal allografts. Nat. Clin. Pract. Nephrol. 2006, 2, 398–404; quiz following 404. [Google Scholar] [CrossRef]
- Reynolds, J.C.; Agodoa, L.Y.; Yuan, C.M.; Abbott, K.C. Thrombotic microangiopathy after renal transplantation in the United States. Am. J. Kidney Dis. 2003, 42, 1058–1068. [Google Scholar] [CrossRef] [PubMed]
- Noris, M.; Remuzzi, G. Thrombotic microangiopathy after kidney transplantation. Am. J. Transplant. 2010, 10, 1517–1523. [Google Scholar] [CrossRef] [PubMed]
- Ávila, A.; Gavela, E.; Sancho, A. Thrombotic Microangiopathy After Kidney Transplantation: An Underdiagnosed and Potentially Reversible Entity. Front. Med. 2021, 8, 642864. [Google Scholar] [CrossRef] [PubMed]
- Schwimmer, J.; Nadasdy, T.A.; Spitalnik, P.F.; Kaplan, K.L.; Zand, M.S. De novo thrombotic microangiopathy in renal transplant recipients: A comparison of hemolytic uremic syndrome with localized renal thrombotic microangiopathy. Am. J. Kidney Dis. 2003, 41, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Weiner, S.M.; Sellin, L.; Vonend, O.; Schenker, P.; Buchner, N.J.; Flecken, M.; Viebahn, R.; Rump, L.C. Pneumonitis associated with sirolimus: Clinical characteristics, risk factors and outcome–A single-centre experience and review of the literature. Nephrol. Dial. Transplant. 2007, 22, 3631–3637. [Google Scholar] [CrossRef]
- Bartynski, W.S.; Tan, H.P.; Boardman, J.F.; Shapiro, R.; Marsh, J.W. Posterior reversible encephalopathy syndrome after solid organ transplantation. AJNR Am. J. Neuroradiol. 2008, 29, 924–930. [Google Scholar] [CrossRef]
- Mingeot-Leclercq, M.P.; Tulkens, P.M. Aminoglycosides: Nephrotoxicity. Antimicrob. Agents Chemother. 1999, 43, 1003–1012. [Google Scholar] [CrossRef]
- Malacarne, P.; Bergamasco, S.; Donadio, C. Nephrotoxicity due to combination antibiotic therapy with vancomycin and aminoglycosides in septic critically ill patients. Chemotherapy 2006, 52, 178–184. [Google Scholar] [CrossRef]
- Sadeghi, K.; Shahrami, B.; Hosseini Fani, F.; Hamishehkar, H.; Mojtahedzadeh, M. Detection of subclinical nephrotoxicity induced by aminoglycosides in critically ill elderly patients using trough levels and urinary neutrophil gelatinase-associated lipocalin. Eur. J. Hosp. Pharm. 2022, 29, e63–e66. [Google Scholar] [CrossRef]
- Filippone, E.J.; Kraft, W.K.; Farber, J.L. The Nephrotoxicity of Vancomycin. Clin. Pharm. Ther. 2017, 102, 459–469. [Google Scholar] [CrossRef]
- Deray, G. Amphotericin B nephrotoxicity. J. Antimicrob. Chemother. 2002, 49 (Suppl. S1), 37–41. [Google Scholar] [CrossRef]
- Morales-Alvarez, M.C. Nephrotoxicity of Antimicrobials and Antibiotics. Adv. Chronic Kidney Dis. 2020, 27, 31–37. [Google Scholar] [CrossRef]
- Chien, H.T.; Lin, Y.C.; Sheu, C.C.; Hsieh, K.P.; Chang, J.S. Is colistin-associated acute kidney injury clinically important in adults? A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2020, 55, 105889. [Google Scholar] [CrossRef]
- Gai, Z.; Samodelov, S.L.; Kullak-Ublick, G.A.; Visentin, M. Molecular Mechanisms of Colistin-Induced Nephrotoxicity. Molecules 2019, 24, 653. [Google Scholar] [CrossRef]
- Husain-Syed, F.; Reis, T.; Kashani, K.; Ronco, C. Advances in laboratory detection of acute kidney injury. Pract. Lab. Med. 2022, 31, e00283. [Google Scholar] [CrossRef]
- Atlas-Lazar, A.; Levy-Erez, D. Approach to acute kidney injury following paediatric kidney transplant. Curr. Opin. Pediatr. 2023, 35, 268–274. [Google Scholar] [CrossRef]
- Boyer, N.; Horne, K.; Selby, N.M.; Forni, L.G. Renal medicine in the intensive care unit: A narrative review. Anaesthesia 2023. [Google Scholar] [CrossRef]
- Loverre, A.; Ditonno, P.; Crovace, A.; Gesualdo, L.; Ranieri, E.; Pontrelli, P.; Stallone, G.; Infante, B.; Schena, A.; Di Paolo, S.; et al. Ischemia-reperfusion induces glomerular and tubular activation of proinflammatory and antiapoptotic pathways: Differential modulation by rapamycin. J. Am. Soc. Nephrol. 2004, 15, 2675–2686. [Google Scholar] [CrossRef]
- Camussi, G.; Cantaluppi, V.; Deregibus, M.C.; Gatti, E.; Tetta, C. Role of microvesicles in acute kidney injury. Contrib. Nephrol. 2011, 174, 191–199. [Google Scholar] [CrossRef]
- Kellum, J.A.; Romagnani, P.; Ashuntantang, G.; Ronco, C.; Zarbock, A.; Anders, H.-J. Acute kidney injury. Nat. Rev. Dis. Prim. 2021, 7, 52. [Google Scholar] [CrossRef]
- Mansson, L.E.; Melican, K.; Boekel, J.; Sandoval, R.M.; Hautefort, I.; Tanner, G.A.; Molitoris, B.A.; Richter-Dahlfors, A. Real-time studies of the progression of bacterial infections and immediate tissue responses in live animals. Cell. Microbiol. 2007, 9, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Månsson, L.E.; Melican, K.; Molitoris, B.A.; Richter-Dahlfors, A. Progression of bacterial infections studied in real time--novel perspectives provided by multiphoton microscopy. Cell. Microbiol. 2007, 9, 2334–2343. [Google Scholar] [CrossRef] [PubMed]
- Melican, K.; Boekel, J.; Månsson, L.E.; Sandoval, R.M.; Tanner, G.A.; Källskog, O.; Palm, F.; Molitoris, B.A.; Richter-Dahlfors, A. Bacterial infection-mediated mucosal signalling induces local renal ischaemia as a defence against sepsis. Cell. Microbiol. 2008, 10, 1987–1998. [Google Scholar] [CrossRef] [PubMed]
- Stasi, A.; Franzin, R.; Caggiano, G.; Losapio, R.; Fiorentino, M.; Alfieri, C.; Gesualdo, L.; Stallone, G.; Castellano, G. New Frontiers in Sepsis-Induced Acute Kidney Injury and Blood Purification Therapies: The Role of Polymethylmethacrylate Membrane Hemofilter. Blood Purif. 2023, 52, 24–37. [Google Scholar] [CrossRef]
- Mannon, R.B. Delayed Graft Function: The AKI of Kidney Transplantation. Nephron 2018, 140, 94–98. [Google Scholar] [CrossRef]
- Rosin, D.L.; Okusa, M.D. Dangers within: DAMP responses to damage and cell death in kidney disease. J. Am. Soc. Nephrol. 2011, 22, 416–425. [Google Scholar] [CrossRef]
- Molitoris, B.A.; Sandoval, R.M. Kidney endothelial dysfunction: Ischemia, localized infections and sepsis. Contrib. Nephrol. 2011, 174, 108–118. [Google Scholar] [CrossRef]
- Divella, C.; Stasi, A.; Franzin, R.; Rossini, M.; Pontrelli, P.; Sallustio, F.; Netti, G.S.; Ranieri, E.; Lacitignola, L.; Staffieri, F.; et al. Pentraxin-3-mediated complement activation in a swine model of renal ischemia/reperfusion injury. Aging 2021, 13, 10920–10933. [Google Scholar] [CrossRef]
- Medica, D.; Franzin, R.; Stasi, A.; Castellano, G.; Migliori, M.; Panichi, V.; Figliolini, F.; Gesualdo, L.; Camussi, G.; Cantaluppi, V. Extracellular Vesicles Derived from Endothelial Progenitor Cells Protect Human Glomerular Endothelial Cells and Podocytes from Complement- and Cytokine-Mediated Injury. Cells 2021, 10, 1675. [Google Scholar] [CrossRef]
- Stasi, A.; Franzin, R.; Divella, C.; Sallustio, F.; Curci, C.; Picerno, A.; Pontrelli, P.; Staffieri, F.; Lacitignola, L.; Crovace, A.; et al. PMMA-Based Continuous Hemofiltration Modulated Complement Activation and Renal Dysfunction in LPS-Induced Acute Kidney Injury. Front. Immunol. 2021, 12, 605212. [Google Scholar] [CrossRef]
- Abe, K.; Li, K.; Sacks, S.H.; Sheerin, N.S. The membrane attack complex, C5b-9, up regulates collagen gene expression in renal tubular epithelial cells. Clin. Exp. Immunol. 2004, 136, 60–66. [Google Scholar] [CrossRef]
- Torbohm, I.; Schonermark, M.; Wingen, A.M.; Berger, B.; Rother, K.; Hansch, G.M. C5b-8 and C5b-9 modulate the collagen release of human glomerular epithelial cells. Kidney Int. 1990, 37, 1098–1104. [Google Scholar] [CrossRef]
- Netti, G.S.; Infante, B.; Troise, D.; Mercuri, S.; Panico, M.; Spadaccino, F.; Catalano, V.; Gigante, M.; Simone, S.; Pontrelli, P.; et al. mTOR inhibitors improve both humoral and cellular response to SARS-CoV-2 messenger RNA BNT16b2 vaccine in kidney transplant recipients. Am. J. Transplant. 2022, 22, 1475–1482. [Google Scholar] [CrossRef]
- Legrand, M.; Bell, S.; Forni, L.; Joannidis, M.; Koyner, J.L.; Liu, K.; Cantaluppi, V. Pathophysiology of COVID-19-associated acute kidney injury. Nat. Rev. Nephrol. 2021, 17, 751–764. [Google Scholar] [CrossRef]
- Hilton, J.; Boyer, N.; Nadim, M.K.; Forni, L.G.; Kellum, J.A. COVID-19 and Acute Kidney Injury. Crit. Care Clin. 2022, 38, 473–489. [Google Scholar] [CrossRef]
- Stasi, A.; Castellano, G.; Ranieri, E.; Infante, B.; Stallone, G.; Gesualdo, L.; Netti, G.S. SARS-CoV-2 and Viral Sepsis: Immune Dysfunction and Implications in Kidney Failure. J. Clin. Med. 2020, 9, 4057. [Google Scholar] [CrossRef]
- Buszko, M.; Park, J.H.; Verthelyi, D.; Sen, R.; Young, H.A.; Rosenberg, A.S. The dynamic changes in cytokine responses in COVID-19: A snapshot of the current state of knowledge. Nat. Immunol. 2020, 21, 1146–1151. [Google Scholar] [CrossRef]
- Puelles, V.G.; Lutgehetmann, M.; Lindenmeyer, M.T.; Sperhake, J.P.; Wong, M.N.; Allweiss, L.; Chilla, S.; Heinemann, A.; Wanner, N.; Liu, S.; et al. Multiorgan and Renal Tropism of SARS-CoV-2. N. Engl. J. Med. 2020, 383, 590–592. [Google Scholar] [CrossRef]
- Remmelink, M.; De Mendonça, R.; D’Haene, N.; De Clercq, S.; Verocq, C.; Lebrun, L.; Lavis, P.; Racu, M.L.; Trépant, A.L.; Maris, C.; et al. Unspecific post-mortem findings despite multiorgan viral spread in COVID-19 patients. Crit. Care 2020, 24, 495. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Wang, X.; Yang, L.; Li, H.; Wang, Y.; Liu, M.; Zhao, X.; Xie, Y.; Yang, Y.; et al. SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19. J. Hematol. Oncol. 2020, 13, 120. [Google Scholar] [CrossRef]
- Pontrelli, P.; Cariello, M.; Rascio, F.; Gigante, M.; Verrienti, R.; Tataranni, T.; Castellano, G.; Divella, C.; Ranieri, E.; Stallone, G.; et al. Thrombin may modulate dendritic cell activation in kidney transplant recipients with delayed graft function. Nephrol. Dial. Transplant. 2015, 30, 1480–1487. [Google Scholar] [CrossRef] [PubMed]
- Pontrelli, P.; Ranieri, E.; Ursi, M.; Ghosh-Choudhury, G.; Gesualdo, L.; Paolo Schena, F.; Grandaliano, G. jun-N-terminal kinase regulates thrombin-induced PAI-1 gene expression in proximal tubular epithelial cells. Kidney Int. 2004, 65, 2249–2261. [Google Scholar] [CrossRef] [PubMed]
- Zaza, G.; Rascio, F.; Pontrelli, P.; Granata, S.; Stifanelli, P.; Accetturo, M.; Ancona, N.; Gesualdo, L.; Lupo, A.; Grandaliano, G. Karyopherins: Potential biological elements involved in the delayed graft function in renal transplant recipients. BMC Med. Genom. 2014, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Pontrelli, P.; Simone, S.; Rascio, F.; Pesce, F.; Conserva, F.; Infante, B.; Castellano, G.; Sallustio, F.; Fiorentino, M.; Zaza, G.; et al. Pre-Transplant Expression of CCR-2 in Kidney Transplant Recipients Is Associated With the Development of Delayed Graft Function. Front. Immunol. 2022, 13, 804762. [Google Scholar] [CrossRef]
- Kellum, J.A.; Chawla, L.S. Cell-cycle arrest and acute kidney injury: The light and the dark sides. Nephrol. Dial. Transplant. 2016, 31, 16–22. [Google Scholar] [CrossRef]
- Kashani, K.; Al-Khafaji, A.; Ardiles, T.; Artigas, A.; Bagshaw, S.M.; Bell, M.; Bihorac, A.; Birkhahn, R.; Cely, C.M.; Chawla, L.S.; et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care 2013, 17, R25. [Google Scholar] [CrossRef]
- Fiorentino, M.; Xu, Z.; Smith, A.; Singbartl, K.; Palevsky, P.M.; Chawla, L.S.; Huang, D.T.; Yealy, D.M.; Angus, D.C.; Kellum, J.A. Serial Measurement of Cell-cycle Arrest Biomarkers [TIMP-2]•[IGFBP7] and Risk for Progression to Death, Dialysis or Severe Acute Kidney Injury in Patients with Septic Shock. Am. J. Respir. Crit. Care Med. 2020, 202, 1262–1270. [Google Scholar] [CrossRef]
- Bank, J.R.; Ruhaak, R.; Soonawala, D.; Mayboroda, O.; Romijn, F.P.; van Kooten, C.; Cobbaert, C.M.; de Fijter, J.W. Urinary TIMP-2 Predicts the Presence and Duration of Delayed Graft Function in Donation After Circulatory Death Kidney Transplant Recipients. Transplantation 2019, 103, 1014–1023. [Google Scholar] [CrossRef]
- Malyszko, J.; Lukaszyk, E.; Glowinska, I.; Durlik, M. Biomarkers of delayed graft function as a form of acute kidney injury in kidney transplantation. Sci. Rep. 2015, 5, 11684. [Google Scholar] [CrossRef]
- Field, M.; Dronavalli, V.; Mistry, P.; Drayson, M.; Ready, A.; Cobbold, M.; Inston, N. Urinary biomarkers of acute kidney injury in deceased organ donors--kidney injury molecule-1 as an adjunct to predicting outcome. Clin. Transplant. 2014, 28, 808–815. [Google Scholar] [CrossRef]
- Yang, J.; Choi, H.M.; Seo, M.Y.; Lee, J.Y.; Kim, K.; Jun, H.; Jung, C.W.; Park, K.T.; Kim, M.G.; Jo, S.K.; et al. Urine liver-type fatty acid-binding protein predicts graft outcome up to 2 years after kidney transplantation. Transplant. Proc. 2014, 46, 376–380. [Google Scholar] [CrossRef]
- Hu, X.; Su, M.; Lin, J.; Zhang, L.; Sun, W.; Zhang, J.; Tian, Y.; Qiu, W. Corin Is Downregulated in Renal Ischemia/Reperfusion Injury and Is Associated with Delayed Graft Function after Kidney Transplantation. Dis. Mrk. 2019, 2019, 9429323. [Google Scholar] [CrossRef]
- Ledeganck, K.J.; Gielis, E.M.; Abramowicz, D.; Stenvinkel, P.; Shiels, P.G.; Van Craenenbroeck, A.H. MicroRNAs in AKI and Kidney Transplantation. Clin. J. Am. Soc. Nephrol. 2019, 14, 454–468. [Google Scholar] [CrossRef]
- Mezzolla, V.; Pontrelli, P.; Fiorentino, M.; Stasi, A.; Pesce, F.; Franzin, R.; Rascio, F.; Grandaliano, G.; Stallone, G.; Infante, B.; et al. Emerging biomarkers of delayed graft function in kidney transplantation. Transplant. Rev. 2021, 35, 100629. [Google Scholar] [CrossRef]
- Lan, Y.F.; Chen, H.H.; Lai, P.F.; Cheng, C.F.; Huang, Y.T.; Lee, Y.C.; Chen, T.W.; Lin, H. MicroRNA-494 reduces ATF3 expression and promotes AKI. J. Am. Soc. Nephrol. 2012, 23, 2012–2023. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Wang, J.; Miao, H. MiR-107 induces TNF-α secretion in endothelial cells causing tubular cell injury in patients with septic acute kidney injury. Biochem. Biophys. Res. Commun. 2017, 483, 45–51. [Google Scholar] [CrossRef]
- Geng, X.; Song, N.; Zhao, S.; Xu, J.; Liu, Y.; Fang, Y.; Liang, M.; Xu, X.; Ding, X. LncRNA GAS5 promotes apoptosis as a competing endogenous RNA for miR-21 via thrombospondin 1 in ischemic AKI. Cell Death Discov. 2020, 6, 19. [Google Scholar] [CrossRef]
- Loboda, A.; Sobczak, M.; Jozkowicz, A.; Dulak, J. TGF-β1/Smads and miR-21 in Renal Fibrosis and Inflammation. Mediat. Inflamm. 2016, 2016, 8319283. [Google Scholar] [CrossRef]
- Ge, Q.M.; Huang, C.M.; Zhu, X.Y.; Bian, F.; Pan, S.M. Differentially expressed miRNAs in sepsis-induced acute kidney injury target oxidative stress and mitochondrial dysfunction pathways. PLoS ONE 2017, 12, e0173292. [Google Scholar] [CrossRef]
- Amrouche, L.; Desbuissons, G.; Rabant, M.; Sauvaget, V.; Nguyen, C.; Benon, A.; Barre, P.; Rabaté, C.; Lebreton, X.; Gallazzini, M.; et al. MicroRNA-146a in Human and Experimental Ischemic AKI: CXCL8-Dependent Mechanism of Action. J. Am. Soc. Nephrol. 2017, 28, 479–493. [Google Scholar] [CrossRef]
- Wilflingseder, J.; Regele, H.; Perco, P.; Kainz, A.; Soleiman, A.; Mühlbacher, F.; Mayer, B.; Oberbauer, R. miRNA profiling discriminates types of rejection and injury in human renal allografts. Transplantation 2013, 95, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Soltaninejad, E.; Nicknam, M.H.; Nafar, M.; Ahmadpoor, P.; Pourrezagholi, F.; Sharbafi, M.H.; Hosseinzadeh, M.; Foroughi, F.; Yekaninejad, M.S.; Bahrami, T.; et al. Differential expression of microRNAs in renal transplant patients with acute T-cell mediated rejection. Transpl. Immunol. 2015, 33, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Danger, R.; Paul, C.; Giral, M.; Lavault, A.; Foucher, Y.; Degauque, N.; Pallier, A.; Durand, M.; Castagnet, S.; Duong Van Huyen, J.P.; et al. Expression of miR-142-5p in peripheral blood mononuclear cells from renal transplant patients with chronic antibody-mediated rejection. PLoS ONE 2013, 8, e60702. [Google Scholar] [CrossRef]
- Maluf, D.G.; Dumur, C.I.; Suh, J.L.; Scian, M.J.; King, A.L.; Cathro, H.; Lee, J.K.; Gehrau, R.C.; Brayman, K.L.; Gallon, L.; et al. The urine microRNA profile may help monitor post-transplant renal graft function. Kidney Int. 2014, 85, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Scian, M.J.; Maluf, D.G.; David, K.G.; Archer, K.J.; Suh, J.L.; Wolen, A.R.; Mba, M.U.; Massey, H.D.; King, A.L.; Gehr, T.; et al. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA. Am. J. Transplant. 2011, 11, 2110–2122. [Google Scholar] [CrossRef]
- Lazzeri, E.; Angelotti, M.L.; Conte, C.; Anders, H.J.; Romagnani, P. Surviving Acute Organ Failure: Cell Polyploidization and Progenitor Proliferation. Trends Mol. Med. 2019, 25, 366–381. [Google Scholar] [CrossRef]
- Losappio, V.; Stallone, G.; Infante, B.; Schena, A.; Rossini, M.; Maiorano, A.; Fiorentino, M.; Ditonno, P.; Lucarelli, G.; Battaglia, M.; et al. A single-center cohort study to define the role of pretransplant biopsy score in the long-term outcome of kidney transplantation. Transplantation 2014, 97, 934–939. [Google Scholar] [CrossRef]
- Franzin, R.; Stasi, A.; Fiorentino, M.; Stallone, G.; Cantaluppi, V.; Gesualdo, L.; Castellano, G. Inflammaging and Complement System: A Link Between Acute Kidney Injury and Chronic Graft Damage. Front. Immunol. 2020, 11, 734. [Google Scholar] [CrossRef]
- Rahamimov, R.; van Dijk, T.Y.; Molcho, M.; Lahav, I.; Mor, E.; Ben Dor, N.; Goldman, S.; Rozen-Zvi, B. Acute Kidney Injury and Long-Term Risk for Cardiovascular Events in Patients after Kidney Transplantation. Kidney Blood Press Res. 2019, 44, 1149–1157. [Google Scholar] [CrossRef]
- Masset, C.; Gautier-Vargas, G.; Cantarovich, D.; Ville, S.; Dantal, J.; Delbos, F.; Walencik, A.; Kerleau, C.; Hourmant, M.; Garandeau, C.; et al. Occurrence of De novo Donor-Specific Antibodies After COVID-19 in Kidney Transplant Recipients Is Low Despite Immunosuppression Modulation. Kidney Int. Rep. 2022, 7, 983–992. [Google Scholar] [CrossRef]
- Chewcharat, A.; Prasitlumkum, N.; Thongprayoon, C.; Bathini, T.; Medaura, J.; Vallabhajosyula, S.; Cheungpasitporn, W. Efficacy and Safety of SGLT-2 Inhibitors for Treatment of Diabetes Mellitus among Kidney Transplant Patients: A Systematic Review and Meta-Analysis. Med. Sci. 2020, 8, 47. [Google Scholar] [CrossRef]
- Sánchez Fructuoso, A.I.; Bedia Raba, A.; Banegas Deras, E.; Vigara Sánchez, L.A.; Valero San Cecilio, R.; Franco Esteve, A.; Cruzado Vega, L.; Gavela Martínez, E.; González Garcia, M.E.; Saurdy Coronado, P.; et al. Sodium-glucose cotransporter-2 inhibitor therapy in kidney transplant patients with type 2 or post-transplant diabetes: An observational multicentre study. Clin. Kidney J. 2023. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; McIntyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Kant, S.; Soman, S.; Choi, M.J.; Jaar, B.G.; Adey, D.B.; National Kidney Foundation Education Committee. Management of Hospitalized Kidney Transplant Recipients for Hospitalists and Internists. Am. J. Med. 2022, 135, 950–957. [Google Scholar] [CrossRef]
- Voora, S.; Adey, D.B. Management of Kidney Transplant Recipients by General Nephrologists: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 73, 866–879. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, Z.; Xu, J.; Luo, Z.; Teng, J.; Ding, X.; Zhao, S.; Xu, X. Proteinuria is a risk factor for acute kidney injury after cardiac surgery in patients with stages 3-4 chronic kidney disease: A case control study. BMC Cardiovasc. Disord. 2023, 23, 77. [Google Scholar] [CrossRef]
- Bagheri, S.M.; Tajalli, F.; Shahrokh, H.; Nasiri Partovi, M.; Azadian, N. Sonographic Indices in Patients with Severe Acute Tubular Necrosis during Early Post-Kidney Transplantation Period. Int. J. Organ. Transplant. Med. 2019, 10, 74–83. [Google Scholar]
- Kasiske, B.L.; Zeier, M.G.; Chapman, J.R.; Craig, J.C.; Ekberg, H.; Garvey, C.A.; Green, M.D.; Jha, V.; Josephson, M.A.; Kiberd, B.A.; et al. KDIGO clinical practice guideline for the care of kidney transplant recipients: A summary. Kidney Int. 2010, 77, 299–311. [Google Scholar] [CrossRef]
- Bellomo, R.; Cass, A.; Cole, L.; Finfer, S.; Gallagher, M.; Lo, S.; McArthur, C.; McGuinness, S.; Myburgh, J.; Norton, R.; et al. Intensity of continuous renal-replacement therapy in critically ill patients. N. Engl. J. Med. 2009, 361, 1627–1638. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorentino, M.; Bagagli, F.; Deleonardis, A.; Stasi, A.; Franzin, R.; Conserva, F.; Infante, B.; Stallone, G.; Pontrelli, P.; Gesualdo, L. Acute Kidney Injury in Kidney Transplant Patients in Intensive Care Unit: From Pathogenesis to Clinical Management. Biomedicines 2023, 11, 1474. https://doi.org/10.3390/biomedicines11051474
Fiorentino M, Bagagli F, Deleonardis A, Stasi A, Franzin R, Conserva F, Infante B, Stallone G, Pontrelli P, Gesualdo L. Acute Kidney Injury in Kidney Transplant Patients in Intensive Care Unit: From Pathogenesis to Clinical Management. Biomedicines. 2023; 11(5):1474. https://doi.org/10.3390/biomedicines11051474
Chicago/Turabian StyleFiorentino, Marco, Francesca Bagagli, Annamaria Deleonardis, Alessandra Stasi, Rossana Franzin, Francesca Conserva, Barbara Infante, Giovanni Stallone, Paola Pontrelli, and Loreto Gesualdo. 2023. "Acute Kidney Injury in Kidney Transplant Patients in Intensive Care Unit: From Pathogenesis to Clinical Management" Biomedicines 11, no. 5: 1474. https://doi.org/10.3390/biomedicines11051474
APA StyleFiorentino, M., Bagagli, F., Deleonardis, A., Stasi, A., Franzin, R., Conserva, F., Infante, B., Stallone, G., Pontrelli, P., & Gesualdo, L. (2023). Acute Kidney Injury in Kidney Transplant Patients in Intensive Care Unit: From Pathogenesis to Clinical Management. Biomedicines, 11(5), 1474. https://doi.org/10.3390/biomedicines11051474