A Deep-Learning-Based Method Can Detect Both Common and Rare Genetic Disorders in Fetal Ultrasound
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Data Processing
2.3. Development of Deep Learning Models
2.4. Statistical Analysis
2.5. Visualization of Facial Features in Heat Maps
2.6. Competition between Humans and AI
3. Results
3.1. The Overall Framework of Pgds-ResNet
3.2. Pgds-ResNet Outperforms Commonly Used Deep Learning Models
3.3. Pgds-ResNet Is Effective in Screening Common Genetic Diseases (Trisomy 21, Trisomy 18, and Trisomy 13 Syndromes)
3.4. Pgds-ResNet Detects Facial Abnormalities Consistent with Clinical Reports
3.5. Pgds-ResNet Detects Rare Genetic Diseases Often Overlooked in Clinical Practice
3.6. Pgds-ResNet’s Performance Is on Par with Senior Sonographers
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ECS | Expanded carrier screening |
cffDNA | Cell-free fetal DNA |
AI | Artificial intelligence |
CdLS | Cornelia de Lange syndrome |
FDNA | Facial dysmorphology novel analysis |
AUROC | Area under the receiver operating characteristic |
References
- Baird, P.A.; Anderson, T.W.; Newcombe, H.B.; Lowry, R.B. Genetic disorders in children and young adults: A population study. Am. J. Hum. Genet. 1988, 42, 677–693. [Google Scholar] [PubMed]
- Gonzaludo, N.; Belmont, J.W.; Gainullin, V.G.; Taft, R.J. Estimating the burden and economic impact of pediatric genetic disease. Genet. Med. 2019, 21, 1781–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, C.R. The burden of rare diseases. Am. J. Med. Genet. A 2019, 179, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Malone, F.D.; Canick, J.A.; Ball, R.H.; Nyberg, D.A.; Comstock, C.H.; Bukowski, R.; Berkowitz, R.L.; Gross, S.J.; Dugoff, L.; Craigo, S.D.; et al. First-trimester or secondtrimester screening, or both, for Down’s syndrome. N. Engl. J. Med. 2005, 353, 2001–2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norton, M.E.; Jacobsson, B.; Swamy, G.K.; Laurent, L.C.; Ranzini, A.C.; Brar, H.; Tomlinson, M.W.; Pereira, L.; Spitz, J.L.; Hollemon, D.; et al. Cell-free DNA analysis for noninvasive examination of trisomy. N. Engl. J. Med. 2015, 372, 1589–1597. [Google Scholar] [CrossRef] [Green Version]
- Lo, J.O.; Feist, C.D.; Norton, M.E.; Caughey, A.B. Noninvasive prenatal testing. Obstet. Gynecol. Surv. 2014, 69, 89–99. [Google Scholar] [CrossRef]
- Tekola-Ayele, F.; Rotimi, C.N. Translational genomics in low- and middle-income countries: Opportunities and challenges. Public Health Genom. 2015, 18, 242–247. [Google Scholar] [CrossRef] [Green Version]
- Sonek, J. First trimester ultrasonography in screening and detection of fetal anomalies. Am. J. Med. Genet. Part C Semin. Med. Genet. 2010, 145C, 45–61. [Google Scholar] [CrossRef]
- He, F.; Wang, Y.; Xiu, Y.; Zhang, Y.; Chen, L. Artificial Intelligence in Prenatal Ultrasound Diagnosis. Front. Med. 2021, 8, 729978. [Google Scholar] [CrossRef]
- Alzubaidi, M.; Agus, M.; Alyafei, K.; Althelaya, K.A.; Shah, U.; Abd-Alrazaq, A.; Anbar, M.; Makhlouf, M.; Househ, M. Toward point-of-care ultrasound estimation of fetal gestational week from the trans-cerebellar diameter using CNN-based ultrasound image analysis. J. Med. Imaging 2020, 7, 014501. [Google Scholar]
- Komatsu, M.; Sakai, A.; Komatsu, R.; Matsuoka, R.; Yasutomi, S.; Shozu, K.; Dozen, A.; Machino, H.; Hidaka, H.; Arakaki, T.; et al. Detection of Cardiac Structural Abnormalities in Fetal Ultrasound Videos Using Deep Learning. Appl. Sci. 2021, 11, 371. [Google Scholar] [CrossRef]
- Xie, H.N.; Wang, N.; He, M.; Zhang, L.H.; Cai, H.M.; Xian, J.B.; Lin, M.F.; Zheng, J.; Yang, Y.Z. Using deep-learning algorithms to classify fetal brain ultrasound images as normal or abnormal. Ultrasound Obs. Gynecol. 2020, 56, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Arnaout, R.; Curran, L.; Zhao, Y.; Levine, J.C.; Chinn, E.; Moon-Grady, A.J. An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease. Nat. Med. 2021, 27, 882–891. [Google Scholar] [CrossRef]
- Schwalbe, N.; Wahl, B. Artificial intelligence and the future of global health. Lancet 2020, 395, 1579–1586. [Google Scholar] [CrossRef]
- Loos, H.S.; Wieczorek, D.; Würtz, R.; Von Der Malsburg, C.; Horsthemke, B. Computer-based recognition of dysmorphic faces. Eur. J. Hum. Genet. 2003, 11, 555–560. [Google Scholar] [CrossRef] [Green Version]
- Basel-Vanagaite, L.; Wolf, L.; Orin, M.; Larizza, L.; Gervasini, C.; Krantz, I.D.; Deardoff, M.A. Recognition of the Cornelia de Lange syndrome phenotype with facial dysmorphology novel analysis. Clin. Genet. 2016, 89, 557–563. [Google Scholar] [CrossRef]
- Lumaka, A.; Cosemans, N.; Mampasi, A.L.; Mubungu, G.; Mvuama, N.; Lubala, T.; Mbuyi-Musanzayi, S.; Breckpot, J.; Holvoet, M.; de Ravel, T.; et al. Facial dysmorphism is influenced by ethnic background of the patient and of the evaluator. Clin. Genet. 2017, 92, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Miyagi, Y.; Hata, T.; Bouno, S.; Koyanagi, A.; Miyake, T. Recognition of facial expression of fetuses by artificial intelligence (AI). J. Perinat. Med. 2021, 49, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Miyagi, Y.; Hata, T.; Bouno, S.; Koyanagi, A.; Miyake, T. Artificial intelligence to understand fluctuation of fetal brain activity by recognizing facial expressions. Int. J. Gynecol. Obstet. 2022, 161, 877–885. [Google Scholar] [CrossRef]
- Valentine, M.; Bihm, D.C.; Wolf, L.; Hoyme, H.E.; May, P.A.; Buckley, D.; Kalberg, W.; Abdul-Rahman, O.A. Computer-aided recognition of facial attributes for fetal alcohol spectrum disorders. Pediatrics 2017, 140, e20162028. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In Proceedings of the IEEE International Conference on Computer Vision IEEE 2017, Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Frid-Adar, M.; Diamant, I.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. GAN-based Synthetic Medical Image Augmentation for increased CNN Performance in Liver Lesion Classification. Neurocomputing 2018, 321, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Huang, H.; Chen, W.; Zhang, L.; Fang, W. More Trainable Inception-ResNet for Face Recognition. Neurocomputing 2020, 411, 9–19. [Google Scholar] [CrossRef]
- Ghazi, M.; Mostafa; Ekenel, H.K. A comprehensive analysis of deep learning based representation for face recognition. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA, 27–30 June 2016; pp. 34–41. [Google Scholar]
- Pei, Y.; Huang, Y.; Zou, Q.; Zhang, X.; Wang, S. Effects of image degradation and degradation removal to CNN-based image classification. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 1239–1253. [Google Scholar] [CrossRef] [PubMed]
- Richmond, S.; Howe, L.J.; Lewis, S.; Stergiakouli, E.; Zhurov, A. Facial Genetics: A Brief Overview. Front. Genet. 2018, 9, 462. [Google Scholar] [CrossRef] [Green Version]
- Hart, T.C.; Hart, P.S. Genetic studies of craniofacial anomalies: Clinical implications and applications. Orthod. Craniofacial Res. 2009, 12, 212–220. [Google Scholar] [CrossRef] [Green Version]
- Rahimov, F.; Program, N.C.S.; Marazita, M.L.; Visel, A.; Cooper, M.E.; Hitchler, M.J.; Rubini, M.; Domann, F.E.; Govil, M.; Christensen, K.; et al. Disruption of an AP-2a binding site in an IRF6 enhancer is associated with cleft lip. Nat. Genet. 2008, 40, 1341–1347. [Google Scholar] [CrossRef] [Green Version]
- Mangold, E.; Ludwig, K.U.; Birnbaum, S.; Baluardo, C.; Ferrian, M.; Herms, S.; Reutter, H.; de Assis, N.A.; Chawa, T.A.; Mattheisen, M.; et al. Genome-wide association study identifies two susceptibility loci for non-syndromic cleft lip with or without cleft palate. Nat. Genet. 2010, 42, 24–26. [Google Scholar] [CrossRef] [Green Version]
- Dixon, M.J.; Marazita, M.L.; Beaty, T.H.; Murray, J.C. Cleft lip and palate: Understanding genetic and environmental influences. Nat. Rev. Genet. 2011, 12, 167–178. [Google Scholar] [CrossRef] [Green Version]
- Claes, P.; Roosenboom, J.; White, J.D.; Swigut, T.; Sero, D.; Li, J.; Lee, M.K.; Zaidi, A.; Mattern, B.C.; Liebowitz, C.; et al. Genome-wide mapping of global-to-local genetic effects on human facial shape. Nat. Genet. 2018, 50, 414–423. [Google Scholar] [CrossRef]
- Latorre-Pellicer, A.; Ascaso, Á.; Trujillano, L.; Gil-Salvador, M.; Arnedo, M.; Lucia-Campos, C.; Antoñanzas-Pérez, R.; Marcos-Alcalde, I.; Parenti, I.; Bueno-Lozano, G.; et al. Evaluating Face2Gene as a Tool to Identify Cornelia de Lange Syndrome by Facial Phenotypes. Int. J. Mol. Sci. 2020, 21, 1042. [Google Scholar] [CrossRef] [Green Version]
- Porras, A.R.; Rosenbaum, K.; Tor-Diez, C.; Summar, M.; Linguraru, M.G. Development and evaluation of a machine learning-based point-of-care screening tool for genetic syndromes in children: A multinational retrospective study. Lancet Digit. Health 2021, 3, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Gupta, T.; Saini, A.; Singh, P.; Balasubramanian, R. A Deep Learning Frame-Work for Recognizing Developmental Disorders. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV) IEEE 2017, Santa Rosa, CA, USA, 24–31 March 2017; pp. 705–714. [Google Scholar]
- Gurovich, Y.; Hanani, Y.; Bar, O.; Nadav, G.; Fleischer, N.; Gelbman, D.; Basel-Salmon, L.; Krawitz, P.M.; Kamphausen, S.B.; Zenker, M.; et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat. Med. 2019, 25, 60–64. [Google Scholar] [CrossRef] [PubMed]
- De Jong-Pleij, E.A.; Ribbert, L.S.; Tromp, E.; Bilardo, C.M. Three-dimensional multiplanar ultrasound is a valuable tool in the study of the fetal profile in the second trimester of pregnancy. Ultrasound Obstet. Gynecol. 2010, 35, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Wijata, A.M.; Nalepa, J. Unbiased Validation of the Algorithms for Automatic Needle Localization in Ultrasound-Guided Breast Biopsies. In Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France, 16–19 October 2022; pp. 3571–3575. [Google Scholar]
AUROC (95%CI) | Sensitivity (95%CI) | Specificity (95%CI) | F1 | p-Value | F-Value | |
---|---|---|---|---|---|---|
Pgds-ResNet | 0.98 (0.97–0.99) | 0.89 (0.80–0.95) | 0.96 (0.89–0.99) | 0.92 | 0.658 | 0.196 |
ResNet-34 | 0.83 (0.80–0.86) | 0.50 (0.40–0.60) | 0.97 (0.91–0.99) | 0.65 | <0.01 | 15.921 |
VGG-16 | 0.84 (0.81–0.86) | 0.41 (0.30–0.52) | 0.98 (0.92–0.99) | 0.57 | <0.01 | 30.014 |
VGG-19 | 0.92 (0.89–0.93) | 0.45 (0.34–0.56) | 1.00 (0.95–1.00) | 0.62 | <0.01 | 28.125 |
Number | Accuracy | Sensitivity (95%CI) | Specificity (95%CI) | F1 | |
---|---|---|---|---|---|
All genetic diseases | 86 | 0.90 (77/86) | 0.89 (0.80–0.95) | 0.96 (0.89–0.99) | 0.92 |
Trisomy 13 syndrome | 16 | 0.75 (12/16) | 0.75 (0.47–0.92) | 0.95 (0.90–0.97) | 0.65 |
Trisomy 18 syndrome | 13 | 0.92 (12/13) | 0.92 (0.62–0.99) | 0.93 (0.88–0.96) | 0.65 |
Trisomy 21 syndrome | 12 | 0.83 (10/12) | 0.83 (0.51–0.97) | 0.94 (0.89–0.97) | 0.61 |
Rare genetic diseases | 45 | 0.95 (43/45) | 0.96 (0.84–0.99) | 0.92 (0.86–0.96) | 0.87 |
Pgds-ResNet | Junior | Attending | Senior | |
---|---|---|---|---|
Accuracy | 0.93 | 0.63 | 0.74 | 0.91 |
Sensitivity | 0.86 | 0.42 | 0.79 | 0.88 |
(95%CI) | (0.70–0.95) | (0.26–0.61) | (0.61–0.90) | (0.71–0.96) |
Specificity | 0.97 | 0.73 | 0.72 | 0.93 |
(95%CI) | (0.88–0.99) | (0.61–0.83) | (0.59–0.82) | (0.83–0.97) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Han, J.; Xue, J.; Zhen, L.; Yang, X.; Pan, M.; Hu, L.; Li, R.; Jiang, Y.; Zhang, Y.; et al. A Deep-Learning-Based Method Can Detect Both Common and Rare Genetic Disorders in Fetal Ultrasound. Biomedicines 2023, 11, 1756. https://doi.org/10.3390/biomedicines11061756
Tang J, Han J, Xue J, Zhen L, Yang X, Pan M, Hu L, Li R, Jiang Y, Zhang Y, et al. A Deep-Learning-Based Method Can Detect Both Common and Rare Genetic Disorders in Fetal Ultrasound. Biomedicines. 2023; 11(6):1756. https://doi.org/10.3390/biomedicines11061756
Chicago/Turabian StyleTang, Jiajie, Jin Han, Jiaxin Xue, Li Zhen, Xin Yang, Min Pan, Lianting Hu, Ru Li, Yuxuan Jiang, Yongling Zhang, and et al. 2023. "A Deep-Learning-Based Method Can Detect Both Common and Rare Genetic Disorders in Fetal Ultrasound" Biomedicines 11, no. 6: 1756. https://doi.org/10.3390/biomedicines11061756
APA StyleTang, J., Han, J., Xue, J., Zhen, L., Yang, X., Pan, M., Hu, L., Li, R., Jiang, Y., Zhang, Y., Jing, X., Li, F., Chen, G., Zhang, K., Zhu, F., Liao, C., & Lu, L. (2023). A Deep-Learning-Based Method Can Detect Both Common and Rare Genetic Disorders in Fetal Ultrasound. Biomedicines, 11(6), 1756. https://doi.org/10.3390/biomedicines11061756