Heart Rate Variability as a Translational Dynamic Biomarker of Altered Autonomic Function in Health and Psychiatric Disease
Abstract
:1. Introduction
1.1. Stress and the Stress System
1.2. The Autonomic Nervous System (ANS)
1.3. Central Autonomic Network (CAN)
2. The Autonomic Nervous System (ANS) and the Heart
3. Heart Rate Variability (HRV)
4. Heart Rate Variability Measures
4.1. Linear Measures
4.1.1. Time Domain Measures
4.1.2. Frequency Domain Measures
4.1.3. Geometrical Measures
4.2. Nonlinear Measures
5. Recommendations for HRV-Relevant ECG Recordings
6. Pathophysiological Implications
7. Neurobiophysiological Theoretical Models
7.1. The Polyvagal Theory
7.2. The Neurovisceral Integration Model
8. Clinical Implications
9. Research Implications
10. Future Directions
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chrousos, G.P.; Gold, P.W. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 1992, 267, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Chrousos, G.P. Stress and disorders of the stress system. Nat. Rev. Endocrinol. 2009, 5, 374–381. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S. Protective and damaging effects of stress mediators. New Engl. J. Med. 1998, 338, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Ulrich-Lai, Y.M.; Herman, J.P. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 2009, 10, 397–409. [Google Scholar] [CrossRef]
- Elenkov, I.J.; Chrousos, G.P. Stress system—Organization, physiology and immunoregulation. Neuroimmunomodulation 2006, 13, 257–267. [Google Scholar] [CrossRef]
- Agorastos, A.; Chrousos, G.P. The neuroendocrinology of stress: The stress-related continuum of chronic disease development. Mol. Psychiatry 2022, 27, 502–513. [Google Scholar] [CrossRef]
- Agorastos, A.; Nicolaides, N.C.; Bozikas, V.P.; Chrousos, G.P.; Pervanidou, P. Multilevel Interactions of Stress and Circadian System: Implications for Traumatic Stress. Front. Psychiatry 2019, 10, 1003. [Google Scholar] [CrossRef]
- Critchley, H.D. Neural mechanisms of autonomic, affective, and cognitive integration. J. Comp. Neurol. 2005, 493, 154–166. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. A model of neurovisceral integration in emotion regulation and dysregulation. J. Affect. Disord. 2000, 61, 201–216. [Google Scholar] [CrossRef]
- Thayer, J.F.; Sternberg, E. Beyond heart rate variability: Vagal regulation of allostatic systems. Ann. N. Y. Acad. Sci. 2006, 1088, 361–372. [Google Scholar] [CrossRef]
- Lipsitz, L.A.; Goldberger, A.L. Loss of ‘complexity’ and aging. Potential applications of fractals and chaos theory to senescence. JAMA 1992, 267, 1806–1809. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.K.; Buldyrev, S.V.; Hausdorff, J.M.; Havlin, S.; Mietus, J.E.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Non-equilibrium dynamics as an indispensable characteristic of a healthy biological system. Integr. Physiol. Behav. Sci. 1994, 29, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Furness, J.B. The organisation of the autonomic nervous system: Peripheral connections. Auton. Neurosci. 2006, 130, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, S. Comparative anatomy of the autonomic nervous system. Auton. Neurosci. 2011, 165, 3–9. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. The role of vagal function in the risk for cardiovascular disease and mortality. Biol. Psychol. 2007, 74, 224–242. [Google Scholar] [CrossRef]
- Shields, R.W., Jr. Functional anatomy of the autonomic nervous system. J. Clin. Neurophysiol. 1993, 10, 2–13. [Google Scholar] [CrossRef]
- Meyer, M.; Stiedl, O. Self-affine fractal variability of human heartbeat interval dynamics in health and disease. Eur. J. Appl. Physiol. 2003, 90, 305–316. [Google Scholar] [CrossRef]
- Beissner, F.; Meissner, K.; Bar, K.J.; Napadow, V. The autonomic brain: An activation likelihood estimation meta-analysis for central processing of autonomic function. J. Neurosci. 2013, 33, 10503–10511. [Google Scholar] [CrossRef]
- Agelink, M.W.; Klimke, A.; Cordes, J.; Sanner, D.; Kavuk, I.; Malessa, R.; Klieser, E.; Baumann, B. A functional-structural model to understand cardiac autonomic nervous system (ANS) dysregulation in affective illness and to elucidate the ANS effects of antidepressive treatment. Eur. J. Med. Res. 2004, 9, 37–50. [Google Scholar]
- Thayer, J.F.; Ahs, F.; Fredrikson, M.; Sollers, J.J., 3rd; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef]
- Saper, C.B. The central autonomic nervous system: Conscious visceral perception and autonomic pattern generation. Annu. Rev. Neurosci. 2002, 25, 433–469. [Google Scholar] [CrossRef] [PubMed]
- Saper, C.B. Central autonomic system. In The Rat Nervous System, 3rd ed.; Paxinos, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 761–796. [Google Scholar]
- Loewy, A.D.; Spyer, K.M. Central Regulation of Autonomic Functions; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Davis, A.M.; Natelson, B.H. Brain-heart interactions. The neurocardiology of arrhythmia and sudden cardiac death. Tex. Heart Inst. J. 1993, 20, 158–169. [Google Scholar] [PubMed]
- Stiedl, O.; Youn, J.; Jansen, R.F. Cardiovascular conditioning: Neural substrates. In Encyclopedia of Behavioral Neuroscience; Koob, G.F., LeMoal, M., Thompson, R.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 1, pp. 226–235. [Google Scholar]
- Thayer, J.F.; Lane, R.D. Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 2009, 33, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Benarroch, E.E. The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clin. Proc. 1993, 68, 988–1001. [Google Scholar] [CrossRef]
- Smit, A.A.; Wieling, W.; Karemaker, J.M. Clinical approach to cardiovascular reflex testing. Clin. Sci. 1996, 91 (Suppl. 1), 108–112. [Google Scholar] [CrossRef]
- La Rovere, M.T.; Bigger, J.T., Jr.; Marcus, F.I.; Mortara, A.; Schwartz, P.J. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet 1998, 351, 478–484. [Google Scholar] [CrossRef]
- Darwin, C. The Expression of the Emotions in Man and Animals; Harper Collins: New York, NY, USA, 1998. [Google Scholar]
- Thayer, J.F.; Mather, M.; Koenig, J. Stress and aging: A neurovisceral integration perspective. Psychophysiology 2021, 58, e13804. [Google Scholar] [CrossRef]
- Hill, L.K.; Hu, D.D.; Williams, D.P.; Sofletea, G.; Cochran, J.; Sollers, J.J., III; Thayer, J.F. Effects of autonomic innervation on the heart as a function of effector tissue—Biomed 2010. Biomed. Sci. Instrum. 2010, 46, 202–207. [Google Scholar]
- Wittling, W.; Block, A.; Schweiger, E.; Genzel, S. Hemisphere asymmetry in sympathetic control of the human myocardium. Brain Cogn. 1998, 38, 17–35. [Google Scholar] [CrossRef]
- Marieb, E.N. Human Anatomy and Physiology, 6th ed.; Pearson Benjamin Cummings: Upper Saddle River, NJ, USA, 2003. [Google Scholar]
- Wittling, W.; Block, A.; Genzel, S.; Schweiger, E. Hemisphere asymmetry in parasympathetic control of the heart. Neuropsychologia 1998, 36, 461–468. [Google Scholar] [CrossRef]
- Jose, A.D.; Collison, D. The normal range and determinants of the intrinsic heart rate in man. Cardiovasc. Res. 1970, 4, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.F.; Thews, G.; Lang, F. Physiologie des Menschen; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Baumert, J.H.; Frey, A.W.; Adt, M. Analysis of heart rate variability. Background, method, and possible use in anesthesia. Anaesthesist 1995, 44, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Kleiger, R.E.; Stein, P.K.; Bosner, M.S.; Rottman, J.N. Time domain measurements of heart rate variability. Cardiol. Clin. 1992, 10, 487–498. [Google Scholar] [CrossRef]
- Paton, J.F.; Boscan, P.; Pickering, A.E.; Nalivaiko, E. The yin and yang of cardiac autonomic control: Vago-sympathetic interactions revisited. Brain Res. Brain Res. Rev. 2005, 49, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability—Standards of measurement, physiological interpretation, and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Kobayashi, H.; Ishibashi, K.; Noguchi, H. Heart rate variability; an index for monitoring and analyzing human autonomic activities. Appl. Hum. Sci. J. Physiol. Anthropol. 1999, 18, 53–59. [Google Scholar] [CrossRef]
- Thayer, J.F.; Yamamoto, S.S.; Brosschot, J.F. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int. J. Cardiol. 2010, 141, 122–131. [Google Scholar] [CrossRef]
- Youn, J.; Hager, T.; Misane, I.; Pieneman, A.W.; Jansen, R.F.; Ogren, S.O.; Meyer, M.; Stiedl, O. Central 5-HT receptor-mediated modulation of heart rate dynamics and its adjustment by conditioned and unconditioned fear in mice. Br. J. Pharm. 2013, 170, 859–870. [Google Scholar] [CrossRef]
- Agorastos, A.; Kellner, M.; Baker, D.G.; Stiedl, O. Diminished vagal and/or increased sympathetic activity in post-traumatic stress disorder. In The Comprehensive Guide to Post-Traumatic Stress Disorders; Martin, C., Preedy, V.R., Patel, V.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Sassi, R.; Cerutti, S.; Lombardi, F.; Malik, M.; Huikuri, H.V.; Peng, C.K.; Schmidt, G.; Yamamoto, Y. Advances in heart rate variability signal analysis: Joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace 2015, 17, 1341–1353. [Google Scholar] [CrossRef]
- Billman, G.E. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front. Physiol. 2013, 4, 26. [Google Scholar] [CrossRef]
- Reyes del Paso, G.A.; Langewitz, W.; Mulder, L.J.; van Roon, A.; Duschek, S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on a reanalysis of previous studies. Psychophysiology 2013, 50, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.; Palaniswami, M.; Kamen, P. Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans. Biomed. Eng. 2001, 48, 1342–1347. [Google Scholar] [CrossRef] [PubMed]
- Guzik, P.; Piskorski, J.; Krauze, T.; Schneider, R.; Wesseling, K.H.; Wykretowicz, A.; Wysocki, H. Correlations between the Poincare plot and conventional heart rate variability parameters assessed during paced breathing. J. Physiol. Sci. 2007, 57, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995, 5, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M. Fractal scaling of heart rate dynamics in health and disease. In Fractals in Biology and Medicine; Losa, G.A., Merlini, D., Nonnenmacher, T.F., Weibel, E.R., Eds.; Birkhäuser: Basel, Switzerland, 2002; Volume III, pp. 181–193. [Google Scholar]
- Stiedl, O.; Jansen, R.F.; Pieneman, A.W.; Ogren, S.O.; Meyer, M. Assessing aversive emotional states through the heart in mice: Implications for cardiovascular dysregulation in affective disorders. Neurosci. Biobehav. Rev. 2009, 33, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Baumert, M.; Baier, V.; Haueisen, J.; Wessel, N.; Meyerfeldt, U.; Schirdewan, A.; Voss, A. Forecasting of life threatening arrhythmias using the compression entropy of heart rate. Methods Inf. Med. 2004, 43, 202–206. [Google Scholar] [CrossRef]
- Aubert, A.E.; Vandeput, S.; Beckers, F.; Liu, J.; Verheyden, B.; Van Huffel, S. Complexity of cardiovascular regulation in small animals. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2009, 367, 1239–1250. [Google Scholar] [CrossRef]
- Ivanov, P.C.; Amaral, L.A.; Goldberger, A.L.; Havlin, S.; Rosenblum, M.G.; Struzik, Z.R.; Stanley, H.E. Multifractality in human heartbeat dynamics. Nature 1999, 399, 461–465. [Google Scholar] [CrossRef]
- Vandendriessche, B.; Peperstraete, H.; Rogge, E.; Cauwels, P.; Hoste, E.; Stiedl, O.; Brouckaert, P.; Cauwels, A. A multiscale entropy-based tool for scoring severity of systemic inflammation. Crit. Care Med. 2014, 42, e560–e569. [Google Scholar] [CrossRef]
- Sgoifo, A.; Carnevali, L.; Alfonso Mde, L.; Amore, M. Autonomic dysfunction and heart rate variability in depression. Stress 2015, 18, 343–352. [Google Scholar] [CrossRef]
- Falconer, E.; Bryant, R.; Felmingham, K.L.; Kemp, A.H.; Gordon, E.; Peduto, A.; Olivieri, G.; Williams, L.M. The neural networks of inhibitory control in posttraumatic stress disorder. J. Psychiatry Neurosci. 2008, 33, 413–422. [Google Scholar] [PubMed]
- Surges, R.; Thijs, R.D.; Tan, H.L.; Sander, J.W. Sudden unexpected death in epilepsy: Risk factors and potential pathomechanisms. Nat. Rev. Neurol. 2009, 5, 492–504. [Google Scholar] [CrossRef] [PubMed]
- Kemp, A.H.; Quintana, D.S. The relationship between mental and physical health: Insights from the study of heart rate variability. Int. J. Psychophysiol. 2013, 89, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Kemp, A.H.; Quintana, D.S.; Gray, M.A.; Felmingham, K.L.; Brown, K.; Gatt, J.M. Impact of depression and antidepressant treatment on heart rate variability: A review and meta-analysis. Biol. Psychiatry 2010, 67, 1067–1074. [Google Scholar] [CrossRef]
- Bedi, U.S.; Arora, R. Cardiovascular manifestations of posttraumatic stress disorder. J. Natl. Med. Assoc. 2007, 99, 642–649. [Google Scholar]
- Boscarino, J.A. Posttraumatic stress disorder and physical illness: Results from clinical and epidemiologic studies. Ann. N. Y. Acad. Sci. 2004, 1032, 141–153. [Google Scholar] [CrossRef]
- Boscarino, J.A. A prospective study of PTSD and early-age heart disease mortality among Vietnam veterans: Implications for surveillance and prevention. Psychosom. Med. 2008, 70, 668–676. [Google Scholar] [CrossRef]
- Gorman, J.M.; Sloan, R.P. Heart rate variability in depressive and anxiety disorders. Am. Heart J. 2000, 140, 77–83. [Google Scholar] [CrossRef]
- Carney, R.M.; Freedland, K.E.; Veith, R.C. Depression, the autonomic nervous system, and coronary heart disease. Psychosom. Med. 2005, 67 (Suppl. 1), S29–S33. [Google Scholar] [CrossRef]
- Harrison, N.A.; Cooper, E.; Voon, V.; Miles, K.; Critchley, H.D. Central autonomic network mediates cardiovascular responses to acute inflammation: Relevance to increased cardiovascular risk in depression? Brain Behav. Immun. 2013, 31, 189–196. [Google Scholar] [CrossRef]
- Kamphuis, M.H.; Geerlings, M.I.; Dekker, J.M.; Giampaoli, S.; Nissinen, A.; Grobbee, D.E.; Kromhout, D. Autonomic dysfunction: A link between depression and cardiovascular mortality? The FINE Study. Eur. J. Cardiovasc. Prev. Rehabil. 2007, 14, 796–802. [Google Scholar] [CrossRef]
- Steptoe, A.; Brydon, L. Emotional triggering of cardiac events. Neurosci. Biobehav. Rev. 2009, 33, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, M.R.; Steptoe, A. Emotional triggers of acute coronary syndromes: Strength of evidence, biological processes, and clinical implications. Prog. Cardiovasc. Dis. 2007, 49, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Hotta, H.; Uchida, S. Aging of the autonomic nervous system and possible improvements in autonomic activity using somatic afferent stimulation. Geriatr. Gerontol. Int. 2010, 10 (Suppl. 1), S127–S136. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.; Ray, L.B.; Bujaki, B.; Parvaresh, A.; Palamarchuk, I.; De Koninck, J.; Douglass, A.; Lee, E.K.; Soucy, L.J.; Fogel, S.; et al. Using heart rate profiles during sleep as a biomarker of depression. BMC Psychiatry 2019, 19, 168. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Su, M.I.; Liu, C.W.; Huang, Y.C.; Huang, W.L. Heart rate variability in patients with anxiety disorders: A systematic review and meta-analysis. Psychiatry Clin. Neurosci. 2022, 76, 292–302. [Google Scholar] [CrossRef]
- Clamor, A.; Lincoln, T.M.; Thayer, J.F.; Koenig, J. Resting vagal activity in schizophrenia: Meta-analysis of heart rate variability as a potential endophenotype. Br. J. Psychiatry 2016, 208, 9–16. [Google Scholar] [CrossRef]
- Chalmers, J.A.; Quintana, D.S.; Abbott, M.J.; Kemp, A.H. Anxiety Disorders are Associated with Reduced Heart Rate Variability: A Meta-Analysis. Front. Psychiatry 2014, 5, 80. [Google Scholar] [CrossRef]
- Ge, F.; Yuan, M.; Li, Y.; Zhang, W. Posttraumatic Stress Disorder and Alterations in Resting Heart Rate Variability: A Systematic Review and Meta-Analysis. Psychiatry Investig. 2020, 17, 9–20. [Google Scholar] [CrossRef]
- Schiweck, C.; Piette, D.; Berckmans, D.; Claes, S.; Vrieze, E. Heart rate and high frequency heart rate variability during stress as biomarker for clinical depression. A systematic review. Psychol. Med. 2019, 49, 200–211. [Google Scholar] [CrossRef]
- Benjamin, B.R.; Valstad, M.; Elvsashagen, T.; Jonsson, E.G.; Moberget, T.; Winterton, A.; Haram, M.; Hoegh, M.C.; Lagerberg, T.V.; Steen, N.E.; et al. Heart rate variability is associated with disease severity in psychosis spectrum disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 111, 110108. [Google Scholar] [CrossRef] [PubMed]
- Agorastos, A.; Stiedl, O.; Heinig, A.; Sommer, A.; Hager, T.; Freundlieb, N.; Schruers, K.R.; Demiralay, C. Inverse autonomic stress reactivity in depressed patients with and without prior history of depression. J. Psychiatr. Res. 2020, 131, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, R.; Schmidt, F.M.; Sander, C.; Hegerl, U. Heart Rate Variability as Indicator of Clinical State in Depression. Front. Psychiatry 2018, 9, 735. [Google Scholar] [CrossRef]
- Kircanski, K.; Williams, L.M.; Gotlib, I.H. Heart rate variability as a biomarker of anxious depression response to antidepressant medication. Depress. Anxiety 2019, 36, 63–71. [Google Scholar] [CrossRef]
- Forte, G.; Favieri, F.; Casagrande, M. Heart Rate Variability and Cognitive Function: A Systematic Review. Front. Neurosci. 2019, 13, 710. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Baek, J.H.; Cho, Y.J.; Hong, K.S. Association of Resting Heart Rate and Heart Rate Variability with Proximal Suicidal Risk in Patients with Diverse Psychiatric Diagnoses. Front. Psychiatry 2021, 12, 652340. [Google Scholar] [CrossRef]
- Bazelmans, T.; Jones, E.J.H.; Ghods, S.; Corrigan, S.; Toth, K.; Charman, T.; Webb, S.J. Heart rate mean and variability as a biomarker for phenotypic variation in preschoolers with autism spectrum disorder. Autism Res. 2019, 12, 39–52. [Google Scholar] [CrossRef]
- Olbrich, H.; Jahn, I.; Stengler, K.; Seifritz, E.; Colla, M. Heart rate variability in obsessive compulsive disorder in comparison to healthy controls and as predictor of treatment response. Clin. Neurophysiol. 2022, 138, 123–131. [Google Scholar] [CrossRef]
- Kaminsky, M.J.; McCabe, O.L.; Langlieb, A.; Everly, G.S., Jr. An evidence-informed model of human resistance, resilience, & recovery: The Johns Hopkins’ outcomes-driven paradigm for disaster mental health services. Brief. Ther. Crisis Interv. 2007, 7, 1–11. [Google Scholar]
- Cattaneo, L.A.; Franquillo, A.C.; Grecucci, A.; Beccia, L.; Caretti, V.; Dadomo, H. Is Low Heart Rate Variability Associated with Emotional Dysregulation, Psychopathological Dimensions, and Prefrontal Dysfunctions? An Integrative View. J. Pers. Med. 2021, 11, 872. [Google Scholar] [CrossRef]
- Porges, S.W. The Polyvagal Theory: Neurophysiological Foundations of Emotions, Attachment, Communication, and Self-Regulation; W. W. Norton: New York, NY, USA, 2011. [Google Scholar]
- Porges, S.W. The polyvagal perspective. Biol. Psychol. 2007, 74, 116–143. [Google Scholar] [CrossRef] [PubMed]
- Barbier, A.; Chen, J.H.; Huizinga, J.D. Autism Spectrum Disorder in Children Is Not Associated with Abnormal Autonomic Nervous System Function: Hypothesis and Theory. Front. Psychiatry 2022, 13, 830234. [Google Scholar] [CrossRef] [PubMed]
- Wulsin, L.; Herman, J.; Thayer, J.F. Stress, autonomic imbalance, and the prediction of metabolic risk: A model and a proposal for research. Neurosci. Biobehav. Rev. 2018, 86, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Chauntry, A.J.; Bishop, N.C.; Hamer, M.; Paine, N.J. Sedentary behaviour, physical activity and psychobiological stress reactivity: A systematic review. Biol. Psychol. 2022, 172, 108374. [Google Scholar] [CrossRef] [PubMed]
- Kosel, M.; Schlaepfer, T.E. Beyond the treatment of epilepsy: New applications of vagus nerve stimulation in psychiatry. CNS Spectr. 2003, 8, 515–521. [Google Scholar] [CrossRef]
- Groves, D.A.; Brown, V.J. Vagal nerve stimulation: A review of its applications and potential mechanisms that mediate its clinical effects. Neurosci. Biobehav. Rev. 2005, 29, 493–500. [Google Scholar] [CrossRef]
- Mauskop, A. Vagus nerve stimulation relieves chronic refractory migraine and cluster headaches. Cephalalgia 2005, 25, 82–86. [Google Scholar] [CrossRef]
- Agorastos, A.; Kellner, M.; Stiedl, O.; Muhtz, C.; Becktepe, J.S.; Wiedemann, K.; Demiralay, C. The 5-HTTLPR genotype modulates heart rate variability and its adjustment by pharmacological panic challenge in healthy men. J. Psychiatr. Res. 2014, 50, 51–58. [Google Scholar] [CrossRef]
- Agorastos, A.; Kellner, M.; Stiedl, O.; Muhtz, C.; Wiedemann, K.; Demiralay, C. Blunted autonomic reactivity to pharmacological panic challenge under long-term escitalopram treatment in healthy men. Int. J. Neuropsychopharmacol. 2015, 18, pyu053. [Google Scholar] [CrossRef] [PubMed]
- Agorastos, A.; Demiralay, C.; Stiedl, O.; Muhtz, C.; Wiedemann, K.; Kellner, M. Metabotropic glutamate2/3 receptor agonism facilitates autonomic recovery after pharmacological panic challenge in healthy humans. Int. Clin. Psychopharmacol. 2016, 31, 176–178. [Google Scholar] [CrossRef]
- Agorastos, A.; Heinig, A.; Stiedl, O.; Hager, T.; Sommer, A.; Muller, J.C.; Schruers, K.R.; Wiedemann, K.; Demiralay, C. Vagal effects of endocrine HPA axis challenges on resting autonomic activity assessed by heart rate variability measures in healthy humans. Psychoneuroendocrinology 2019, 102, 196–203. [Google Scholar] [CrossRef]
- Koolhaas, J.M.; Bartolomucci, A.; Buwalda, B.; de Boer, S.F.; Flugge, G.; Korte, S.M.; Meerlo, P.; Murison, R.; Olivier, B.; Palanza, P.; et al. Stress revisited: A critical evaluation of the stress concept. Neurosci. Biobehav. Rev. 2011, 35, 1291–1301. [Google Scholar] [CrossRef]
- Cowan, M.J.; Pike, K.; Burr, R.L.; Cain, K.C.; Narayanan, S.B. Description of time- and frequency- domain-based measures of heart rate variability in individuals taking antiarrhythmics, beta blockers, calcium channel blockers, and/or antihypertensive drugs after sudden cardiac arrest. J. Electrocardiol. 1993, 26, 1–13. [Google Scholar]
- Pitzalis, M.V.; Mastropasqua, F.; Massari, F.; Forleo, C.; Passantino, A.; Colombo, R.; Totaro, P.; Rizzon, P. Effects of hydrophilic and lipophilic beta-blockers on heart rate variability and baroreflex sensitivity in normal subjects. Pacing Clin. Electrophysiol. 1998, 21, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Saleem, S.; Khandoker, A.H.; Alkhodari, M.; Hadjileontiadis, L.J.; Jelinek, H.F. Investigating the effects of beta-blockers on circadian heart rhythm using heart rate variability in ischemic heart disease with preserved ejection fraction. Sci. Rep. 2023, 13, 5828. [Google Scholar] [CrossRef] [PubMed]
- Elghozi, J.L.; Julien, C. Sympathetic control of short-term heart rate variability and its pharmacological modulation. Fundam. Clin. Pharm. 2007, 21, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Malfatto, G.; Facchini, M.; Sala, L.; Branzi, G.; Bragato, R.; Leonetti, G. Effects of cardiac rehabilitation and beta-blocker therapy on heart rate variability after first acute myocardial infarction. Am. J. Cardiol. 1998, 81, 834–840. [Google Scholar] [CrossRef]
- Cohen, H.; Matar, M.A.; Kaplan, Z.; Kotler, M. Power spectral analysis of heart rate variability in psychiatry. Psychother. Psychosom. 1999, 68, 59–66. [Google Scholar] [CrossRef]
- Bourassa, K.J.; Hendrickson, R.C.; Reger, G.M.; Norr, A.M. Posttraumatic Stress Disorder Treatment Effects on Cardiovascular Physiology: A Systematic Review and Agenda for Future Research. J. Trauma Stress. 2021, 34, 384–393. [Google Scholar] [CrossRef]
- Huffman, J.C.; Stern, T.A. Neuropsychiatric consequences of cardiovascular medications. Dialogues Clin. Neurosci. 2007, 9, 29–45. [Google Scholar] [CrossRef]
- Minassian, A.; Geyer, M.A.; Baker, D.G.; Nievergelt, C.M.; O’Connor, D.T.; Risbrough, V.B. Heart rate variability characteristics in a large group of active-duty marines and relationship to posttraumatic stress. Psychosom. Med. 2014, 76, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Roenneberg, T.; Merrow, M. The network of time: Understanding the molecular circadian system. Curr. Biol. 2003, 13, R198–R207. [Google Scholar] [CrossRef]
- Takahashi, J.S.; Shimomura, K.; Kumar, V. Searching for genes underlying behavior: Lessons from circadian rhythms. Science 2008, 322, 909–912. [Google Scholar] [CrossRef] [PubMed]
- Gan, E.H.; Quinton, R. Physiological significance of the rhythmic secretion of hypothalamic and pituitary hormones. Prog. Brain Res. 2010, 181, 111–126. [Google Scholar] [CrossRef]
- Germain, A.; Buysse, D.J.; Nofzinger, E. Sleep-specific mechanisms underlying posttraumatic stress disorder: Integrative review and neurobiological hypotheses. Sleep Med. Rev. 2008, 12, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.G.; Jones, C.; Schmidt, D.A. Sleep and posttraumatic stress disorder: A review. Clin. Psychol. Rev. 2003, 23, 377–407. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.G.; West, S.A.; Nicholson, W.E.; Ekhator, N.N.; Kasckow, J.W.; Hill, K.K.; Bruce, A.B.; Orth, D.N.; Geracioti, T.D., Jr. Serial CSF corticotropin-releasing hormone levels and adrenocortical activity in combat veterans with posttraumatic stress disorder. Am. J. Psychiatry 1999, 156, 585–588. [Google Scholar] [CrossRef]
- Stiedl, O.; Meyer, M.; Jahn, O.; Ogren, S.O.; Spiess, J. Corticotropin-releasing factor receptor 1 and central heart rate regulation in mice during expression of conditioned fear. J. Pharm. Exp. 2005, 312, 905–916. [Google Scholar] [CrossRef]
- Ginty, A.T.; Kraynak, T.E.; Fisher, J.P.; Gianaros, P.J. Cardiovascular and autonomic reactivity to psychological stress: Neurophysiological substrates and links to cardiovascular disease. Auton. Neurosci. 2017, 207, 2–9. [Google Scholar] [CrossRef]
- Thayer, J.F.; Brosschot, J.F. Psychosomatics and psychopathology: Looking up and down from the brain. Psychoneuroendocrinology 2005, 30, 1050–1058. [Google Scholar] [CrossRef]
- Beauchaine, T.P.; Thayer, J.F. Heart rate variability as a transdiagnostic biomarker of psychopathology. Int. J. Psychophysiol. 2015, 98, 338–350. [Google Scholar] [CrossRef] [PubMed]
- Stiedl, O.; Meyer, M. Fractal dynamics in circadian cardiac time series of corticotropin-releasing factor receptor subtype-2 deficient mice. J. Math. Biol. 2003, 47, 169–197. [Google Scholar] [CrossRef] [PubMed]
Variable | Units | Description |
---|---|---|
Time domain, statistical measures | ||
NN interval | ms | Normalized time between two heartbeat QRS events after excluding unreliable QRS intervals |
SDNN | ms | Standard deviation of all NN intervals |
SDANN | ms | Standard deviation of the averages of NN intervals in all 5 min segments of the recording |
RMSSD | ms | The square root of the mean of differences between adjacent NN intervals |
SDNN index | ms | Mean of the standard deviations of all NN intervals for all 5 min segments of the recording |
SDSD | ms | Standard deviation of differences between adjacent NN intervals |
NN50 count | Number of pairs of adjacent NN intervals differing by more than 50 ms in the entire recording | |
NN50 | % | NN50 count divided by the total number of all NN intervals |
Time domain, geometric measures | ||
Triangular index (HRV) | Total number of all NN intervals divided by the height of the histogram of all NN intervals measured on a discrete scale with bins of 1/128 s | |
TINN | ms | Baseline width of the minimum square difference triangular interpolation of the highest peak of the histogram of all NN intervals |
Differential index | ms | Difference between the widths of the histogram of differences between adjacent NN intervals measured at selected heights |
Logarithmic index | ms−1 | Coefficient f of the exponential curve ke−ϕt, which is the best approximation of the histogram of absolute differences between adjacent NN intervals |
Frequency domain, short-term recordings (5 min) | ||
Total power | ms2 | Variance of all NN intervals (≈≤0.4 Hz) |
VLF | ms2 | Power in VLF range (f ≤ 0.04 Hz) |
LF | ms2 | Power in LF range (0.04 ≤ f ≤ 0.15 Hz) |
LF norm | LF power in normalized units: LF/(Total power—VLF) × 100 | |
HF | ms2 | Power in HF range (0.15 ≤ f ≤ 0.4 Hz) |
HF norm | HF power in normalized units: HF/(Total power—VLF) × 100 | |
LF/HF | Ratio LF/HF—(Inaccurate) Index of sympatho-vagal balance | |
Frequency domain, long-term recordings (24 h) | ||
Total power | ms2 | Variance of all NN intervals (≈≤0.4 Hz) |
ULF | ms2 | Power in the ULF range (f ≤ 0.003 Hz) |
VLF | ms2 | Power in the VLF range (0.003 ≤ f ≤ 0.04 Hz) |
LF | ms2 | Power in the LF range (0.04 ≤ f ≤ 0.15 Hz) |
HF | ms2 | Power in the HF range (0.15 ≤ f ≤ 0.4 Hz) |
α | Slope of the linear interpolation of the spectrum in a log-log scale (f ≤ 0.01 Hz) | |
Nonlinear Domain—Unifractal | ||
αfast, αslow | Scaling coefficients of the detrended fluctuation analysis (DFA) with regard to short- (αfast) and long-term correlation (αslow) | |
Nonlinear Domain—Multifractal | ||
τ(q) | Multifractal spectrum |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agorastos, A.; Mansueto, A.C.; Hager, T.; Pappi, E.; Gardikioti, A.; Stiedl, O. Heart Rate Variability as a Translational Dynamic Biomarker of Altered Autonomic Function in Health and Psychiatric Disease. Biomedicines 2023, 11, 1591. https://doi.org/10.3390/biomedicines11061591
Agorastos A, Mansueto AC, Hager T, Pappi E, Gardikioti A, Stiedl O. Heart Rate Variability as a Translational Dynamic Biomarker of Altered Autonomic Function in Health and Psychiatric Disease. Biomedicines. 2023; 11(6):1591. https://doi.org/10.3390/biomedicines11061591
Chicago/Turabian StyleAgorastos, Agorastos, Alessandra C. Mansueto, Torben Hager, Eleni Pappi, Angeliki Gardikioti, and Oliver Stiedl. 2023. "Heart Rate Variability as a Translational Dynamic Biomarker of Altered Autonomic Function in Health and Psychiatric Disease" Biomedicines 11, no. 6: 1591. https://doi.org/10.3390/biomedicines11061591
APA StyleAgorastos, A., Mansueto, A. C., Hager, T., Pappi, E., Gardikioti, A., & Stiedl, O. (2023). Heart Rate Variability as a Translational Dynamic Biomarker of Altered Autonomic Function in Health and Psychiatric Disease. Biomedicines, 11(6), 1591. https://doi.org/10.3390/biomedicines11061591