Chromosomal Aberration t(14;17)(q32;q21) Simultaneously Activates HOXB5 and miR10a in Triple-Hit B-Cell Lymphoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Lines and Treatments
2.2. Cytogenetic and Genomic Analyses
2.3. Polymerase Chain Reaction (PCR) Analyses
2.4. Protein Analysis
2.5. Expression Profiling and RNA-Seq Data Analyses
3. Results
3.1. Cytogenetic and Molecular Analysis of B-Cell Lymphoma Cell Line SC-1
3.2. Characterization of the Translocation Targets BCL2, MYC and BCL6
3.3. Chromosomal Aberration t(14;17)(q32;q21) Targets the HOXB Gene Cluster
3.4. Functional Analysis of HOXB5 in B-Cell Lymphoma
3.5. HOXB5 and ZNF521 in Stem Cells and B-Cell Lymphoma
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Küppers, R. Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 2005, 5, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th edition of the World Health Organization Classification of haematolymphoid tumours: Lymphoid neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Wei, Z.; Yang, W.; Huang, J.; Yang, Y.; Wang, J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol. 2022, 12, 985363. [Google Scholar] [CrossRef] [PubMed]
- Ueda, C.; Akasaka, T.; Ohno, H. Non-immunoglobulin/BCL6 gene fusion in diffuse large B-cell lymphoma: Prognostic implications. Leuk. Lymphoma 2002, 43, 1375–1381. [Google Scholar] [CrossRef] [PubMed]
- Ott, G. Impact of MYC on malignant behavior. Hematol. Am. Soc. Hematol. Educ. Program 2014, 2014, 100–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aukema, S.M.; Siebert, R.; Schuuring, E.; van Imhoff, G.W.; Kluin-Nelemans, H.C.; Boerma, E.J.; Kluin, P.M. Double-hit B-cell lymphomas. Blood 2011, 117, 2319–2331. [Google Scholar] [CrossRef] [Green Version]
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef] [Green Version]
- Novo, M.; Castellino, A.; Nicolosi, M.; Santambrogio, E.; Vassallo, F.; Chiappella, A.; Vitolo, U. High-grade B-cell lymphoma: How to diagnose and treat. Expert Rev. Hematol. 2019, 12, 497–506. [Google Scholar] [CrossRef]
- Ferrari, A.; Arniani, S.; Crescenzi, B.; Ascani, S.; Flenghi, L.; Pierini, V.; Moretti, M.; Beacci, D.; Romoli, S.; Bardelli, V.; et al. High grade B-cell lymphoma with MYC, BCL2 and/or BCL6 rearrangements: Unraveling the genetic landscape of a rare aggressive subtype of non-Hodgkin lymphoma. Leuk. Lymphoma 2022, 63, 1356–1362. [Google Scholar] [CrossRef]
- Krull, J.E.; Wenzl, K.; Hartert, K.T.; Manske, M.K.; Sarangi, V.; Maurer, M.J.; Larson, M.C.; Nowakowski, G.S.; Ansell, S.M.; McPhail, E.; et al. Somatic copy number gains in MYC, BCL2, and BCL6 identifies a subset of aggressive alternative-DH/TH DLBCL patients. Blood Cancer J. 2020, 10, 117. [Google Scholar] [CrossRef]
- MacLeod, R.A.; Nagel, S.; Scherr, M.; Schneider, B.; Dirks, W.G.; Uphoff, C.C.; Quentmeier, H.; Drexler, H.G. Human leukemia and lymphoma cell lines as models and resources. Curr. Med. Chem. 2008, 15, 339–359. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.V.; Haber, D.A.; Settleman, J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nat. Rev. Cancer 2010, 10, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehár, J.; Kryukov, G.V.; Sonkin, D.; et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012, 483, 603–607. [Google Scholar] [CrossRef] [Green Version]
- Mirabelli, P.; Coppola, L.; Salvatore, M. Cancer cell lines are useful model systems for medical research. Cancers 2019, 11, 1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drexler, H.G.; Eberth, S.; Nagel, S.; MacLeod, R.A. Malignant hematopoietic cell lines: In vitro models for double-hit B-cell lymphomas. Leuk. Lymphoma 2016, 57, 1015–1020. [Google Scholar] [CrossRef] [PubMed]
- Dirks, W.G.; Drexler, H.G. STR DNA typing of human cell lines: Detection of intra- and interspecies cross-contamination. Methods Mol. Biol. 2013, 946, 27–38. [Google Scholar]
- Uphoff, C.C.; Drexler, H.G. Detection of Mycoplasma contamination in cell cultures. Curr. Protoc. Mol. Biol. 2014, 106, 28.4.1–28.4.14. [Google Scholar] [CrossRef]
- MacLeod, R.A.; Kaufmann, M.; Drexler, H.G. Cytogenetic harvesting of commonly used tumor cell lines. Nat. Protoc. 2007, 2, 372–382. [Google Scholar] [CrossRef] [Green Version]
- Van Dongen, J.J.; Langerak, A.W.; Brüggemann, M.; Evans, P.A.; Hummel, M.; Lavender, F.L.; Delabesse, E.; Davi, F.; Schuuring, E.; García-Sanz, R.; et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003, 17, 2257–2317. [Google Scholar] [CrossRef] [Green Version]
- Nagel, S.; Drexler, H.G. Expression analysis of homeobox genes in leukemia/lymphoma cell lines. Methods Mol. Biol. 2011, 731, 371–380. [Google Scholar]
- Nagel, S.; Burek, C.; Venturini, L.; Scherr, M.; Quentmeier, H.; Meyer, C.; Rosenwald, A.; Drexler, H.G.; MacLeod, R.A. Comprehensive analysis of homeobox genes in Hodgkin lymphoma cell lines identifies dysregulated expression of HOXB9 mediated via ERK5 signaling and BMI1. Blood 2007, 109, 3015–3023. [Google Scholar] [CrossRef] [PubMed]
- Th’ng, K.H.; Garewal, G.; Kearney, L.; Rassool, F.; Melo, J.V.; White, H.; Catovsky, D.; Foroni, L.; Luzzatto, L.; Goldman, J.M. Establishment and characterization of three new malignant lymphoid cell lines. Int. J. Cancer 1987, 39, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zheng, J.; Lee, E.E.; Aguilar, B.; Phan, J.; Abdilleh, K.; Taylor, R.C.; Longabaugh, W.; Johansson, B.; Mertens, F.; et al. A cloud-based resource for genome coordinate-based exploration and large-scale analysis of chromosome aberrations and gene fusions in cancer. Genes Chromosomes Cancer 2023, 62, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.; Meng, X.; Liang, H.; Zhang, H.; Liu, X.; Li, L.; Li, W.; Sun, W.; Zhang, H.; Zen, K.; et al. miR-10a inhibits cell proliferation and promotes cell apoptosis by targeting BCL6 in diffuse large B-cell lymphoma. Protein Cell 2016, 7, 899–912. [Google Scholar] [CrossRef] [Green Version]
- Moens, C.B.; Selleri, L. Hox cofactors in vertebrate development. Dev. Biol. 2006, 291, 193–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.P.; Brocchieri, L.; Shen, W.F.; Largman, C.; Cleary, M.L. Pbx modulation of Hox homeodomain amino-terminal arms establishes different DNA-binding specificities across the Hox locus. Mol. Cell Biol. 1996, 16, 1734–1745. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Zhao, Q.; Zhang, M.; Weng, Q.; Zhang, Q.; Wang, K.; Dong, F.; Cheng, H.; Hu, F.; Wang, J. Hoxb5 reprogrammes murine multipotent blood progenitors into haematopoietic stem cell-like cells. Cell Prolif. 2022, 55, e13235. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, Y.; Hu, F.; Yang, D.; Zhao, Q.; Lv, C.; Wang, Y.; Xia, C.; Weng, Q.; Liu, X.; et al. Transcription factor Hoxb5 reprograms B cells into functional T lymphocytes. Nat. Immunol. 2018, 19, 279–290. [Google Scholar] [CrossRef]
- Bond, H.M.; Mesuraca, M.; Amodio, N.; Mega, T.; Agosti, V.; Fanello, D.; Pelaggi, D.; Bullinger, L.; Grieco, M.; Moore, M.A.; et al. Early hematopoietic zinc finger protein-zinc finger protein 521: A candidate regulator of diverse immature cells. Int. J. Biochem. Cell Biol. 2008, 40, 848–854. [Google Scholar] [CrossRef]
- Yamasaki, N.; Miyazaki, K.; Nagamachi, A.; Koller, R.; Oda, H.; Miyazaki, M.; Sasaki, T.; Honda, Z.I.; Wolff, L.; Inaba, T.; et al. Identification of Zfp521/ZNF521 as a cooperative gene for E2A-HLF to develop acute B-lineage leukemia. Oncogene 2010, 29, 1963–1975. [Google Scholar] [CrossRef]
- Adams, T.; Fuchs, D.; Shadoan, P.K.; Johnstone, L.; Lau, B.M.; McGhan, L.; Anwer, F.; Al-Kateb, H. Unexpected favorable outcome in a patient with high grade B-cell lymphoma with abnormalities of MYC, BCL6 and BCL2 loci. Cancer Genet. 2018, 222–223, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Su, B.; Zhang, X.; Luo, G. Homeobox B5 suppression attenuates proliferation and elevates apoptosis in hepatoma cell lines through ERK/MDM2 signalling. Clin. Exp. Pharmacol. Physiol. 2020, 47, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Ding, B.; Liang, J.; Shi, X.; Jiang, X.; Gao, Y. MicroRNA-10a inhibits A30P α-synuclein aggregation and toxicity by targeting proapoptotic protein BCL2L11. Int. J. Clin. Exp. Pathol. 2018, 11, 624–633. [Google Scholar] [PubMed]
- Ventura, A.; Young, A.G.; Winslow, M.M.; Lintault, L.; Meissner, A.; Erkeland, S.J.; Newman, J.; Bronson, R.T.; Crowley, D.; Stone, J.R.; et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 2008, 132, 875–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Undi, R.B.; Kandi, R.; Gutti, R.K. MicroRNAs as haematopoiesis regulators. Adv. Hematol. 2013, 2013, 695754. [Google Scholar] [CrossRef] [Green Version]
- Nagel, S.; Pommerenke, C.; Meyer, C.; MacLeod, R.A.F.; Drexler, H.G. Establishment of the TALE-code reveals aberrantly activated homeobox gene PBX1 in Hodgkin lymphoma. PLoS ONE 2021, 16, e0246603. [Google Scholar] [CrossRef]
- Xu, B.; Hrycaj, S.M.; McIntyre, D.C.; Baker, N.C.; Takeuchi, J.K.; Jeannotte, L.; Gaber, Z.B.; Novitch, B.G.; Wellik, D.M. Hox5 interacts with Plzf to restrict Shh expression in the developing forelimb. Proc. Natl. Acad. Sci. USA 2013, 110, 19438–19443. [Google Scholar] [CrossRef] [Green Version]
- Dhordain, P.; Albagli, O.; Honore, N.; Guidez, F.; Lantoine, D.; Schmid, M.; The, H.D.; Zelent, A.; Koken, M.H. Colocalization and heteromerization between the two human oncogene POZ/zinc finger proteins, LAZ3 (BCL6) and PLZF. Oncogene 2000, 19, 6240–6250. [Google Scholar] [CrossRef] [Green Version]
- Laidlaw, B.J.; Cyster, J.G. Transcriptional regulation of memory B cell differentiation. Nat. Rev. Immunol. 2021, 21, 209–220. [Google Scholar] [CrossRef]
- Chen, M.; Qu, Y.; Yue, P.; Yan, X. The prognostic value and function of HOXB5 in acute myeloid leukemia. Front. Genet. 2021, 12, 678368. [Google Scholar] [CrossRef]
- Germano, G.; Morello, G.; Aveic, S.; Pinazza, M.; Minuzzo, S.; Frasson, C.; Persano, L.; Bonvini, P.; Viola, G.; Bresolin, S.; et al. ZNF521 sustains the differentiation block in MLL-rearranged acute myeloid leukemia. Oncotarget 2017, 8, 26129–26141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, E.M.; Thompson, A. HOX genes in normal, engineered and malignant hematopoiesis. Int. J. Dev. Biol. 2018, 62, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Nagel, S. NKL-Code in normal and aberrant hematopoiesis. Cancers 2021, 13, 1961. [Google Scholar] [CrossRef] [PubMed]
- Tagawa, H.; Ikeda, S.; Sawada, K. Role of microRNA in the pathogenesis of malignant lymphoma. Cancer Sci. 2013, 104, 801–809. [Google Scholar] [CrossRef]
- Li, G.; Guo, B.Y.; Wang, H.D.; Lin, G.T.; Lan, T.J.; Ying, H.; Xu, J. CircRNA hsa_circ_0014130 function as a miR-132-3p sponge for playing oncogenic roles in bladder cancer via upregulating KCNJ12 expression. Cell Biol. Toxicol. 2022, 38, 1079–1096. [Google Scholar] [CrossRef] [PubMed]
- Shokeen, Y.; Sharma, N.R.; Vats, A.; Taneja, V.; Minhas, S.; Jauhri, M.; Sankaran, S.; Aggarwal, S. Identification of prognostic and susceptibility markers in chronic myeloid leukemia using next generation sequencing. Ethiop. J. Health Sci. 2018, 28, 135–146. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagel, S.; Pommerenke, C.; Meyer, C.; Kaufmann, M.; MacLeod, R.A.F. Chromosomal Aberration t(14;17)(q32;q21) Simultaneously Activates HOXB5 and miR10a in Triple-Hit B-Cell Lymphoma. Biomedicines 2023, 11, 1758. https://doi.org/10.3390/biomedicines11061758
Nagel S, Pommerenke C, Meyer C, Kaufmann M, MacLeod RAF. Chromosomal Aberration t(14;17)(q32;q21) Simultaneously Activates HOXB5 and miR10a in Triple-Hit B-Cell Lymphoma. Biomedicines. 2023; 11(6):1758. https://doi.org/10.3390/biomedicines11061758
Chicago/Turabian StyleNagel, Stefan, Claudia Pommerenke, Corinna Meyer, Maren Kaufmann, and Roderick A. F. MacLeod. 2023. "Chromosomal Aberration t(14;17)(q32;q21) Simultaneously Activates HOXB5 and miR10a in Triple-Hit B-Cell Lymphoma" Biomedicines 11, no. 6: 1758. https://doi.org/10.3390/biomedicines11061758
APA StyleNagel, S., Pommerenke, C., Meyer, C., Kaufmann, M., & MacLeod, R. A. F. (2023). Chromosomal Aberration t(14;17)(q32;q21) Simultaneously Activates HOXB5 and miR10a in Triple-Hit B-Cell Lymphoma. Biomedicines, 11(6), 1758. https://doi.org/10.3390/biomedicines11061758