Adiponectin Alleviates Cell Injury due to Cerebrospinal Fluid from Multiple Sclerosis Patients by Inhibiting Oxidative Stress and Proinflammatory Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient’s
2.2. Cell Culture
2.3. MTT Cell Viability Assay
2.4. LDH Release Assay
2.5. NO Determination
2.6. RNA Extraction and Quantitative Real Time-PCR
2.7. Statistical Analysis
3. Results
3.1. CSF from MS Patients Reduces Neuronal and Glial Cell Viability
3.2. Effects of AdipoRon Treatment on the Viability SH-SY5Y and U-87 Cells
3.3. AdipoRon Ameliorates the Cytotoxic Effects on Cell Viability Induced by MS-CSF
3.4. AdipoRon Ameliorates MS-CSF-Induced Nitric Oxide Release
3.5. AdipoRon Alleviates the MS-CSF Effects on the mRNA Levels of TNF-α, INF-γ, and IL-10
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Matthews, P.M.; Gupta, D.; Mittal, D.; Bai, W.; Scalfari, A.; Pollock, K.G.; Sharma, V.; Hill, N. The association between brain volume loss and disability in multiple sclerosis: A systematic review. Mult. Scler. Relat. Disord. 2023, 74, 104714. [Google Scholar] [CrossRef] [PubMed]
- Walton, C.; King, R.; Rechtman, L.; Kaye, W.; Leray, E.; Marrie, R.A.; Robertson, N.; La Rocca, N.; Uitdehaag, B.; Van Der Mei, I.; et al. Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Mult. Scler. J. 2020, 26, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Dighriri, I.M.; Aldalbahi, A.A.; Albeladi, F.; Tahiri, A.A.; Kinani, E.M.; Almohsen, R.A.; Alamoudi, N.H.; Alanazi, A.A.; Alkhamshi, S.J.; Althomali, N.A.; et al. An Overview of the History, Pathophysiology, and Pharmacological Interventions of Multiple Sclerosis. Cureus 2023, 15, e33242. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, P.G.E.; George, W.; Yu, X. The Possible Role of Neural Cell Apoptosis in Multiple Sclerosis. Int. J. Mol. Sci. 2022, 23, 7584. [Google Scholar] [CrossRef] [PubMed]
- Pegoretti, V.; Swanson, K.A.; Bethea, J.R.; Probert, L.; Eisel, U.L.M.; Fischer, R. Inflammation and Oxidative Stress in Multiple Sclerosis: Consequences for Therapy Development. Oxidative Med. Cell. Longev. 2020, 2020, 7191080. [Google Scholar] [CrossRef]
- Gresa-Arribas, N.; Viéitez, C.; Dentesano, G.; Serratosa, J.; Saura, J.; Solà, C. Modelling neuroinflammation in vitro: A tool to test the po-tential neuroprotective effect of anti-inflammatory agents. PLoS ONE 2012, 7, e45227. [Google Scholar] [CrossRef] [Green Version]
- Hagman, S.; Mäkinen, A.; Ylä-Outinen, L.; Huhtala, H.; Elovaara, I.; Narkilahti, S. Effects of inflammatory cytokines IFN-γ, TNF-α and IL-6 on the viability and functionality of human pluripotent stem cell-derived neural cells. J. Neuroimmunol. 2019, 331, 36–45. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Dai, S.; Yang, Y.; Wei, J.; Li, X.; Luo, P.; Jiang, X. Role of Sirtuin 3 in Degenerative Diseases of the Central Nervous System. Biomolecules 2023, 13, 735. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J.; Chen, D.; Yan, L.; Zheng, W. Sirtuin Inhibition: Strategies, Inhibitors, and Therapeutic Potential. Trends Pharmacol. Sci. 2017, 38, 459–472. [Google Scholar] [CrossRef]
- Rice, C.M.; Sun, M.; Kemp, K.; Gray, E.; Wilkins, A.; Scolding, N.J. Mitochondrial sirtuins—A new therapeutic target for repair and protection in multiple sclerosis. Eur. J. Neurosci. 2012, 35, 1887–1893. [Google Scholar] [CrossRef]
- Jaganathan, R.; Ravindran, R.; Dhanasekaran, S. Emerging Role of Adipocytokines in Type 2 Diabetes as Mediators of Insulin Resistance and Cardiovascular Disease. Can. J. Diabetes 2018, 42, 446–456.e1. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, P. The role of adipokines in chronic inflammation. ImmunoTargets Ther. 2016, 5, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correale, J.; Marrodan, M. Multiple sclerosis and obesity: The role of adipokines. Front. Immunol. 2022, 13, 1038393. [Google Scholar] [CrossRef] [PubMed]
- Corvera, S. Cellular Heterogeneity in Adipose Tissues. Annu. Rev. Physiol. 2021, 83, 257–278. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Redondo-Flórez, L.; Beltrán-Velasco, A.I.; Martín-Rodríguez, A.; Martínez-Guardado, I.; Navarro-Jiménez, E.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. The Role of Adipokines in Health and Disease. Biomedicines 2023, 11, 1290. [Google Scholar] [CrossRef] [PubMed]
- Corbi, G.; Polito, R.; Monaco, M.L.; Cacciatore, F.; Scioli, M.; Ferrara, N.; Daniele, A.; Nigro, E. Adiponectin Expression and Genotypes in Italian People with Severe Obesity Undergone a Hypocaloric Diet and Physical Exercise Program. Nutrients 2019, 11, 2195. [Google Scholar] [CrossRef] [Green Version]
- Polito, R.; Nigro, E.; Pecoraro, A.; Monaco, M.L.; Perna, F.; Sanduzzi, A.; Genovese, A.; Spadaro, G.; Daniele, A. Adiponectin Receptors and Pro-inflammatory Cytokines Are Modulated in Common Variable Immunodeficiency Patients: Correlation with Ig Re-placement Therapy. Front. Immunol. 2019, 10, 2812. [Google Scholar] [CrossRef]
- Pecoraro, A.; Nigro, E.; Polito, R.; Monaco, M.L.; Scudiero, O.; Mormile, I.; Cesoni Marcelli, A.; Capasso, M.; Habetswallner, F.; Genovese, A.; et al. Total and High Molecular Weight Adiponectin Expression Is Decreased in Patients with Common Variable Im-munodeficiency: Correlation with Ig Replacement Therapy. Front. Immunol. 2017, 8, 895. [Google Scholar] [CrossRef] [Green Version]
- Khoramipour, K.; Chamari, K.; Hekmatikar, A.A.; Ziyaiyan, A.; Taherkhani, S.; Elguindy, N.M.; Bragazzi, N.L. Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients 2021, 13, 1180. [Google Scholar] [CrossRef]
- Signoriello, E.; Mallardo, M.; Nigro, E.; Polito, R.; Casertano, S.; Di Pietro, A.; Coletta, M.; Monaco, M.L.; Rossi, F.; Lus, G.; et al. Adiponectin in Cerebrospinal Fluid from Patients Affected by Multiple Sclerosis Is Correlated with the Progression and Severity of Disease. Mol. Neurobiol. 2021, 58, 2671. [Google Scholar] [CrossRef]
- Keyhanian, K.; Saxena, S.; Gombolay, G.; Healy, B.C.; Misra, M.; Chitnis, T. Adipokines are associated with pediatric multiple sclerosis risk and course. Mult. Scler. Relat. Disord. 2019, 36, 101384. [Google Scholar] [CrossRef] [PubMed]
- Cambil-Martín, J.; Galiano-Castillo, N.; Muñoz-Hellín, E.; Díaz-Rodríguez, L.; Laguarta-Val, S.; Fernández-De-Las-Peñas, C.; Arroyo-Morales, M. Influence of body mass index on psychological and functional outcomes in patients with multiple sclerosis: A cross-sectional study. Nutr. Neurosci. 2014, 19, 79–85. [Google Scholar] [CrossRef]
- Marrie, R.A.; Horwitz, R.I.; Cutter, G.; Tyry, T.; Vollmer, T. Association between comorbidity and clinical characteristics of MS. Acta Neurol. Scand. 2010, 124, 135–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigro, E.; Pecoraro, M.T.; Formato, M.; Piccolella, S.; Ragucci, S.; Mallardo, M.; Russo, R.; Di Maro, A.; Daniele, A.; Pacifico, S. Cannabidiolic acid in Hemp Seed Oil Table Spoon and Beyond. Molecules 2022, 27, 2566. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.W.; Lee, J.Y.; Shim, W.S.; Kang, E.S.; Kim, J.S.; Ahn, C.W.; Lee, H.C.; Cha, B.S. Adiponectin protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity. Biochem. Biophys. Res. Commun. 2006, 343, 564–570. [Google Scholar] [CrossRef]
- Smith, K.J.; Lassmann, H. The role of nitric oxide in multiple sclerosis. Lancet Neurol. 2002, 1, 232–241. [Google Scholar] [CrossRef]
- Cristofanilli, M.; Cymring, B.; Lu, A.; Rosenthal, H.; Sadiq, S. Cerebrospinal fluid derived from progressive multiple sclerosis patients promotes neuronal and oligodendroglial differentiation of human neural precursor cells in vitro. Neuroscience 2013, 250, 614–621. [Google Scholar] [CrossRef]
- Neumeier, M.; Weigert, J.; Buettner, R.; Wanninger, J.; Schäffler, A.; Müller, A.M.; Killian, S.; Sauerbruch, S.; Schlachetzki, F.; Steinbrecher, A.; et al. Detection of adiponectin in cerebrospinal fluid in humans. Am. J. Physiol. Metab. 2007, 293, E965–E969. [Google Scholar] [CrossRef] [Green Version]
- Gremese, E.; Tolusso, B.; Gigante, M.R.; Ferraccioli, G. Obesity as a Risk and Severity Factor in Rheumatic Diseases (Autoimmune Chronic Inflammatory Diseases). Front. Immunol. 2014, 5, 576. [Google Scholar] [CrossRef] [Green Version]
- Kraszula, L.; Jasińska, A.; Eusebio, M.; Kuna, P.; Głąbiński, A.; Pietruczuk, M. Evaluation of the relationship between leptin, resistin, ad-iponectin and natural regulatory T cells in relapsing-remitting multiple sclerosis. Neurol. Neurochir. Pol. 2012, 46, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Musabak, U.; Demirkaya, S.; Genç, G.; Ilikci, R.S.; Odabasi, Z. Serum Adiponectin, TNF-α, IL-12p70, and IL-13 Levels in Multiple Sclerosis and the Effects of Different Therapy Regimens. Neuroimmunomodulation 2010, 18, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Signoriello, E.; Lus, G.; Polito, R.; Casertano, S.; Scudiero, O.; Coletta, M.; Monaco, M.L.; Rossi, F.; Nigro, E.; Daniele, A. Adiponectin profile at baseline is correlated to progression and severity of multiple sclerosis. Eur. J. Neurol. 2018, 26, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Salim, S. Oxidative Stress and the Central Nervous System. J. Pharmacol. Exp. Ther. 2017, 360, 201–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, G.; Maes, M. Oxidative/nitrosative stress and immuno-inflammatory pathways in depression: Treatment implications. Curr. Pharm. Des. 2014, 20, 3812–3847. [Google Scholar] [CrossRef]
- Yuceyar, N.; Taşkiran, D.; Sağduyu, A. Serum and cerebrospinal fluid nitrite and nitrate levels in relapsingremitting and secondary pro-gressive multiple sclerosis patients. Clin. Neurol. Neurosurg. 2001, 103, 206–211. [Google Scholar] [CrossRef]
- Kunkl, M.; Frascolla, S.; Amormino, C.; Volpe, E.; Tuosto, L. T Helper Cells: The Modulators of Inflammation in Multiple Sclerosis. Cells 2020, 9, 482. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Guo, Y.; Ge, Z.; Zhang, Z.; Da, Y.; Li, W.; Zhang, Z.; Xue, Z.; Li, Y.; Ren, Y.; et al. Adiponectin Suppresses T Helper 17 Cell Differentiation and Limits Autoimmune CNS Inflammation via the SIRT1/PPARγ/RORγt Pathway. Mol. Neurobiol. 2017, 54, 4908–4920. [Google Scholar] [CrossRef]
- Piccio, L.; Cantoni, C.; Henderson, J.G.; Hawiger, D.; Ramsbottom, M.; Mikesell, R.; Ryu, J.; Hsieh, C.-S.; Cremasco, V.; Haynes, W.; et al. Lack of adiponectin leads to increased lymphocyte activation and increased disease severity in a mouse model of multiple sclerosis. Eur. J. Immunol. 2013, 43, 2089–2100. [Google Scholar] [CrossRef] [Green Version]
- Nigro, E.; Orlandella, F.M.; Polito, R.; Mariniello, R.M.; Monaco, M.L.; Mallardo, M.; De Stefano, A.E.; Iervolino, P.L.C.; Salvatore, G.; Daniele, A. Adiponectin and leptin exert antagonizing effects on proliferation and motility of papillary thyroid cancer cell lines. J. Physiol. Biochem. 2021, 77, 237–248. [Google Scholar] [CrossRef]
- Saeed, Y.; Xie, B.; Xu, J.; Rehman, A.; Hong, M.; Hong, Q.; Deng, Y. Glial U87 cells protect neuronal SH-SY5Y cells from indirect effect of radiation by reducing oxidative stress and apoptosis. Acta Biochim. Biophys. Sin. 2015, 47, 250–257. [Google Scholar] [CrossRef] [Green Version]
Control Subjects = 5 | RRMS = 10 | PMS = 10 | p Value c | |
---|---|---|---|---|
Age | 45.4 ± 20.90 | 43 ± 8.13 | 48 ± 11.36 | 0.28 |
Sex (M/F) | 3/2 | 5/5 | 6/4 | - |
BMI | 24 ± 3.4 | 24 ± 4.89 | 25 ± 2.28 | 0.60 |
CSF IgG (mg/dL) | 3.07 ± 1.3 | 11.9 ± 8.4 | 3.7 ± 1.67 | 0.03 |
Oligoclonal bands | N/A | 11 ± 8.6 | 8.63 ± 3.8 | 0.49 |
Serum IgG (mg/dL) | 1250 ± 188.5 | 1248 ± 291 | 1114.8 ± 313.2 | 0.40 |
Serum adiponectin (μg/mL) a | 10.20 μg/mL | 13.10 ± 2.17 | 12.60 ± 1.76 | 0.58 |
CSF adiponectin (ng/mL) b | 6.02 ± 2.74 | 15.15 ± 4.44 | 11.67 ± 5.51 | 0.18 |
Serum albumin (μg/mL) | 4.19 ± 0.24 | 4.33 ± 0.13 | 3.88 ± 0.5 | 0.04 |
Total ARR | - | 0.85 ± 0.51 | 0.21 ± 0.30 | 0.0035 |
PI | - | 1.46 ± 2.09 | 1.01 ± 1.14 | 0.57 |
Basal EDSS | - | 1.94 ± 2.17 | 3.7 ± 3.16 | 0.039 |
MSSS | - | 3.77 ± 3.40 | 6.65 ± 1.99 | 0.039 |
Disease duration | - | 12.1 ± 3.1 | 8.3 ± 1.6 | 0.003 |
EDSS at the end of follow up | - | 2 ± 2.33 | 4.5 ± 0.97 | 0.0063 |
Follow-up (years) | - | 8.8 ± 2.1 | 7.1 ± 0.65 | 0.03 |
Link index (CSF IgG/serum IgG × serum albumin/CSF albumin) | - | 0.97 ± 0.71 | 0.71 ± 0.23 | 0.35 |
Barrier index (CSF albumin/serum albumin × 100) | - | 0.68 ± 0.44 | 0.48±0.19 | 0.30 |
PCR (mg/dL) | - | 0.13 ± 0.1 | 0.16 ± 0.14 | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallardo, M.; Signoriello, E.; Lus, G.; Daniele, A.; Nigro, E. Adiponectin Alleviates Cell Injury due to Cerebrospinal Fluid from Multiple Sclerosis Patients by Inhibiting Oxidative Stress and Proinflammatory Response. Biomedicines 2023, 11, 1692. https://doi.org/10.3390/biomedicines11061692
Mallardo M, Signoriello E, Lus G, Daniele A, Nigro E. Adiponectin Alleviates Cell Injury due to Cerebrospinal Fluid from Multiple Sclerosis Patients by Inhibiting Oxidative Stress and Proinflammatory Response. Biomedicines. 2023; 11(6):1692. https://doi.org/10.3390/biomedicines11061692
Chicago/Turabian StyleMallardo, Marta, Elisabetta Signoriello, Giacomo Lus, Aurora Daniele, and Ersilia Nigro. 2023. "Adiponectin Alleviates Cell Injury due to Cerebrospinal Fluid from Multiple Sclerosis Patients by Inhibiting Oxidative Stress and Proinflammatory Response" Biomedicines 11, no. 6: 1692. https://doi.org/10.3390/biomedicines11061692
APA StyleMallardo, M., Signoriello, E., Lus, G., Daniele, A., & Nigro, E. (2023). Adiponectin Alleviates Cell Injury due to Cerebrospinal Fluid from Multiple Sclerosis Patients by Inhibiting Oxidative Stress and Proinflammatory Response. Biomedicines, 11(6), 1692. https://doi.org/10.3390/biomedicines11061692