Acute Prosthetic Joint Infections with Poor Outcome Caused by Staphylococcus Aureus Strains Producing the Panton–Valentine Leukocidin
Abstract
:1. Introduction
2. Material and Methods
2.1. Patient Population and Study Design
2.2. Specimen Collection
2.3. Determination of Synovial Fluid Leukocyte Count and Percentage Granulocytes
2.4. Conventional Microbiological Tests
2.5. PVL Assay
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Microbiological Assessments
3.3. Clinical Outcomes and Microbiological Associations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romanini, E.; Decarolis, F.; Luzi, I.; Zanoli, G.; Venosa, M.; Laricchiuta, P.; Carrani, E.; Torre, M. Total knee arthroplasty in Italy: Reflections from the last fifteen years and projections for the next thirty. Int. Orthop. 2019, 43, 133–138. [Google Scholar] [CrossRef]
- Edwards, J.R.; Peterson, K.D.; Mu, Y.; Banerjee, S.; Allen-Bridson, K.; Morrell, G.; Dudeck, M.A.; Pollock, D.A.; Horan, T.C. National Healthcare Safety Network (NHSN) report: Data summary for 2006 through 2008, issued December 2009. Am. J. Infect. Control 2009, 37, 783–805. [Google Scholar] [CrossRef] [PubMed]
- Trampuz, A.; Zimmerli, W. Prosthetic joint infections: Update in diagnosis and treatment. Swiss Med. Wkly. 2005, 135, 243–251. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Whitehouse, M.R.; Blom, A.W.; Beswick, A.D.; Team, I. Patient-Related Risk Factors for Periprosthetic Joint Infection after Total Joint Arthroplasty: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0150866. [Google Scholar] [CrossRef] [PubMed]
- Tande, A.J.; Patel, R. Prosthetic Joint Infection. Clin. Microbiol. Rev. 2014, 27, 302–345. [Google Scholar] [CrossRef] [Green Version]
- Lenguerrand, E.; Whitehouse, M.R.; Beswick, A.D.; Kunutsor, S.K.; Burston, B.; Porter, M.; Blom, A.W. Risk factors associated with revision for prosthetic joint infection after hip replacement: A prospective observational cohort study. Lancet Infect. Dis. 2018, 18, 1004–1014. [Google Scholar] [CrossRef] [Green Version]
- Robertsson, O.; Thompson, O.; W-Dahl, A.; Sundberg, M.; Lidgren, L.; Stefánsdóttir, A. Higher risk of revision for infection using systemic clindamycin prophylaxis than with cloxacillin: A Report from the Swedish Knee Arthroplasty Register on 78,000 Primary Total Knee Arthroplasties for Osteoarthritis. Acta Orthop. 2017, 88, 562–567. [Google Scholar] [CrossRef] [Green Version]
- Blumenthal, K.G.; Ryan, E.E.; Li, Y.; Lee, H.; Kuhlen, J.L.; Shenoy, E.S. The Impact of a Reported Penicillin Allergy on Surgical Site Infection Risk. Clin. Infect. Dis. 2018, 66, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Lesens, O.; on behalf of the Auvergne-Rhône-Alpes Bone and Joint Infections Study Group; Ferry, T.; Forestier, E.; Botelho-Nevers, E.; Pavese, P.; Piet, E.; Pereira, B.; Montbarbon, E.; Boyer, B.; et al. Should we expand the indications for the DAIR (debridement, antibiotic therapy, and implant retention) procedure for Staphylococcus aureus prosthetic joint infections? A multicenter retrospective study. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1949–1956. [Google Scholar] [CrossRef] [PubMed]
- Drago, L.; De Vecchi, E. Microbiological Diagnosis of Implant-Related Infections: Scientific Evidence and Cost/Benefit Analysis of Routine Antibiofilm Processing. In A Modern Approach to Biofilm-Related Orthopaedic Implant Infections; Drago, L., Ed.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2016; Volume 971, pp. 51–67. ISBN 978-3-319-52273-9. [Google Scholar]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-Negative Staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [Green Version]
- Moran, E.; Byren, I.; Atkins, B.L. The diagnosis and management of prosthetic joint infections. J. Antimicrob. Chemother. 2010, 65, iii45–iii54. [Google Scholar] [CrossRef]
- Osmon, D.R.; Berbari, E.F.; Berendt, A.R.; Lew, D.; Zimmerli, W.; Steckelberg, J.M.; Rao, N.; Hanssen, A.; Wilson, W.R.; Infectious Diseases Society of America. Infectious Diseases Society of America. Diagnosis and Management of Prosthetic Joint Infection: Clinical Practice Guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2013, 56, e1–e25. [Google Scholar] [CrossRef] [Green Version]
- Tande, A.J.; Osmon, D.R.; Greenwood-Quaintance, K.E.; Mabry, T.M.; Hanssen, A.D.; Patel, R. Clinical Characteristics and Outcomes of Prosthetic Joint Infection Caused by Small Colony Variant Staphylococci. mBio 2014, 5, e01910-14. [Google Scholar] [CrossRef] [Green Version]
- Horn, C.M.; Kielian, T. Crosstalk Between Staphylococcus aureus and Innate Immunity: Focus on Immunometabolism. Front. Immunol. 2021, 11, 621750. [Google Scholar] [CrossRef]
- Spaan, A.N.; Van Strijp, J.A.G.; Torres, V.J. Leukocidins: Staphylococcal bi-component pore-forming toxins find their receptors. Nat. Rev. Microbiol. 2017, 15, 435–447. [Google Scholar] [CrossRef]
- Genestier, A.-L.; Michallet, M.-C.; Prévost, G.; Bellot, G.; Chalabreysse, L.; Peyrol, S.; Thivolet, F.; Etienne, J.; Lina, G.; Vallette, F.M.; et al. Staphylococcus aureus Panton-Valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils. J. Clin. Investig. 2005, 115, 3117–3127. [Google Scholar] [CrossRef] [Green Version]
- Colin, D.A.; Monteil, H. Control of the Oxidative Burst of Human Neutrophils by Staphylococcal Leukotoxins. Infect. Immun. 2003, 71, 3724–3729. [Google Scholar] [CrossRef] [Green Version]
- Zetola, N.; Francis, J.S.; Nuermberger, E.L.; Bishai, W.R. Community-acquired meticillin-resistant Staphylococcus aureus: An emerging threat. Lancet Infect. Dis. 2005, 5, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Zanger, P.; Nurjadi, D.; Schleucher, R.; Scherbaum, H.; Wolz, C.; Kremsner, P.G.; Schulte, B. Import and Spread of Panton-Valentine Leukocidin–Positive Staphylococcus aureus through Nasal Carriage and Skin Infections in Travelers Returning from the Tropics and Subtropics. Clin. Infect. Dis. 2012, 54, 483–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shallcross, L.J.; Fragaszy, E.; Johnson, A.M.; Hayward, A.C. The role of the Panton-Valentine leucocidin toxin in staphylococcal disease: A systematic review and meta-analysis. Lancet Infect. Dis. 2013, 13, 43–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antonelou, M.; Knowles, J.; Siddiqi, S.; Sharma, P. Recurrent cutaneous abscesses caused by PVL-MRSA. BMJ Case Rep. 2011, 2011, bcr0120113680. [Google Scholar] [CrossRef] [PubMed]
- Corazza, M.; Borghi, A.; Bettoli, V.; Pora, R.; Bononi, I.; Mazzoni, E.; Mazzola, E.; Saraceni, S.; Maritati, M.; Contini, C. Irrelevance of Panton-Valentine leukocidin in hidradenitis suppurativa: Results from a pilot, observational study. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Park, S.G.; Lee, H.S.; Park, J.Y.; Lee, H. Molecular Epidemiology of Staphylococcus aureus in Skin and Soft Tissue Infections and Bone and Joint Infections in Korean Children. J. Korean Med. Sci. 2019, 34, e315. [Google Scholar] [CrossRef]
- Hardy, C.; Osei, L.; Basset, T.; Elenga, N. Bone and joint infections with Staphylococcus aureus strains producing Panton–Valentine Leukocidin in French Guiana. Medicine 2019, 98, e16015. [Google Scholar] [CrossRef]
- Li, C.; Renz, N.; Trampuz, A. Management of Periprosthetic Joint Infection. Hip Pelvis 2018, 30, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Irlbeck, T.; Zwißler, B.; Bauer, A. ASA-Klassifikation: Wandel im Laufe. Der Zeit und Darstellung in der Literatur. Anaesthesist 2017, 66, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Ledezma, C.; Higuera, C.A.; Parvizi, J. Success After Treatment of Periprosthetic Joint Infection: A Delphi-based International Multidisciplinary Consensus. Clin. Orthop. Relat. Res. 2013, 471, 2374–2382. [Google Scholar] [CrossRef] [Green Version]
- Prista-Leão, B.; Abreu, I.; Duro, R.; Silva-Pinto, A.; Ceia, F.; Andrade, P.; Sobrinho-Simões, J.; Tavares, M.; Pereira, J.M.; Santos, L.; et al. Panton-Valentine Leukocidin-Producing Staphylococcus aureus Infection: A Case Series. Infect. Dis. Rep. 2020, 12, 61–69. [Google Scholar] [CrossRef]
- Tornero, E.; Morata, L.; Martínez-Pastor, J.; Bori, G.; Climent, C.; García-Velez, D.; García-Ramiro, S.; Bosch, J.; Mensa, J.; Soriano, A. KLIC-score for predicting early failure in prosthetic joint infections treated with debridement, implant retention and antibiotics. Clin. Microbiol. Infect. 2015, 21, 786.e9–786.e17. [Google Scholar] [CrossRef] [Green Version]
- Wouthuyzen-Bakker, M.; Sebillotte, M.; Lomas, J.; Taylor, A.; Palomares, E.B.; Murillo, O.; Parvizi, J.; Shohat, N.; Reinoso, J.C.; Sánchez, R.E.; et al. Clinical outcome and risk factors for failure in late acute prosthetic joint infections treated with debridement and implant retention. J. Infect. 2019, 78, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Maritati, M.; Trentini, A.; Chemello, D.; Mazzoni, E.; Cervellati, C.; Zanoli, G.A.; Contini, C.; De Rito, G. Predictive Factors of Surgical Site Infection in Prosthetic Joint Surgery: A Prospective Study on 760 Arthroplasties. Mediat. Inflamm. 2022, 2022, 2150804. [Google Scholar] [CrossRef]
- Zimmerli, W. Clinical presentation and treatment of orthopaedic implant-associated infection. J. Intern. Med. 2014, 276, 111–119. [Google Scholar] [CrossRef]
- Kuiper, J.W.P.; Vos, S.J.; Saouti, R.; Vergroesen, D.A.; Graat, H.C.A.; Debets-Ossenkopp, Y.J.; Peters, E.J.G.; Nolte, P.A. Prosthetic joint-associated infections treated with DAIR (debridement, antibiotics, irrigation, and retention): Analysis of Risk Factors and Local Antibi-otic Carriers in 91 Patients. Acta Orthop. 2013, 84, 380–386. [Google Scholar] [CrossRef] [Green Version]
- Gellert, M.; Hardt, S.; Köder, K.; Renz, N.; Perka, C.; Trampuz, A. Biofilm-active antibiotic treatment improves the outcome of knee periprosthetic joint infection: Results from a 6-year prospective cohort study. Int. J. Antimicrob. Agents 2020, 55, 105904. [Google Scholar] [CrossRef] [PubMed]
- Imauven, O.; Colot, J.; Couadau, E.; Moury, P.-H.; Preault, A.; Vincent, F.; Montravers, P. Paediatric and adult patients from New Caledonia Island admitted to the ICU for community-acquired Panton-Valentine leucocidin-producing Staphylococcus aureus infections. Sci. Rep. 2022, 12, 11024. [Google Scholar] [CrossRef] [PubMed]
- Albiński, M.K.; Lutz, N.; Ceroni, D.; N’Dele, D.; Zambelli, P.-Y.; Bregou, A. Paediatric musculoskeletal infections with Panton-Valentine leucocidin. Swiss Med. Wkly. 2018, 148, w14669. [Google Scholar] [CrossRef]
- Gijón, M.; Bellusci, M.; Petraitiene, B.; Noguera-Julian, A.; Glikman, D.; Saavedra-Lozano, J.; Neth, O.; Daskalaki, M.; Zilinskaite, V.; Kaiser-Labusch, P.; et al. Pediatric Community-Acquired Bone and Joint Staphylococcus aureus Infections In Europe: Severe Infections Are As-sociated to Panton-Valentine Leucocidin Presence. Pediatr. Infect. Dis. J. 2020, 39, e73–e76. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Takano, T.; Yabe, S.; Higuchi, W.; Iwao, Y.; Isobe, H.; Ozaki, K.; Takano, M.; Reva, I.; Nishiyama, A. Super-sticky familial infections caused by Panton–Valentine leukocidin-positive ST22 community-acquired methicillin-resistant Staphylococcus aureus in Japan. J. Infect. Chemother. 2012, 18, 187–198. [Google Scholar] [CrossRef] [PubMed]
PVL Negative | PVL Positive | Overall | p | |
---|---|---|---|---|
Patients Characteristics | n = 7 | n = 5 | n = 12 | |
Gender Male, n (%) | 3 (42.9) | 3 (60.0) | 6 (50.0) | 0.56 |
Age (years), mean (SD) | 65.71 (7.85) | 64.20 (18.65) | 65.08 (12.67) | 0.85 |
BMI a, mean (SD) | 32.92 (7.67) | 32.06 (6.49) | 32.56 (6.90) | 0.84 |
Active smoker, n (%) | 2 (28.6) | 1 (20.0) | 3 (25.0) | 1.00 |
Diabetes | 1 (14.3) | 0 (0.0) | 1(8.3) | 0.38 |
Anticoagulants, n (%) | 0.22 | |||
Cardioaspirin | 5 (71.4) | 2 (40.0) | 7 (58.3) | |
VKA h | 1 (14.3) | 0 (0.0) | 1 (8.3) | |
DAOA i | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
ASA b score, n (%) | 0.52 | |||
2 | 1 (14.3) | 2 (40.0) | 3 (25.0) | |
3 | 6 (85.7) | 3 (60.0) | 9 (75.0) | |
Previous or concomitant SA c infections, n (%) | 1.00 | |||
SA–PJI d (hip) five years earlier | 0 (0.0) | 1 (20.0) | 1 (8.3) | |
SA–septic arthritis (shoulder) one year earlier | 0 (0.0) | 1 (20.0) | 1 (8.3) | |
Concomitant SA–endocarditis | 1 (14.3) | 0 (0.0) | 1 (8.3) | |
SA–PJI (knee) one year earlier | 1 (14.3) | 0 (0.0) | 1 (8.3) | |
Concomitant SA–spondylodiscitis | 1 (14.3) | 0 (0.0) | 1 (8.3) | |
Concomitant SA–cellulitis | 1 (14.3) | 0 (0.0) | 1 (8.3) |
PVL Negative | PVL Positive | Overall | p | |
---|---|---|---|---|
Prophylaxis/Procedure | n = 7 | n = 5 | n = 12 | |
Antimicrobial prophylaxis at first implant, n (%) | 0.82 | |||
cefazolin 2 g | 5 (71.4) | 3 (60.0) | 8 (66.7) | |
cefazolin 2 g, vancomycin 1.5 g | 0 (0.0) | 1 (20.0) | 1 (8.3) | |
vancomycin 1 g | 1 (14.3) | 1 (20.0) | 2 (16.7) | |
vancomycin 1.5 g | 1 (14.3) | 0 (0.0) | 1 (8.3) | |
Length of surgery (first implant > 120 m), n (%) | 3 (42.9) | 2 (0.40) | 5 (41.67) | 0.20 |
PJI d anatomical location, n (%) | 0.38 | |||
Hip | 2 (28.6) | 2 (40.0) | 4 (33.3) | |
Knee | 5 (71.4) | 2 (40.0) | 7 (58.3) | |
Shoulder | 0 (0.0) | 1 (20.0) | 1 (8.3) | |
PJI onset time (weeks), median [IQR] | 5.00 [3.50, 11.00] | 130.00 [4.00, 156.00] | 7.50 [3.75, 136.50] | 0.57 |
Surgical procedure type, n (%) | 0.31 | |||
DAIR e | 6 (85.7) | 3 (60.0) | 8 (75.0) | |
Revision arthroplasty (one or two stage) | 1 (14.3) | 2 (40.0) | 3 (25.0) | |
Fever (>38 °C) at onset, n (%) | 4 (57.1) | 0 (0.0) | 4 (33.3) | 0.08 |
Sinovial fluid cultures, n (%) | 0.79 | |||
MRSA f | 1 (14.29) | 1 (20.0) | 2 (16.7) | |
MSSA g | 6 (85.71) | 4 (80.0) | 9 (83.33) | |
Blood cultures positivity, n (%) | 4 (57.1) | 0 (0.0) | 4 (33.3) | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maritati, M.; Manfrini, M.; Iaquinta, M.R.; Trentini, A.; Seraceni, S.; Guarino, M.; Costanzini, A.; De Giorgio, R.; Zanoli, G.A.; Borghi, A.; et al. Acute Prosthetic Joint Infections with Poor Outcome Caused by Staphylococcus Aureus Strains Producing the Panton–Valentine Leukocidin. Biomedicines 2023, 11, 1767. https://doi.org/10.3390/biomedicines11061767
Maritati M, Manfrini M, Iaquinta MR, Trentini A, Seraceni S, Guarino M, Costanzini A, De Giorgio R, Zanoli GA, Borghi A, et al. Acute Prosthetic Joint Infections with Poor Outcome Caused by Staphylococcus Aureus Strains Producing the Panton–Valentine Leukocidin. Biomedicines. 2023; 11(6):1767. https://doi.org/10.3390/biomedicines11061767
Chicago/Turabian StyleMaritati, Martina, Marco Manfrini, Maria Rosa Iaquinta, Alessandro Trentini, Silva Seraceni, Matteo Guarino, Anna Costanzini, Roberto De Giorgio, Gustavo Alberto Zanoli, Alessandro Borghi, and et al. 2023. "Acute Prosthetic Joint Infections with Poor Outcome Caused by Staphylococcus Aureus Strains Producing the Panton–Valentine Leukocidin" Biomedicines 11, no. 6: 1767. https://doi.org/10.3390/biomedicines11061767
APA StyleMaritati, M., Manfrini, M., Iaquinta, M. R., Trentini, A., Seraceni, S., Guarino, M., Costanzini, A., De Giorgio, R., Zanoli, G. A., Borghi, A., Mazzoni, E., De Rito, G., & Contini, C. (2023). Acute Prosthetic Joint Infections with Poor Outcome Caused by Staphylococcus Aureus Strains Producing the Panton–Valentine Leukocidin. Biomedicines, 11(6), 1767. https://doi.org/10.3390/biomedicines11061767