Clinical Significance of PD-L1 Status in Circulating Tumor Cells for Cancer Management during Immunotherapy
Abstract
:1. Introduction
2. CTC Interaction with Other Cells in the Blood Stream
3. Clinical Significance of CTCs in Immunotherapy
3.1. Clinical Significance of CTCs and PD-L1+CTCs in Immunotherapy Using CellSearch Platform
Type of Cancer | Number of Samples-Positivity | Additional Marker | Therapy | Response | Clinical Significance | Ref. |
---|---|---|---|---|---|---|
NSCLC | 89 (91%); baseline | No | Nivolumab | n.a | Yes; OS (p = 0.05) | [27] |
NSCLC | 35 (45.7%); baseline 24 (41.7%); 8 weeks | No | Nivolumab or Pembrolizumab | Yes; tumor metabolic response (p = 0.004) | Yes; PFS (p < 0.001) OS (p = 0.024) | [29] |
NSCLC | 30 (36.7%); baseline | Yes; PD-L1+CTCs17 (11.8%) | Pembrolizumab | n.a | Yes; PFS (p = 0.034) OS (p = 0.023) | [36] |
SCLC | 21 (85.7%); baseline | No | Chemotherapy or chemotherapy/ immunotherapy | n.a | Yes; cut-off ≥ 150 CTCs/7.5 mL PFS (p = 0.02) | [31] |
NSCLC | 24 (83%); baseline 10 (67%); 3 months 10 (100%); 6 months | Yes; PD-L1+CTCs 20 (95%); baseline 10 (100%); 3 months 10 (50%); 6 months | Nivolumab | Yes; PD-L1-CTCs clinical benefit | n.a | [37] |
NSCLC | 53 (43.4%) | Yes; PD-L1+CTCs53 (9.4%) | ICIs | n.a | Yes; CTC countPFS (p = 0.006) OS (p < 0.001) PD-L1+CTCs OS (p = 0.002) | [33] |
NSCLC | 104 (32%); baseline 63 (27%); 4 weeks | No | ICIs | Yes; T0 (p = 0.02) T1 (p < 0.01) | Yes; baseline PFS (p = 0.05) OS (p < 0.01) 4 weeks (T1) PFS (p < 0.01) OS (p < 0.01) | [30] |
NSCLC | 39 (15.4%) | Yes; PD-L1+CTCs39 (33.3%) | ICIs | n.a | Yes; PFS (p = 0.040) OS (p < 0.001) | [35] |
mPC | 10 (50%); pre-ARSI 10 (50%); post-ARSI 10 (40%); mHSPC | Yes; ≥1 PD-L1+CTC10 (60%); pre-ARSI 10 (70%); post-ARSI 10 (40%); mHSPC | Abiraterone, acetate/prednisone or enzalutamide | n.a | n.a | [40] |
MBC | 124 (42%) | Yes;≥1 PD-L1+CTC 52 (40%) | Chemotherapy, endocrine therapy, targeted therapy | n.a | n.a | [34] |
MBC | 16 (100%); ≥1 CTC 16 (81.3%); ≥5 CTC | Yes; ≥1 PD-L1+CTC 16 (68.8%) | n.a | n.a | n.a | [9] |
aUC | 57 (47.4%); ≥1 CTC 57 (24.6%) ≥5 CTCs | Yes; ≥1 PD-L1+CTC 16 (62.5%) | Palliative systemic treatment | n.a | Yes; ≥5 CTC OS (p = 0.007) | [38] |
MCC | 51 (41%); ≥1 CTC 51 (33%); >1 CTC 51 (12%); ≥5 CTCs | Yes; ≥1 PD-L1+CTC 4 pts (<1% CTCs weak PD-L1) | n.a | n.a | Yes; ≥1 CTC OS (p = 0.030) >1 CTC OS (p < 0.020) ≥5 CTCs OS (p < 0.0001) | [39] |
3.2. Prognostic and Predictive Value of PD-L1+CTCs in Various Types of Cancers
3.2.1. NSCLC
3.2.2. HNSCC
3.2.3. Prostate Cancer
3.2.4. Breast Cancer
3.2.5. Melanoma
3.2.6. Other Types of Cancers (Genitourinary Cancer, Bladder Cancer, Hepatocellular Cancer)
4. Immunotherapeutics on CTCs
5. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Full Name | Abbreviation | Full Name | Abbreviation |
Programmed death-ligand 1 | PD-L1 | Programmed cell death protein | PD1 |
Circulating Tumor Cells | CTCs | Food and Drugs Administration | FDA |
Circulating Tumor DNA | ctDNA | Metastatic breast cancer | MBC |
Natural Killer | NK | Immune checkpoint inhibitors | ICIs |
Dendritic cells | DC | Tumor-associated neutrophils | cTAN |
Small Cell Lung Cancer | SCLC | Inflammatory breast cancer | IBC |
Progression Free Survival | PFS | Cancer-associated macrophage-like cells | CAMLs |
CTC count variation | ΔCTC | Overall survival | OS |
Pleural EpCAM-positive cells | PECs | Metastatic prostate cancer | mPC |
Malignant pleural effusion | MPE | Metastatic colorectal cancer | MCC |
Urothelial Cancer | UC | Non-small cell lung cancer | NSCLC |
Merkel Cell Carcinoma | MCC | European Organization for Research and Treatment of Cancer | EORTC |
Recurrence-Free Survival | RFS | Metastatic renal cell carcinoma | mRCC |
Hepatocellular cancer | HCC | Head and neck squamous cell carcinoma | HNSCC |
Irreversible electroporation | IRE | Next-generation sequencing | NGS |
Sialic acid | SA | Triple negative breast cancer | TNBC |
Cholesterol | CH | Non-muscle-invasive bladder cancer | NMIBC |
Mature Mo-DCs | mMo-DCs | Sialic Acid-Modified EPI-Loaded Liposomes | EPI-SL |
Non-target blood cells | NTBCs | Monocyte-derived dendritic cells | Mo-DCs |
Oncolytic viral immunotherapy | Olvi-Vec | Minimal residual disease | MRD |
Immune-related adverse events | irAEs |
References
- Alix-Panabières, C.; Pantel, K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov. 2021, 11, 858–873. [Google Scholar] [CrossRef] [PubMed]
- Economopoulou, P.; Kotsantis, I.; Kyrodimos, E.; Lianidou, E.S.; Psyrri, A. Liquid Biopsy: An Emerging Prognostic and Predictive Tool in Head and Neck Squamous Cell Carcinoma (HNSCC). Focus on Circulating Tumor Cells (CTCs). Oral. Oncol. 2017, 74, 83–89. [Google Scholar] [CrossRef]
- Cristofanilli, M.; Budd, G.T.; Ellis, M.J.; Stopeck, A.; Matera, J.; Miller, M.C.; Reuben, J.M.; Doyle, G.V.; Allard, W.J.; Terstappen, L.W.M.M.; et al. Circulating Tumor Cells, Disease Progression, and Survival in Metastatic Breast Cancer. N. Engl. J. Med. 2004, 351, 781–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giordano, A.; Cristofanilli, M. CTCs in Metastatic Breast Cancer. Recent Results Cancer Res. 2012, 195, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Cristofanilli, M.; Pierga, J.Y.; Reuben, J.; Rademaker, A.; Davis, A.A.; Peeters, D.J.; Fehm, T.; Nolé, F.; Gisbert-Criado, R.; Mavroudis, D.; et al. The Clinical Use of Circulating Tumor Cells (CTCs) Enumeration for Staging of Metastatic Breast Cancer (MBC): International Expert Consensus Paper. Crit. Rev. Oncol. Hematol. 2019, 134, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Piñeiro, R.; Martínez-Pena, I.; López-López, R. Relevance of CTC Clusters in Breast Cancer Metastasis. Adv. Exp. Med. Biol. 2020, 1220, 93–115. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, Y.; Jiang, X.; Zheng, C.; Luo, W.; Xiang, X.; Qi, X.; Shen, J. Metformin Modified Chitosan as a Multi-Functional Adjuvant to Enhance Cisplatin-Based Tumor Chemotherapy Efficacy. Int. J. Biol. Macromol. 2023, 224, 797–809. [Google Scholar] [CrossRef]
- Ilie, M.; Long-Mira, E.; Bence, C.; Butori, C.; Lassalle, S.; Bouhlel, L.; Fazzalari, L.; Zahaf, K.; Lalvée, S.; Washetine, K.; et al. Comparative Study of the PD-L1 Status between Surgically Resected Specimens and Matched Biopsies of NSCLC Patients Reveal Major Discordances: A Potential Issue for Anti-PD-L1 Therapeutic Strategies. Ann. Oncol. 2016, 27, 147–153. [Google Scholar] [CrossRef]
- Mazel, M.; Jacot, W.; Pantel, K.; Bartkowiak, K.; Topart, D.; Cayrefourcq, L.; Rossille, D.; Maudelonde, T.; Fest, T.; Alix-Panabi Eres, C. Frequent Expression of PD-L1 on Circulating Breast Cancer Cells. Mol. Oncol. 2015, 9, 1773–1782. [Google Scholar] [CrossRef] [Green Version]
- Strati, A.; Koutsodontis, G.; Papaxoinis, G.; Angelidis, I.; Zavridou, M.; Economopoulou, P.; Kotsantis, I.; Avgeris, M.; Mazel, M.; Perisanidis, C.; et al. Prognostic Significance of PD-L1 Expression on Circulating Tumor Cells in Patients with Head and Neck Squamous Cell Carcinoma. Ann. Oncol. 2017, 28, 1923–1933. [Google Scholar] [CrossRef]
- Bauer, A.T.; Gorzelanny, C.; Gebhardt, C.; Pantel, K.; Schneider, S.W. Interplay between Coagulation and Inflammation in Cancer: Limitations and Therapeutic Opportunities. Cancer Treat. Rev. 2022, 102, 102322. [Google Scholar] [CrossRef] [PubMed]
- Dotse, E.; Lim, K.H.; Wang, M.; Wijanarko, K.J.; Chow, K.T. An Immunological Perspective of Circulating Tumor Cells as Diagnostic Biomarkers and Therapeutic Targets. Life 2022, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Garrido-Navas, C.; de Miguel-Pérez, D.; Exposito-Hernandez, J.; Bayarri, C.; Amezcua, V.; Ortigosa, A.; Valdivia, J.; Guerrero, R.; Puche, J.L.G.; Lorente, J.A.; et al. Cooperative and Escaping Mechanisms between Circulating Tumor Cells and Blood Constituents. Cells 2019, 8, 1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, X.; Zhang, H.; Hamad, A.; Huang, H.; Tsung, A. Surgery-Mediated Tumor-Promoting Effects on the Immune Microenvironment. Semin. Cancer Biol. 2022, 86, 408–419. [Google Scholar] [CrossRef]
- Tao, L.; Zhang, L.; Peng, Y.; Tao, M.; Li, L.; Xiu, D.; Yuan, C.; Ma, Z.; Jiang, B. Neutrophils Assist the Metastasis of Circulating Tumor Cells in Pancreatic Ductal Adenocarcinoma: A New Hypothesis and a New Predictor for Distant Metastasis. Medicine 2016, 95, e4932. [Google Scholar] [CrossRef]
- Zhang, J.; Qiao, X.; Shi, H.; Han, X.; Liu, W.; Tian, X.; Zeng, X. Circulating Tumor-Associated Neutrophils (CTAN) Contribute to Circulating Tumor Cell Survival by Suppressing Peripheral Leukocyte Activation. Tumor Biol. 2016, 37, 5397–5404. [Google Scholar] [CrossRef]
- Szczerba, B.M.; Castro-Giner, F.; Vetter, M.; Krol, I.; Gkountela, S.; Landin, J.; Scheidmann, M.C.; Donato, C.; Scherrer, R.; Singer, J.; et al. Neutrophils Escort Circulating Tumour Cells to Enable Cell Cycle Progression. Nature 2019, 566, 553–557. [Google Scholar] [CrossRef]
- Spicer, J.D.; McDonald, B.; Cools-Lartigue, J.J.; Chow, S.C.; Giannias, B.; Kubes, P.; Ferri, L.E. Neutrophils Promote Liver Metastasis via Mac-1-Mediated Interactions with Circulating Tumor Cells. Cancer Res. 2012, 72, 3919–3927. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Wei, D.; Wei, X. Background Modeling Method to Identify Interactions Between Circulating Tumor Cells and Dendritic Cells. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; Volume 2018, pp. 806–809. [Google Scholar] [CrossRef]
- Mego, M.; Gao, H.; Cohen, E.N.; Anfossi, S.; Giordano, A.; Tin, S.; Fouad, T.M.; Giorgi, U.D.; Giuliano, M.; Woodward, W.A.; et al. Circulating Tumor Cells (CTCs) Are Associated with Abnormalities in Peripheral Blood Dendritic Cells in Patients with Inflammatory Breast Cancer. Oncotarget 2017, 8, 35656–35668. [Google Scholar] [CrossRef] [Green Version]
- Noy, R.; Pollard, J.W. Tumor-Associated Macrophages: From Mechanisms to Therapy. Immunity 2014, 41, 49–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, G.; Rath, B. Circulating Tumor Cell Interactions with Macrophages: Implications for Biology and Treatment. Transl. Lung Cancer Res. 2017, 6, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gül, N.; Babes, L.; Kubes, P.; Van Egmond, M. Macrophages in the Liver Prevent Metastasis by Efficiently Eliminating Circulating Tumor Cells after Monoclonal Antibody Immunotherapy. Oncoimmunology 2014, 3, e28441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.M.; Adams, D.L. Clinical Applications of Cancer-Associated Cells Present in the Blood of Cancer Patients. Biomedicines 2022, 10, 587. [Google Scholar] [CrossRef] [PubMed]
- Mu, Z.; Wang, C.; Ye, Z.; Rossi, G.; Sun, C.; Li, L.; Zhu, Z.; Yang, H.; Cristofanilli, M. Prognostic Values of Cancer Associated Macrophage-like Cells (CAML) Enumeration in Metastatic Breast Cancer. Breast Cancer Res. Treat. 2017, 165, 733–741. [Google Scholar] [CrossRef]
- Swennenhuis, J.F.; van Dalum, G.; Zeune, L.L.; Terstappen, L.W.M.M. Improving the CellSearch® System. Expert. Rev. Mol. Diagn. 2016, 16, 1291–1305. [Google Scholar] [CrossRef] [Green Version]
- Alama, A.; Coco, S.; Genova, C.; Rossi, G.; Fontana, V.; Tagliamento, M.; Dal Bello, M.G.; Rosa, A.; Boccardo, S.; Rijavec, E.; et al. Prognostic Relevance of Circulating Tumor Cells and Circulating Cell-Free DNA Association in Metastatic Non-Small Cell Lung Cancer Treated with Nivolumab. J. Clin. Med. 2019, 8, 1011. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Liu, Y.; Song, W.; Jiang, X.; Deng, Z.; Xiong, W.; Shen, J. Metabolic Reprogramming Mediated PD-L1 Depression and Hypoxia Reversion to Reactivate Tumor Therapy. J. Control. Release 2022, 352, 793–812. [Google Scholar] [CrossRef]
- Castello, A.; Carbone, F.G.; Rossi, S.; Monterisi, S.; Federico, D.; Toschi, L.; Lopci, E. Circulating Tumor Cells and Metabolic Parameters in NSCLC Patients Treated with Checkpoint Inhibitors. Cancers 2020, 12, 487. [Google Scholar] [CrossRef] [Green Version]
- Tamminga, M.; De Wit, S.; Hiltermann, T.J.N.; Timens, W.; Schuuring, E.; Terstappen, L.W.M.M.; Groen, H.J.M. Circulating Tumor Cells in Advanced Non-Small Cell Lung Cancer Patients Are Associated with Worse Tumor Response to Checkpoint Inhibitors. J. Immunother. Cancer 2019, 7, 173. [Google Scholar] [CrossRef] [Green Version]
- Mondelo-Macía, P.; García-González, J.; Abalo, A.; Mosquera-Presedo, M.; Aguín, S.; Mateos, M.; López-López, R.; León-Mateos, L.; Muinelo-Romay, L.; Díaz-Peña, R. Plasma Cell-Free DNA and Circulating Tumor Cells as Prognostic Biomarkers in Small Cell Lung Cancer Patients. Transl. Lung Cancer Res. 2022, 11, 1995–2009. [Google Scholar] [CrossRef] [PubMed]
- Bootsma, M.; Mckay, R.R.; Emamekhoo, H.; Bade, R.M.; Schehr, J.L.; Mannino, M.C.; Singh, A.; Wolfe, S.K.; Schultz, Z.D.; Sperger, J.; et al. Longitudinal Molecular Profiling of Circulating Tumor Cells in Metastatic Renal Cell Carcinoma. J. Clin. Oncol. 2022, 40, 3633–3641. [Google Scholar] [CrossRef]
- Sinoquet, L.; Jacot, W.; Gauthier, L.; Pouderoux, S.; Viala, M.; Cayrefourcq, L.; Quantin, X.; Alix-Panabières, C. Programmed Cell Death Ligand 1-Expressing Circulating Tumor Cells: A New Prognostic Biomarker in Non-Small Cell Lung Cancer. Clin. Chem. 2021, 67, 1503–1512. [Google Scholar] [CrossRef]
- Darga, E.P.; Dolce, E.M.; Fang, F.; Kidwell, K.M.; Gersch, C.L.; Kregel, S.; Thomas, D.G.; Gill, A.; Brown, M.E.; Gross, S.; et al. PD-L1 Expression on Circulating Tumor Cells and Platelets in Patients with Metastatic Breast Cancer. PLoS ONE 2021, 16, e0260124. [Google Scholar] [CrossRef]
- Dall’Olio, F.G.; Gelsomino, F.; Conci, N.; Marcolin, L.; De Giglio, A.; Grilli, G.; Sperandi, F.; Fontana, F.; Terracciano, M.; Fragomeno, B.; et al. PD-L1 Expression in Circulating Tumor Cells as a Promising Prognostic Biomarker in Advanced Non-Small-Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Clin. Lung Cancer 2021, 22, 423–431. [Google Scholar] [CrossRef]
- Mondelo-Macía, P.; García-González, J.; León-Mateos, L.; Anido, U.; Aguín, S.; Abdulkader, I.; Sánchez-Ares, M.; Abalo, A.; Rodríguez-Casanova, A.; Díaz-Lagares, Á.; et al. Clinical Potential of Circulating Free DNA and Circulating Tumour Cells in Patients with Metastatic Non-Small-Cell Lung Cancer Treated with Pembrolizumab. Mol. Oncol. 2021, 15, 2923–2940. [Google Scholar] [CrossRef]
- Nicolazzo, C.; Raimondi, C.; Mancini, M.; Caponnetto, S.; Gradilone, A.; Gandini, O.; Mastromartino, M.; Del Bene, G.; Prete, A.; Longo, F.; et al. Monitoring PD-L1 Positive Circulating Tumor Cells in Non-Small Cell Lung Cancer Patients Treated with the PD-1 Inhibitor Nivolumab. Sci. Rep. 2016, 6, 31726. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, S.; Coym, A.; Ott, L.; Soave, A.; Rink, M.; Janning, M.; Stoupiec, M.; Coith, C.; Peine, S.; von Amsberg, G.; et al. Evaluation of PD-L1 Expression on Circulating Tumor Cells (CTCs) in Patients with Advanced Urothelial Carcinoma (UC). Oncoimmunology 2020, 9, 1738798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riethdorf, S.; Hildebrandt, L.; Heinzerling, L.; Heitzer, E.; Fischer, N.; Bergmann, S.; Mauermann, O.; Waldispühl-Geigl, J.; Coith, C.; Schön, G.; et al. Detection and Characterization of Circulating Tumor Cells in Patients with Merkel Cell Carcinoma. Clin. Chem. 2019, 65, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Agarwal, A.; Almquist, R.G.; Runyambo, D.; Park, S.; Bronson, E.; Boominathan, R.; Rao, C.; Anand, M.; Oyekunle, T.; et al. Expression of Immune Checkpoints on Circulating Tumor Cells in Men with Metastatic Prostate Cancer. Biomark. Res. 2021, 9, 14. [Google Scholar] [CrossRef]
- Thompson, J.C.; Fan, R.; Black, T.; Yu, G.H.; Savitch, S.L.; Chien, A.; Yee, S.S.; Sen, M.; Hwang, W.T.; Katz, S.I.; et al. Measurement and Immunophenotyping of Pleural Fluid EpCAM-Positive Cells and Clusters for the Management of Non-Small Cell Lung Cancer Patients. Lung Cancer 2019, 127, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebuzzi, S.E.; Rescigno, P.; Catalano, F.; Mollica, V.; Vogl, U.M.; Marandino, L.; Massari, F.; Mestre, R.P.; Zanardi, E.; Signori, A.; et al. Immune Checkpoint Inhibitors in Advanced Prostate Cancer: Current Data and Future Perspectives. Cancers 2022, 14, 1245. [Google Scholar] [CrossRef]
- Punekar, S.R.; Shum, E.; Grello, C.M.; Lau, S.C.; Velcheti, V. Immunotherapy in Non-Small Cell Lung Cancer: Past, Present, and Future Directions. Front. Oncol. 2022, 12, 877594. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.G.; Ramalingam, S.S.; Ciuleanu, T.E.; Lee, J.S.; Urban, L.; Caro, R.B.; Park, K.; Sakai, H.; Ohe, Y.; Nishio, M.; et al. First-Line Nivolumab Plus Ipilimumab in Advanced NSCLC: 4-Year Outcomes From the Randomized, Open-Label, Phase 3 CheckMate 227 Part 1 Trial. J. Thorac. Oncol. 2022, 17, 289–308. [Google Scholar] [CrossRef]
- Acheampong, E.; Spencer, I.; Lin, W.; Ziman, M.; Millward, M.; Gray, E. Is the Blood an Alternative for Programmed Cell Death Ligand 1 Assessment in Non-Small Cell Lung Cancer? Cancers 2019, 11, 920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilié, M.; Szafer-Glusman, E.; Hofman, V.; Chamorey, E.; Lalvée, S.; Selva, E.; Leroy, S.; Marquette, C.H.; Kowanetz, M.; Hedge, P.; et al. Detection of PD-L1 in Circulating Tumor Cells and White Blood Cells from Patients with Advanced Non-Small-Cell Lung Cancer. Ann. Oncol. 2018, 29, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Abdo, M.; Belloum, Y.; Heigener, D.; Welker, L.; von Weihe, S.; Schmidt, M.; Heuer-Olewinski, N.; Watermann, I.; Szewczyk, M.; Kropidlowski, J.; et al. Comparative Evaluation of PD-L1 Expression in Cytology Imprints, Circulating Tumour Cells and Tumour Tissue in Non-Small Cell Lung Cancer Patients. Mol. Oncol. 2023, 17, 13415. [Google Scholar] [CrossRef]
- Moran, J.A.; Adams, D.L.; Edelman, M.J.; Lopez, P.; He, J.; Qiao, Y.; Xu, T.; Liao, Z.; Gardner, K.P.; Tang, C.-M.; et al. Monitoring PD-L1 Expression on Circulating Tumor-Associated Cells in Recurrent Metastatic Non-Small-Cell Lung Carcinoma Predicts Response to Immunotherapy With Radiation Therapy. JCO Precis. Oncol. 2022, 6, e2200457. [Google Scholar] [CrossRef]
- Tan, Z.; Yue, C.; Ji, S.; Zhao, C.; Jia, R.; Zhang, Y.; Liu, R.; Li, D.; Yu, Q.; Li, P.; et al. Assessment of PD-L1 Expression on Circulating Tumor Cells for Predicting Clinical Outcomes in Patients with Cancer Receiving PD-1/PD-L1 Blockade Therapies. Oncologist 2021, 26, e2227–e2238. [Google Scholar] [CrossRef]
- Wang, Y.; Kim, T.H.; Fouladdel, S.; Zhang, Z.; Soni, P.; Qin, A.; Zhao, L.; Azizi, E.; Lawrence, T.S.; Ramnath, N.; et al. PD-L1 Expression in Circulating Tumor Cells Increases during Radio(Chemo)Therapy and Indicates Poor Prognosis in Non-Small Cell Lung Cancer. Sci. Rep. 2019, 9, 566. [Google Scholar] [CrossRef] [Green Version]
- Kulasinghe, A.; Kapeleris, J.; Kimberley, R.; Mattarollo, S.R.; Thompson, E.W.; Thiery, J.P.; Kenny, L.; O’Byrne, K.; Punyadeera, C. The Prognostic Significance of Circulating Tumor Cells in Head and Neck and Non-Small-Cell Lung Cancer. Cancer Med. 2018, 7, 5910–5919. [Google Scholar] [CrossRef] [Green Version]
- Khattak, M.A.; Reid, A.; Freeman, J.; Pereira, M.; McEvoy, A.; Lo, J.; Frank, M.H.; Meniawy, T.; Didan, A.; Spencer, I.; et al. PD-L1 Expression on Circulating Tumor Cells May Be Predictive of Response to Pembrolizumab in Advanced Melanoma: Results from a Pilot Study. Oncologist 2020, 25, e520–e527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, K.; Guo, L.; He, K.; Rao, M.; Zhang, J.; Yang, X.; Huang, W.; Gu, T.; Xu, K.; Liu, Y.; et al. PD-L1 Expression on Circulating Tumor Cells Can Be a Predictive Biomarker to PD-1 Inhibitors Combined with Radiotherapy and Antiangiogenic Therapy in Advanced Hepatocellular Carcinoma. Front. Oncol. 2022, 12, 873830. [Google Scholar] [CrossRef] [PubMed]
- Vardas, V.; Tolios, A.; Christopoulou, A.; Georgoulias, V.; Xagara, A.; Koinis, F.; Kotsakis, A.; Kallergi, G. Immune Checkpoint and EMT-Related Molecules in Circulating Tumor Cells (CTCs) from Triple Negative Breast Cancer Patients and Their Clinical Impact. Cancers 2023, 15, 1974. [Google Scholar] [CrossRef]
- Ikeda, M.; Koh, Y.; Teraoka, S.; Sato, K.; Oyanagi, J.; Hayata, A.; Tokudome, N.; Akamatsu, H.; Ozawa, Y.; Endo, K.; et al. Longitudinal Evaluation of PD-L1 Expression on Circulating Tumor Cells in Non-Small Cell Lung Cancer Patients Treated with Nivolumab. Cancers 2021, 13, 2290. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Liu, X.; Li, J.; Tong, B.; Xu, Y.; Chen, M.; Liu, X.; Gao, X.; Shi, Y.; Zhao, J.; et al. Circulating Tumor Cells PD-L1 Expression Detection and Correlation of Therapeutic Efficacy of Immune Checkpoint Inhibition in Advanced Non-Small-Cell Lung Cancer. Thorac. Cancer 2023, 14, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Janning, M.; Kobus, F.; Babayan, A.; Wikman, H.; Velthaus, J.L.; Bergmann, S.; Schatz, S.; Falk, M.; Berger, L.A.; Böttcher, L.M.; et al. Determination of PD-L1 Expression in Circulating Tumor Cells of NSCLC Patients and Correlation with Response to PD-1/PD-L1 Inhibitors. Cancers 2019, 11, 835. [Google Scholar] [CrossRef] [Green Version]
- Spiliotaki, M.; Neophytou, C.M.; Vogazianos, P.; Stylianou, I.; Gregoriou, G.; Constantinou, A.I.; Deltas, C.; Charalambous, H. Dynamic Monitoring of PD-L1 and Ki67 in Circulating Tumor Cells of Metastatic Non-Small Cell Lung Cancer Patients Treated with Pembrolizumab. Mol. Oncol. 2023, 17, 792–809. [Google Scholar] [CrossRef]
- Guibert, N.; Delaunay, M.; Lusque, A.; Boubekeur, N.; Rouquette, I.; Clermont, E.; Mourlanette, J.; Gouin, S.; Dormoy, I.; Favre, G.; et al. PD-L1 Expression in Circulating Tumor Cells of Advanced Non-Small Cell Lung Cancer Patients Treated with Nivolumab. Lung Cancer 2018, 120, 108–112. [Google Scholar] [CrossRef]
- Ouyang, Y.; Liu, W.; Zhang, N.; Yang, X.; Li, J.; Long, S. Prognostic Significance of Programmed Cell Death-Ligand 1 Expression on Circulating Tumor Cells in Various Cancers: A Systematic Review and Meta-Analysis. Cancer Med. 2021, 10, 7021–7039. [Google Scholar] [CrossRef]
- Shibata, H.; Saito, S.; Uppaluri, R. Immunotherapy for Head and Neck Cancer: A Paradigm Shift From Induction Chemotherapy to Neoadjuvant Immunotherapy. Front. Oncol. 2021, 11, 727433. [Google Scholar] [CrossRef]
- Cohen, E.E.W.; Soulières, D.; Le Tourneau, C.; Dinis, J.; Licitra, L.; Ahn, M.J.; Soria, A.; Machiels, J.P.; Mach, N.; Mehra, R.; et al. Pembrolizumab versus Methotrexate, Docetaxel, or Cetuximab for Recurrent or Metastatic Head-and-Neck Squamous Cell Carcinoma (KEYNOTE-040): A Randomised, Open-Label, Phase 3 Study. Lancet 2019, 393, 156–167. [Google Scholar] [CrossRef]
- Economopoulou, P.; Koutsodontis, G.; Avgeris, M.; Strati, A.; Kroupis, C.; Pateras, I.; Kirodimos, E.; Giotakis, E.; Kotsantis, I.; Maragoudakis, P.; et al. HPV16 E6/E7 Expression in Circulating Tumor Cells in Oropharyngeal Squamous Cell Cancers: A Pilot Study. PLoS ONE 2019, 14, e0215984. [Google Scholar] [CrossRef]
- Economopoulou, P.; Koutsodontis, G.; Strati, A.; Kirodimos, E.; Giotakis, E.; Maragoudakis, P.; Prikas, C.; Papadimitriou, N.; Perisanidis, C.; Gagari, E.; et al. Surrogates of Immunologic Cell Death (ICD) and Chemoradiotherapy Outcomes in Head and Neck Squamous Cell Carcinoma (HNSCC). Oral Oncol. 2019, 94, 93–100. [Google Scholar] [CrossRef]
- Economopoulou, P.; Kladi-Skandali, A.; Strati, A.; Koytsodontis, G.; Kirodimos, E.; Giotakis, E.; Maragoudakis, P.; Gagari, E.; Maratou, E.; Dimitriadis, G.; et al. Prognostic Impact of Indoleamine 2,3-Dioxygenase 1 (IDO1) MRNA Expression on Circulating Tumour Cells of Patients with Head and Neck Squamous Cell Carcinoma. ESMO Open. 2020, 5, e000646. [Google Scholar] [CrossRef] [PubMed]
- Rehman, L.U.; Nisar, M.H.; Fatima, W.; Sarfraz, A.; Azeem, N.; Sarfraz, Z.; Robles-Velasco, K.; Cherrez-Ojeda, I. Immunotherapy for Prostate Cancer: A Current Systematic Review and Patient Centric Perspectives. J. Clin. Med. 2023, 12, 1446. [Google Scholar] [CrossRef]
- Boudadi, K.; Suzman, D.L.; Anagnostou, V.; Fu, W.; Luber, B.; Wang, H.; Niknafs, N.; White, J.R.; Silberstein, J.L.; Sullivan, R.; et al. Ipilimumab plus Nivolumab and DNA-Repair Defects in AR-V7-Expressing Metastatic Prostate Cancer. Oncotarget 2018, 9, 28561–28571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schott, D.S.; Pizon, M.; Pachmann, U.; Pachmann, K. Sensitive Detection of PD-L1 Expression on Circulating Epithelial Tumor Cells (CETCs) Could Be a Potential Biomarker to Select Patients for Treatment with PD-1/PD-L1 Inhibitors in Early and Metastatic Solid Tumors. Oncotarget 2017, 8, 72755–72772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarantino, P.; Corti, C.; Schmid, P.; Cortes, J.; Mittendorf, E.A.; Rugo, H.; Tolaney, S.M.; Bianchini, G.; Andrè, F.; Curigliano, G. Immunotherapy for Early Triple Negative Breast Cancer: Research Agenda for the next Decade. NPJ Breast Cancer 2022, 8, 23. [Google Scholar] [CrossRef]
- Ralli, M.; Botticelli, A.; Visconti, I.C.; Angeletti, D.; Fiore, M.; Marchetti, P.; Lambiase, A.; De Vincentiis, M.; Greco, A. Immunotherapy in the Treatment of Metastatic Melanoma: Current Knowledge and Future Directions. J. Immunol. Res. 2020, 2020, 9235638. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Sullivan, R.J.; Kalinich, M.; Kwan, T.T.; Giobbie-Hurder, A.; Pan, S.; LiCausi, J.A.; Milner, J.D.; Nieman, L.T.; Wittner, B.S.; et al. Molecular Signatures of Circulating Melanoma Cells for Monitoring Early Response to Immune Checkpoint Therapy. Proc. Natl. Acad. Sci. USA 2018, 115, 2467–2472. [Google Scholar] [CrossRef] [Green Version]
- Chalfin, H.J.; Pramparo, T.; Mortazavi, A.; Niglio, S.A.; Schonhoft, J.D.; Jendrisak, A.; Chu, Y.L.; Richardson, R.; Krupa, R.; Anderson, A.K.L.; et al. Circulating Tumor Cell Subtypes and T-Cell Populations as Prognostic Biomarkers to Combination Immunotherapy in Patients with Metastatic Genitourinary Cancer. Clin. Cancer Res. 2021, 27, 1391–1398. [Google Scholar] [CrossRef]
- Kawahara, T.; Ishiguro, Y.; Ohtake, S.; Kato, I.; Ito, Y.; Ito, H.; Makiyama, K.; Kondo, K.; Miyoshi, Y.; Yumura, Y.; et al. PD-1 and PD-L1 Are More Highly Expressed in High-Grade Bladder Cancer than in Low-Grade Cases: PD-L1 Might Function as a Mediator of Stage Progression in Bladder Cancer. BMC Urol. 2018, 18, 97. [Google Scholar] [CrossRef] [Green Version]
- Morelli, M.B.; Amantini, C.; de Vermandois, J.A.R.; Gubbiotti, M.; Giannantoni, A.; Mearini, E.; Maggi, F.; Nabissi, M.; Marinelli, O.; Santoni, M.; et al. Correlation between High PD-L1 and EMT/Invasive Genes Expression and Reduced Recurrence-Free Survival in Blood-Circulating Tumor Cells from Patients with Non-Muscle-Invasive Bladder Cancer. Cancers 2021, 13, 5989. [Google Scholar] [CrossRef] [PubMed]
- Micalizzi, D.S.; Maheswaran, S.; Haber, D.A. A Conduit to Metastasis: Circulating Tumor Cell Biology. Genes. Dev. 2017, 31, 1827. [Google Scholar] [CrossRef] [PubMed]
- Aceto, N.; Bardia, A.; Miyamoto, D.T.; Donaldson, M.C.; Wittner, B.S.; Spencer, J.A.; Yu, M.; Pely, A.; Engstrom, A.; Zhu, H.; et al. Circulating Tumor Cell Clusters Are Oligoclonal Precursors of Breast Cancer Metastasis. Cell 2014, 158, 1110–1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, D.; Shen, L.; Luo, M.; Zhang, K.; Li, J.; Yang, Q.; Zhu, F.; Zhou, D.; Zheng, S.; Chen, Y.; et al. Circulating Tumor Cells: Biology and Clinical Significance. Signal Transduct. Target. Ther. 2021, 6, 404. [Google Scholar] [CrossRef]
- Steinert, G.; Schölch, S.; Niemietz, T.; Iwata, N.; García, S.A.; Behrens, B.; Voigt, A.; Kloor, M.; Benner, A.; Bork, U.; et al. Immune Escape and Survival Mechanisms in Circulating Tumor Cells of Colorectal Cancer. Cancer Res. 2014, 74, 1694–1704. [Google Scholar] [CrossRef] [Green Version]
- Lian, S.; Xie, X.; Lu, Y.; Jia, L. Checkpoint CD47 Function On Tumor Metastasis And Immune Therapy. Onco Targets Ther. 2019, 12, 9105–9114. [Google Scholar] [CrossRef] [Green Version]
- Lian, S.; Xie, R.; Ye, Y.; Lu, Y.; Cheng, Y.; Xie, X.; Li, S.; Jia, L. Dual Blockage of Both PD-L1 and CD47 Enhances Immunotherapy against Circulating Tumor Cells. Sci. Rep. 2019, 9, 4532. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Chen, Y.; Xiao, W.; Sun, R.; Tian, Z. NK Cell-Based Immunotherapy for Malignant Diseases. Cell. Mol. Immunol. 2013, 10, 230–252. [Google Scholar] [CrossRef] [Green Version]
- Liang, S.; Xu, K.; Niu, L.; Wang, X.; Liang, Y.; Zhang, M.; Chen, J.; Lin, M. Comparison of Autogeneic and Allogeneic Natural Killer Cells Immunotherapy on the Clinical Outcome of Recurrent Breast Cancer. Onco Targets Ther. 2017, 10, 4273–4281. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.; Liang, S.Z.; Shi, J.; Niu, L.Z.; Chen, J.B.; Zhang, M.J.; Xu, K.C. Circulating Tumor Cell as a Biomarker for Evaluating Allogenic NK Cell Immunotherapy on Stage IV Non-Small Cell Lung Cancer. Immunol. Lett. 2017, 191, 10–15. [Google Scholar] [CrossRef]
- Manyam, M.; Stephens, A.J.; Kennard, J.A.; LeBlanc, J.; Ahmad, S.; Kendrick, J.E.; Holloway, R.W. A Phase 1b Study of Intraperitoneal Oncolytic Viral Immunotherapy in Platinum-Resistant or Refractory Ovarian Cancer. Gynecol. Oncol. 2021, 163, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Qin, Z.; Du, D.; Wu, Y.; Qiu, S.; Mu, F.; Xu, K.; Chen, J. Safety and Short-Term Efficacy of Irreversible Electroporation and Allogenic Natural Killer Cell Immunotherapy Combination in the Treatment of Patients with Unresectable Primary Liver Cancer. Cardiovasc. Intervent Radiol. 2019, 42, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.T.; Niu, Z.; Hadlock, T.; Purcell, E.; Lo, T.W.; Zeinali, M.; Owen, S.; Keshamouni, V.G.; Reddy, R.; Ramnath, N.; et al. On-Chip Biogenesis of Circulating NK Cell-Derived Exosomes in Non-Small Cell Lung Cancer Exhibits Antitumoral Activity. Adv. Sci. 2021, 8, 2003747. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.Q.; Du, W.L.; Cai, M.H.; Yao, J.Y.; Zhao, Y.Y.; Mou, X.Z. The Roles of Tumor-Associated Macrophages in Tumor Angiogenesis and Metastasis. Cell. Immunol. 2020, 353, 104119. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Wang, M.; Zhang, K.; Sui, D.; Chen, M.; Xu, Z.; Guo, T.; Liu, X.; Deng, Y.; Song, Y. An Application of Tumor-Associated Macrophages as Immunotherapy Targets: Sialic Acid-Modified EPI-Loaded Liposomes Inhibit Breast Cancer Metastasis. AAPS PharmSciTech 2022, 23, 285. [Google Scholar] [CrossRef] [PubMed]
- Stojadinovic, A.; Mittendorf, E.A.; Holmes, J.P.; Amin, A.; Hueman, M.T.; Ponniah, S.; Peoples, G.E. Quantification and Phenotypic Characterization of Circulating Tumor Cells for Monitoring Response to a Preventive HER2/Neu Vaccine-Based Immunotherapy for Breast Cancer: A Pilot Study. Ann. Surg. Oncol. 2007, 14, 3359–3368. [Google Scholar] [CrossRef] [PubMed]
- Kolostova, K.; Pospisilova, E.; Matkowski, R.; Szelachowska, J.; Bobek, V. Immune Activation of the Monocyte-Derived Dendritic Cells Using Patients Own Circulating Tumor Cells. Cancer Immunol. Immunother. 2022, 71, 2901–2911. [Google Scholar] [CrossRef]
Type of Cancer | CTC Isolation Technique | CTC Detection Method | Number of Samples (Positivity) | Therapy | Clinical Outcome | Ref. |
---|---|---|---|---|---|---|
NSCLC | CellSieve Microfiltration Assay | LifeTracDx PD-L1 test | 30 (87%); low PD-L1 30 (13%); high PD-L1 | ICIs | Yes; PFS-18 months (p = 0.0112) PFS-24 months (p = 0.0112) | [48] |
Different advanced cancers | Pep@MNPs | IF | 155 (81.9%) | ICIs | Yes; PFS (p < 0.0001) OS (p = 0.0235) | [49] |
NSCLC | Graphene oxide (GO) Chip | IF and qPCR | 38 (69.4%) | Radiation or chemoradiation | Yes; 5% cutoff (p = 0.017) | [50] |
NSCLC | CellSearch | CellSearch | 53 (9.4%) | ICIs | Yes; CTC count PFS (p = 0.006) OS (p < 0.001) PD-L1+CTCs OS (p = 0.002) | [33] |
NSCLC | CellSearch | CellSearch | 39 (33.3%) | ICIs | Yes; PFS (p = 0.040) OS (p < 0.001) | [35] |
HNSCC | ClearCell FX system | IF | 11 (54.4%) | Treatment naïve | Yes; PFS (p = 0.0485) | [51] |
HNSCC | Ficoll–Hypaque density gradient | RT-qPCR | 94 (25.5%); baseline 34 (23.5%); after IC 54 (22.2%); at the end of treatment | Chemotherapy | Yes; PFS (p = 0.001) OS (p < 0.001) | [10] |
Various types of cancer | Pep@MNPs | IF | 35 (74%) | PD-1 inhibitor IBI308 | Yes; PFS (p = 0.002) | [49] |
AM | Ficoll–Hypaque density gradient | Flow cytometric staining | 25 (64%) | Pembrolizumab | Yes; PFS (p = 0.018) 12-month PFS (p = 0.012) | [52] |
HCC | CytoSorter™ BioScanner system | CytoSorter™ CTC PD-L1 Kit | 47 (48.9%); <2 PD-L1+CTC 47 (51.1%); ≥2 PD-L1+CTC | PD-1 inhibitor, IMRT, antiangiogenic therapy | Yes; OS (p = 0.001) | [53] |
TNBC | Ficoll–Hypaque density gradient | IF | 64 (41%) | Chemotherapy | Yes; OS (p < 0.001) | [54] |
aUC | CellSearch | CellSearch | 16 (62.5%) | Palliative systemic treatment | Yes; ≥5 CTC OS (p = 0.007) | [38] |
Type of Cancer | CTC Isolation Technique | CTC Detection Method | Number of Samples (Positivity) | Therapy | Response to Therapy | Ref. |
---|---|---|---|---|---|---|
NSCLC | MCA system | MCA system | 44 (82%); baseline 31 (58%); week 4 16 (56%); week 8 13 (62%); week 12 11 (55%); week 24 | ICIs | Yes; p < 0.05 | [55] |
NSCLC | CellSieve Microfiltration Assay | LifeTracDx PD-L1 test | 30 (87%); low PD-L1 30 (13%); high PD-L1 | ICIs | Yes; PFS-24 months (p = 0.0091) OS-18 months (p = 0.0410) | [48] |
NSCLC | Cyttel method | IF | 117 (53.0%) | ICIs | No; prolonged mPFS-5.6 months (p = 0.519) | [56] |
NSCLC | Parsortix system | IF | 89 (56%); ≥1 PD-L1+CTC 89 (26%); ≥3 PD-L1+CTC | ICIs | Yes; Response (decrease or stable PD-L1+CTC) Disease progression (increase PD-L1+CTC) (p = 0.001) | [57] |
Different advanced cancers | Pep@MNPs | IF | 155 (81.9%) | ICIs | Yes; ORR (p = 0.018) DCR (p < 0.0001) | [49] |
NSCLC | Ficoll–Hypaque density gradient | IF | 47 (86%); baseline 43 (89%); after first cycle 23 (76%); after third cycle 19 (82%); PMR | Pembrolizumab | Yes; a decrease of PD-L1low CTC, partial response after the first cycle | [58] |
AM | Ficoll–Hypaque density gradient | Flow cytometric staining | 25 (64%) | Pembrolizumab | Yes; PD-L1+CTCs higher in responders (p = 0.005) | [52] |
HCC | CytoSorter™ BioScanner system | CytoSorter™ CTC PD-L1 Kit | 47 (48.9%); <2 PD-L1+CTC 47 (51.1%); ≥2 PD-L1+CTC | PD-1 inhibitor, IMRT, antiangiogenic therapy | Yes; <2 PD-L1+CTCs higher ORR (p = 0.007) | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strati, A.; Economopoulou, P.; Lianidou, E.; Psyrri, A. Clinical Significance of PD-L1 Status in Circulating Tumor Cells for Cancer Management during Immunotherapy. Biomedicines 2023, 11, 1768. https://doi.org/10.3390/biomedicines11061768
Strati A, Economopoulou P, Lianidou E, Psyrri A. Clinical Significance of PD-L1 Status in Circulating Tumor Cells for Cancer Management during Immunotherapy. Biomedicines. 2023; 11(6):1768. https://doi.org/10.3390/biomedicines11061768
Chicago/Turabian StyleStrati, Areti, Panagiota Economopoulou, Evi Lianidou, and Amanda Psyrri. 2023. "Clinical Significance of PD-L1 Status in Circulating Tumor Cells for Cancer Management during Immunotherapy" Biomedicines 11, no. 6: 1768. https://doi.org/10.3390/biomedicines11061768
APA StyleStrati, A., Economopoulou, P., Lianidou, E., & Psyrri, A. (2023). Clinical Significance of PD-L1 Status in Circulating Tumor Cells for Cancer Management during Immunotherapy. Biomedicines, 11(6), 1768. https://doi.org/10.3390/biomedicines11061768