Animal Models of Hypertension (ISIAH Rats), Catatonia (GC Rats), and Audiogenic Epilepsy (PM Rats) Developed by Breeding
Abstract
:1. ISIAH (Inherited Stress-Induced Arterial Hypertension) Rats
1.1. A Short History of the ISIAH Rat Strain
1.2. Characteristics of the Main Neuroendocrine Pathways
1.3. Genetic Mapping of Hypothalamic Norepinephrine Concentration in ISIAH Rats and Its Relations with Other Traits
1.4. Similarities and Differences in the Genetic Background between ISIAH Rats and Other Hypertensive Rat Strains
2. GC (“Genetic Catatonia”) Rats
2.1. A Short History of the GC Rat Strain
2.2. Features of the GC Rat Strain
2.3. Other Animal Models of Catatonia
3. PM (“Pendulum-like Movements”) Rats
3.1. A Short History of PM Rats
3.2. Traits of the PM Rat Strain
Phenotype | Tests | References |
---|---|---|
Pendulum head and torso movements (100% of individuals) | Visual detection in a home cage | [84,135,137] |
In up to 90% of individuals, audiogenic seizures (include wild running and/or generalized seizures) | Test for audiogenic epilepsy | [136,137] |
Long postictal catalepsy | Test for audiogenic epilepsy | [137] |
High excitability | Test for audiogenic epilepsy | [135,136,137,143] |
Well-pronounced pinch-induced catalepsy in pups Increased vocalizations and motor paroxysms in pups | Test for pinch-induced catalepsy | [128] |
Delay of the development of locomotor reactions and greater immobility in pups | Test for the activity of motor subsystems | [128] |
Enhanced offensive behavior | Resident–intruder test | [91] |
High aggressiveness | Glove test | [137] |
Impaired spatial memory Lack of a spatial strategy in the Barnes maze Longer platform search time and a reduction in the proportion of successful attempts to find the platform in the Morris water maze | Barnes maze test Morris water maze test | [91,143] |
Downregulation of norepinephrine and serotonin in the hypothalamus | Fluorometric quantitation of monoamines | [136] |
Low concentration of taurine in the hippocampus | MRI (magnetic resonance imaging) | [102] |
3.3. Epilepsy Modeling: Strategies and Approaches
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Redina, O.E.; Markel, A.L. Stress, Genes, and Hypertension. Contribution of the ISIAH Rat Strain Study. Curr. Hypertens. Rep. 2018, 20, 66. [Google Scholar] [CrossRef] [PubMed]
- Markel, A.L. Development of a new strain of rats with inherited stress-induced arterial hypertension. In Genetic Hypertension; Sassard, J., Libbey, J., Eds.; Eurotext; Colloque INSERM: London, UK, 1992; Volume 218, pp. 405–407. [Google Scholar]
- Markel, A.L.; Maslova, L.N.; Shishkina, G.T.; Bulygina, V.V.; Machanova, N.A.; Jacobson, G.S. Developmental influences on blood pressure regulation in ISIAH rats. In Development of the Hypertensive Phenotype: Basic and Clinical Studies; McCarty, R., Blizard, D.A., Chevalier, R.L., Birkenhager, W.H., Reid, J.L., Eds.; Handbook of hypertension; Elsevier: Amsterdam, The Netherlands; Lausanne, Switzerland; NewYork, NY, USA; Oxford, UK; Shannon, Ireland; Singapore; Tokyo, Japan, 1999; Volume 19, pp. 493–526. [Google Scholar]
- Markel, A.L.; Redina, O.E.; Gilinsky, M.A.; Dymshits, G.M.; Kalashnikova, E.V.; Khvorostova, Y.V.; Fedoseeva, L.A.; Jacobson, G.S. Neuroendocrine profiling in inherited stress-induced arterial hypertension rat strain with stress-sensitive arterial hypertension. J. Endocrinol. 2007, 195, 439–450. [Google Scholar] [CrossRef] [Green Version]
- Buzueva, I.I.; Filyushina, E.E.; Shmerling, M.D.; Markel, A.L.; Jacobson, G.S. Structural characteristics of adenohypophysis in hypertensive ISIAH rats in early ontogeny. Bull. Exp. Biol. Med. 2012, 152, 279–282. [Google Scholar] [CrossRef]
- Korostyshevskaya, I.M.; Maksimov, V.F. Age-related structural and functional characteristics of cardiac myoendocrine cells of rats in a normal state and with hereditary hypertension. Russ. J. Dev. Biol. 2013, 44, 57–68. [Google Scholar] [CrossRef]
- Seryapina, A.A.; Shevelev, O.B.; Moshkin, M.P.; Markel, A.L.; Akulov, A.E. Stress-sensitive arterial hypertension, haemodynamic changes and brain metabolites in hypertensive ISIAH rats: MRI investigation. Exp. Physiol. 2017, 102, 523–532. [Google Scholar] [CrossRef] [Green Version]
- Shmerling, M.D.; Filiushina, E.E.; Lazarev, V.A.; Buzueva, I.I.; Markel’, A.L.; Iakobson, G.S. Ultrastructural changes of kidney corpuscles in rats with hereditary stress-induced arterial hypertension. Morfologiia 2001, 120, 70–74. (In Russian) [Google Scholar]
- Amstislavsky, S.; Welker, P.; Fruhauf, J.H.; Maslova, L.; Ivanova, L.; Jensen, B.; Markel, A.L.; Bachmann, S. Renal and endocrine changes in rats with inherited stress-induced arterial hypertension (ISIAH). Histochem. Cell Biol. 2006, 125, 651–659. [Google Scholar] [PubMed]
- Antonov, E.V.; Markel, A.L.; Yakobson, G.S. Aldosterone and stress-dependent arterial hypertension. Bull. Exp. Biol. Med. 2011, 152, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Antonov, Y.V.; Alexandrovich, Y.V.; Redina, O.E.; Gilinsky, M.A.; Markel, A.L. Stress and hypertensive disease: Adrenals as a link. Experimental study on hypertensive ISIAH rat strain. Clin. Exp. Hypertens. 2016, 38, 415–423. [Google Scholar] [CrossRef]
- Markel, A.L. Features of the behavior of the rat with hereditarily determined arterial hypertension. Zh. Vyss. Nerv. Deiat. Im. I P Pavlov. 1986, 36, 956–962. (In Russian) [Google Scholar]
- Meshkov, I.O.; Alekhina, T.A.; Moreva, T.A.; Markel, A.L. Behavioral characterictics of ISIAH rat strain. Zh Vyss. Nerv. Deiat. Im. I P Pavlov. 2012, 62, 233–242. (In Russian) [Google Scholar]
- Redina, O.E.; Smolenskaya, S.E.; Markel, A.L. Genetic control of the behavior of ISIAH rats in the open field test. Russ. J. Genet. 2022, 58, 791–803. [Google Scholar] [CrossRef]
- Bobko, A.A.; Sergeeva, S.V.; Bagryanskaya, E.G.; Markel, A.L.; Khramtsov, V.V.; Reznikov, V.A.; Kolosova, N.G. 19F NMR measurements of NO production in hypertensive ISIAH and OXYS rats. Biochem. Biophys. Res. Commun. 2005, 330, 367–370. [Google Scholar] [PubMed]
- Pivovarova, E.N.; Dushkin, M.I.; Perepechaeva, M.L.; Kobzev, V.F.; Trufakin, V.A.; Markel, A.L. All signs of the metabolic syndrome in hypertensive ISIAH rats are associated with increased activity of the transcription factors PPAR, LXR, PXR, and CAR in the liver. Biochem. Mosc. Suppl. Ser. B Biomed. Chem. 2011, 5, 29–36. [Google Scholar] [CrossRef]
- Klimov, L.O.; Fedoseeva, L.A.; Ryazanova, M.A.; Dymshits, G.M.; Markel, A.L. Expression of renin-angiotensin system genes in brain structures of ISIAH rats with stress-induced arterial hypertension. Bull. Exp. Biol. Med. 2013, 154, 357–360. [Google Scholar]
- Klimov, L.O.; Ryazanova, M.A.; Fedoseeva, L.A.; Markel, A.L. Effects of brain renin-angiotensin system inhibition in rats with inherited stress-induced arterial hypertension (ISIAH). Vavilovskii Zhurnal Genet. Sel. 2017, 21, 735–741. [Google Scholar] [CrossRef] [Green Version]
- Fedoseeva, L.A.; Riazanova, M.A.; Antonov, E.V.; Dymshits, G.M.; Markel’, A.L. Renin-angiotensin system gene expression in the kidney and in the heart in hypertensive ISIAH rats. Biomed. Khim. 2011, 57, 410–419. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Adarichev, V.A.; Korokhov, N.P.; Ostapchuk Ia, V.; Dymshits, G.M.; Markel, A.L. Characterization of rat lines with normotensive and hypertensive status using genomic fingerprinting. Genetika 1996, 32, 1669–1672. [Google Scholar] [PubMed]
- Ershov, N.I.; Markel, A.L.; Redina, O.E. Strain-Specific Single-Nucleotide Polymorphisms in Hypertensive ISIAH Rats. Biochemistry 2017, 82, 224–235. [Google Scholar] [CrossRef] [PubMed]
- Redina, O.E.; Devyatkin, V.A.; Ershov, N.I.; Markel, A.L. Genetic polymorphism of experimentally produced forms of arterial hypertension. Russ. J. Genet. 2020, 56, 213–225. [Google Scholar] [CrossRef]
- Naumenko, E.V.; Maslova, L.N.; Gordienko, N.I.; Amstyslavski, S.Y.; Dygalo, N.N.; Markel, A.L. Persistent hypotensive effect of L-dopa given early during development to rats with inherited stress-induced arterial hypertension. Brain Res. Dev. Brain Res. 1989, 46, 205–212. [Google Scholar] [CrossRef]
- Shevelev, O.B.; Seryapina, A.A.; Zavjalov, E.L.; Gerlinskaya, L.A.; Goryachkovskaya, T.N.; Slynko, N.M.; Kuibida, L.V.; Peltek, S.E.; Markel, A.L.; Moshkin, M.P. Hypotensive and neurometabolic effects of intragastric Reishi (Ganoderma lucidum) administration in hypertensive ISIAH rat strain. Phytomedicine 2018, 41, 1–6. [Google Scholar] [CrossRef]
- Gilinsky, M.A.; Polityko, Y.K.; Markel, A.L.; Latysheva, T.V.; Samson, A.O.; Polis, B.; Naumenko, S.E. Norvaline Reduces Blood Pressure and Induces Diuresis in Rats with Inherited Stress-Induced Arterial Hypertension. Biomed. Res. Int. 2020, 2020, 4935386. [Google Scholar] [CrossRef] [Green Version]
- Gilinsky, M.A.; Polityko, Y.K.; Markel, A.L.; Aftanas, L.I. Hypotensive Effects of Arginase Inhibition by L-Norvaline in Genetic Models of Normotensive and Hypertensive Rats. Bull. Exp. Biol. Med. 2023, 174, 674–677. [Google Scholar] [CrossRef] [PubMed]
- Repkova, M.N.; Levina, A.S.; Seryapina, A.A.; Shikina, N.V.; Bessudnova, E.V.; Zarytova, V.F.; Markel, A.L. Toward Gene Therapy of Hypertension: Experimental Study on Hypertensive ISIAH Rats. Biochemistry 2017, 82, 454–457. [Google Scholar] [CrossRef]
- Levina, A.; Repkova, M.; Kupryushkin, M.; Seryapina, A.; Shevelev, O.; Pyshnyi, D.; Zarytova, V.; Markel, A. In vivo hypotensive effect of aminosilanol-based nanocomposites bearing antisense oligonucleotides. J. Drug Deliv. Sci. Technol. 2022, 75, 103612. [Google Scholar] [CrossRef]
- Redina, O.E.; Machanova, N.A.; Efimov, V.M.; Markel, A.L. Rats with inherited stress-induced arterial hypertension (ISIAH strain) display specific quantitative trait loci for blood pressure and for body and kidney weight on chromosome 1. Clin. Exp. Pharmacol. Physiol. 2006, 33, 456–464. [Google Scholar]
- Redina, O.E.; Smolenskaya, S.E.; Maslova, L.N.; Sakharov, D.G.; Markel, A.L. The characteristics of motor activity in ISIAH rats in an open field test are controlled by genes on chromosomes 2 and 16. Neurosci. Behav. Physiol. 2009, 39, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Redina, O.E.; Smolenskaya, S.E.; Maslova, L.N.; Markel, A.L. Genetic Control of the Corticosterone Level at Rest and under Emotional Stress in ISIAH Rats with Inherited Stress-Induced Arterial Hypertension. Clin. Exp. Hypertens. 2010, 32, 364–371. [Google Scholar] [CrossRef]
- Redina, O.E.; Smolenskaya, S.E.; Markel, A.L. Dopamine level in the medulla oblongata is under the control of chromosome 8 locus in ISIAH rats. Dokl. Biol. Sci. 2010, 431, 100–102. [Google Scholar] [CrossRef]
- Redina, O.E.; Smolenskaya, S.E.; Maslova, L.N.; Markel, A.L. The genetic control of blood pressure and body composition in rats with stress-sensitive hypertension. Clin. Exp. Hypertens. 2013, 35, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Redina, O.E.; Smolenskaya, S.E.; Abramova, T.O.; Markel, A.L. Genetic Loci for Spleen Weight and Blood Pressure in ISIAH Rats with Inherited Stress-Induced Arterial Hypertension. Mol. Biol. 2014, 48, 351–358. [Google Scholar]
- Redina, O.E.; Smolenskaya, S.E.; Polityko, Y.K.; Ershov, N.I.; Gilinsky, M.A.; Markel, A.L. Hypothalamic Norepinephrine Concentration and Heart Mass in Hypertensive ISIAH Rats Are Associated with a Genetic Locus on Chromosome 18. J. Pers. Med. 2021, 11, 67. [Google Scholar] [CrossRef]
- Klimov, L.O.; Ershov, N.I.; Efimov, V.M.; Markel, A.L.; Redina, O.E. Genome-wide transcriptome analysis of hypothalamus in rats with inherited stress-induced arterial hypertension. BMC Genet. 2016, 17 (Suppl. S1), 13. [Google Scholar]
- Fedoseeva, L.A.; Ryazanova, M.A.; Ershov, N.I.; Markel, A.L.; Redina, O.E. Comparative transcriptional profiling of renal cortex in rats with inherited stress-induced arterial hypertension and normotensive Wistar Albino Glaxo rats. BMC Genet. 2016, 17 (Suppl. S1), 12. [Google Scholar]
- Fedoseeva, L.A.; Klimov, L.O.; Ershov, N.I.; Alexandrovich, Y.V.; Efimov, V.M.; Markel, A.L.; Redina, O.E. Molecular determinants of the adrenal gland functioning related to stress-sensitive hypertension in ISIAH rats. BMC Genom. 2016, 17 (Suppl. S14), 989. [Google Scholar]
- Ryazanova, M.A.; Fedoseeva, L.A.; Ershov, N.I.; Efimov, V.M.; Markel, A.L.; Redina, O.E. The gene-expression profile of renal medulla in ISIAH rats with inherited stress-induced arterial hypertension. BMC Genet. 2016, 17 (Suppl. S3), 151. [Google Scholar] [CrossRef] [Green Version]
- Fedoseeva, L.A.; Klimov, L.O.; Ershov, N.I.; Efimov, V.M.; Markel, A.L.; Orlov, Y.L.; Redina, O.E. The differences in brain stem transcriptional profiling in hypertensive ISIAH and normotensive WAG rats. BMC Genom. 2019, 20, 297. [Google Scholar] [CrossRef] [Green Version]
- Fedoseeva, L.A.; Ershov, N.I.; Sidorenko, I.A.; Markel, A.L.; Redina, O.E. Identification of Hypothalamic Long Noncoding RNAs Associated with Hypertension and the Behavior/Neurological Phenotype of Hypertensive ISIAH Rats. Genes 2022, 13, 1598. [Google Scholar] [CrossRef] [PubMed]
- Redina, O.E.; Smolenskaya, S.E.; Klimov, L.O.; Markel, A.L. Candidate genes in Quantitative Trait Loci associated with absolute and relative kidney weight in rats with Inherited Stress Induced Arterial Hypertension. BMC Genet. 2015, 16 (Suppl. S1), S1. [Google Scholar] [CrossRef] [Green Version]
- Redina, O.E.; Smolenskaya, S.E.; Fedoseeva, L.A.; Markel, A.L. Differentially expressed genes in the locus associated with relative kidney weight and resting blood pressure in hypertensive rats of the ISIAH strain. Mol. Biol. 2016, 50, 831–838. [Google Scholar] [CrossRef]
- Fedoseeva, L.A.; Smolenskaya, S.E.; Markel, A.L.; Redina, O.E. Genes associated with increased stress sensitivity in hypertensive ISIAH rats. Mol. Biol. 2023, 57, 346–355. [Google Scholar] [CrossRef]
- Pylnik, T.O.; Pletneva, L.S.; Redina, O.E.; Smolenskaya, S.E.; Markel, A.L.; Ivanova, L.N. The effect of emotional stress on the expression of the alpha-ENaC gene mRNA in the kidney of hypertensive ISIAH rats. Dokl. Biol. Sci. 2011, 439, 201–203. [Google Scholar] [CrossRef]
- Pyl’nik, T.O.; Redina, O.E.; Smolehskaia, S.E.; Ivanova, L.N.; Markel, A.L. Expression of the genes Egf and Egfr in renal tissue of the hypertensive rats of the ISIAH strain. Ross. Fiziol. Zh. Im. I M Sechenova 2012, 98, 373–380. [Google Scholar]
- Abramova, T.O.; Redina, O.E.; Smolenskaya, S.E.; Markel, A.L. Elevated expression of the Ephx2 mRNA in the kidney of hypertensive ISIAH rats. Mol. Biol. 2013, 47, 821–826. [Google Scholar] [CrossRef]
- Voronova, I.P.; Tuzhikova, A.A.; Markel, A.L.; Kozyreva, T.V. Inherited stress-induced hypertension associates with altered gene expression of thermosensitive TRP ion channels in hypothalamus. J. Exp. Integr. Med. 2015, 5, 149–156. [Google Scholar] [CrossRef] [Green Version]
- Abramova, T.O.; Smolenskaya, S.E.; Antonov, E.V.; Redina, O.E.; Markel, A.L. Expression of catechol-O-methyltransferase (Comt), mineralocorticoid receptor (Mlr), and epithelial sodium channel (ENaC) genes in kidneys of hypertensive ISIAH rats at rest and during response to stress. Russ. J. Genet. 2016, 52, 180–187. [Google Scholar] [CrossRef]
- Redina, O.E.; Abramova, T.O.; Klimov, L.O.; Ryazanova, M.A.; Fedoseeva, L.A.; Smolenskaya, S.E.; Ershov, N.I.; Dubinina, A.D.; Markel, A.L. Soluble epoxide hydrolase (sEH) as a potential target for arterial hypertension therapy. Russ. J. Genet. 2017, 53, 972–981. [Google Scholar] [CrossRef]
- Abramova, T.O.; Ryazanova, M.A.; Antonov, E.V.; Redina, O.E.; Markel, A.L. Increase in the concentration of sEH protein in renal medulla of ISIAH rats with Inherited Stress-Induced Arterial Hypertension. Mol. Biol. 2017, 51, 389–392. [Google Scholar] [CrossRef]
- Shevelev, O.B.; Seryapina, A.A.; Markel, A.L.; Moshkin, M.P. Brain metabolites in ISIAH and Wistar rats. Vavilovskii Zhurnal Genet. Sel. 2015, 19, 427–431. [Google Scholar] [CrossRef] [Green Version]
- Dubinina, A.D.; Antonov, E.V.; Fedoseeva, L.A.; Pivovarova, E.N.; Markel, A.L.; Ivanova, L.N. Renin-angiotensin-aldosterone system in ISIAH rats with stress-induced arterial hypertension. Vavilovskii Zhurnal Genet. Sel. 2016, 20, 954–958. [Google Scholar] [CrossRef] [Green Version]
- Sturman, O.; Germain, P.L.; Bohacek, J. Exploratory rearing: A context- and stress-sensitive behavior recorded in the open-field test. Stress 2018, 21, 443–452. [Google Scholar] [CrossRef]
- Hata, T.; Kita, T.; Kamanaka, Y.; Honda, S.; Kakehi, K.; Kawabata, A.; Itoh, E. Catecholamine levels in the brain of SART (repeated cold)-stressed rats. J. Auton. Pharmacol. 1987, 7, 257–266. [Google Scholar]
- Hata, T.; Nishimura, Y.; Kita, T.; Itoh, E.; Kawabata, A. The abnormal open-field behavior of SART-stressed rats and effects of some drugs on it. Jpn. J. Pharmacol. 1988, 48, 479–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, G.W.; Jonsdottir, I.H. Influence of voluntary exercise on hypothalamic norepinephrine. J. Appl. Physiol. 1998, 85, 962–966. [Google Scholar] [CrossRef]
- Hermsen, R.; de Ligt, J.; Spee, W.; Blokzijl, F.; Schafer, S.; Adami, E.; Boymans, S.; Flink, S.; van Boxtel, R.; van der Weide, R.H.; et al. Genomic landscape of rat strain and substrain variation. BMC Genom. 2015, 16, 357. [Google Scholar]
- Devyatkin, V.A.; Redina, O.E.; Muraleva, N.A.; Kolosova, N.G. Single-Nucleotide Polymorphisms (SNPs) Both Associated with Hypertension and Contributing to Accelerated-Senescence Traits in OXYS Rats. Int. J. Mol. Sci. 2020, 21, 3542. [Google Scholar] [CrossRef]
- Kolosova, N.G.; Stefanova, N.A.; Korbolina, E.E.; Fursova, A.; Kozhevnikova, O.S. The senescence-accelerated oxys rats—A genetic model of premature aging and age-dependent degenerative diseases. Adv. Gerontol. 2014, 27, 336–340. [Google Scholar]
- Hamet, P.; Pausova, Z.; Adarichev, V.; Adaricheva, K.; Tremblay, J. Hypertension: Genes and environment. J. Hypertens. 1998, 16, 397–418. [Google Scholar]
- Rapp, J.P. Genetic analysis of inherited hypertension in the rat. Physiol. Rev. 2000, 80, 135–172. [Google Scholar] [PubMed] [Green Version]
- Oshchepkov, D.; Chadaeva, I.; Kozhemyakina, R.; Zolotareva, K.; Khandaev, B.; Sharypova, E.; Ponomarenko, P.; Bogomolov, A.; Klimova, N.V.; Shikhevich, S.; et al. Stress Reactivity, Susceptibility to Hypertension, and Differential Expression of Genes in Hypertensive Compared to Normotensive Patients. Int. J. Mol. Sci. 2022, 23, 2835. [Google Scholar] [CrossRef] [PubMed]
- Shikhevich, S.; Chadaeva, I.; Khandaev, B.; Kozhemyakina, R.; Zolotareva, K.; Kazachek, A.; Oshchepkov, D.; Bogomolov, A.; Klimova, N.V.; Ivanisenko, V.A.; et al. Differentially Expressed Genes and Molecular Susceptibility to Human Age-Related Diseases. Int. J. Mol. Sci. 2023, 24, 3996. [Google Scholar] [CrossRef]
- Dattani, S.; Ritchie, H.; Roser, M. Mental Health. 2021. Available online: https://ourworldindata.org/mental-health (accessed on 29 April 2023).
- Wang, P.; Li, M.; Zhao, A.; Ma, J.Y. Application of animal experimental models in the research of schizophrenia. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2021, 186, 209–227. [Google Scholar] [CrossRef]
- Winship, I.R.; Dursun, S.M.; Baker, G.B.; Balista, P.A.; Kandratavicius, L.; Maia-de-Oliveira, J.P.; Hallak, J.; Howland, J.G. An Overview of Animal Models Related to Schizophrenia. Can. J. Psychiatry 2019, 64, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Guerrin, C.G.J.; Doorduin, J.; Sommer, I.E.; De Vries, E.F.J. The dual hit hypothesis of schizophrenia: Evidence from animal models. Neurosci. Biobehav. Rev. 2021, 131, 1150–1168. [Google Scholar] [CrossRef] [PubMed]
- Kolpakov, V.G.; Ritsner, M.S.; Karnetov, N.A. Genetic and Evolutionary Problems of Psychiatry; USSR Academy of Sciences, Siberian Branch, Institute of Cytology and Genetics: Novosibirsk, Russia, 1985; p. 254. [Google Scholar]
- Moskowitz, A.K. “Scared Stiff”: Catatonia as an Evolutionary-Based Fear Response. Psychol. Rev. 2004, 111, 984–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, M.A. Hippocrates Cried: The Decline of American Psychiatry; Oxford University Press: New York, NY, USA, 2013; p. 272. [Google Scholar]
- Tandon, R.; Heckers, S.; Bustillo, J.; Barch, D.M.; Gaebel, W.; Gur, R.E.; Malaspina, D.; Owen, M.J.; Schultz, S.; Tsuang, M.; et al. Catatonia in DSM-5. Schizophr. Res. 2013, 150, 26–30. [Google Scholar] [CrossRef]
- Jain, A.; Mitra, P. Catatonic Schizophrenia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Tariq, M.; Afridi, M.I.; Saleem, D.; Pirzada, S. Catatonic Schizophrenia: Cases with Possible Genetic Predisposition. Cureus 2019, 11, e4525. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.T.; Eraly, S.G.; Aandi Subramaniyam, B.; Muliyala, K.P.; Moirangthem, S.; Reddi, V.S.K.; Jain, S. Complexities of cooccurrence of catatonia and autoimmune thyroiditis in bipolar disorder: A case series and selective review. Brain Behav. Immun. Health 2022, 22, 100440. [Google Scholar] [CrossRef]
- Bolgov, M.I.; Barkhatova, A.N. The Structure of Catatonia in Depression and Depressive-Delusional States. Neurosci. Behav. Physiol. 2023, 53, 180–185. [Google Scholar] [CrossRef]
- Breen, J.; Hare, D.J. The nature and prevalence of catatonic symptoms in young people with autism: Catatonic symptoms in autism. J. Intellect. Disabil. Res. 2017, 61, 580–593. [Google Scholar] [CrossRef] [PubMed]
- Dell’Osso, L.; Bonelli, C.; Nardi, B.; Amatori, G.; Cremone, I.M.; Carpita, B. Autism Spectrum Disorder in a Patient with Bipolar Disorder and Its Relationship with Catatonia Spectrum: A Case Study. Brain Sci. 2023, 13, 704. [Google Scholar] [CrossRef]
- Vaquerizo-Serrano, J.; Salazar De Pablo, G.; Singh, J.; Santosh, P. Catatonia in autism spectrum disorders: A systematic review and meta-analysis. Eur. Psychiatr. 2022, 65, e4. [Google Scholar] [CrossRef]
- Espinola-Nadurille, M.; Flores-Rivera, J.; Rivas-Alonso, V.; Vargas-Canas, S.; Fricchione, G.L.; Bayliss, L.; Martinez-Juarez, I.E.; Hernandez-Vanegas, L.E.; Martinez-Hernandez, R.; Bautista-Gomez, P.; et al. Catatonia in patients with anti-NMDA receptor encephalitis. Psychiatry Clin. Neurosci. 2019, 73, 574–580. [Google Scholar] [CrossRef]
- Walther, S.; Stegmayer, K.; Wilson, J.E.; Heckers, S. Structure and neural mechanisms of catatonia. Lancet Psychiatry 2019, 6, 610–619. [Google Scholar] [CrossRef]
- Solmi, M.; Pigato, G.G.; Roiter, B.; Guaglianone, A.; Martini, L.; Fornaro, M.; Monaco, F.; Carvalho, A.F.; Stubbs, B.; Veronese, N.; et al. Prevalence of Catatonia and Its Moderators in Clinical Samples: Results from a Meta-analysis and Meta-regression Analysis. Schizophr. Bull. 2018, 44, 1133–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caroff, S.N. En garde! An Historical Note on the Nosology of Catalepsy. J. Neuropsychiatry Clin. Neurosci. 2022, 34, 93–94. [Google Scholar] [CrossRef] [PubMed]
- Kolpakov, V.; Barykina, N.; Alekhina, T.; Ponomarev, I. Some Genetic Animal Models for Comparative Psychology and Biological Psychiatry; Siberian Branch of the Russian Academy of Sciences Institute: Novosibirsk, Russia, 1996. [Google Scholar]
- Barykina, N.N.; Alekhina, T.A.; Chuguy, V.F.; Petrenko, O.I.; Plyusnina, I.Z.; Kolpakov, V.G. Bipolar Manifestation of Cataleptic Reactions in Rats. Russ. J. Genet. 2004, 40, 485–490. [Google Scholar] [CrossRef]
- Ryazanova, M.A.; Igonina, T.N.; Alekhina, T.A.; Prokudina, O.I. The increase in the proportion of nervous animals bred for catatonia: The participation of central adrenoreceptors in catatonic reactions. Russ. J. Genet. 2012, 48, 1141–1147. [Google Scholar] [CrossRef]
- Sienaert, P.; Rooseleer, J.; De Fruyt, J. Measuring catatonia: A systematic review of rating scales. J. Affect. Disord. 2011, 135, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bush, G.; Fink, M.; Petrides, G.; Dowling, F.; Francis, A. Catatonia. I. Rating scale and standardized examination. Acta Psychiatr. Scand. 1996, 93, 129–136. [Google Scholar] [CrossRef]
- Aandi Subramaniyam, B.; Muliyala, K.P.; Suchandra, H.H.; Reddi, V.S.K. Diagnosing catatonia and its dimensions: Cluster analysis and factor solution using the Bush Francis Catatonia Rating Scale (BFCRS). Asian J. Psychiatr. 2020, 52, 102002. [Google Scholar] [CrossRef]
- Petrova, E.V. Features of changes in congenital and acquired forms of behavior in rats with genetic catalepsy. J. High. Nerv. Act. Zhurnal Vyss. Nervn. Deyatel’nosti 1990, 40, 475–480. [Google Scholar]
- Plekanchuk, V.S.; Prokudina, O.I.; Ryazanova, M.A. Social behavior and spatial orientation in rat strains with genetic predisposition to catatonia (GC) and stereotypes (PM). Vestn. VOGiS 2022, 26, 281–289. [Google Scholar] [CrossRef]
- Prokudina, O.I. A Comparative Study of Maternal Behavior Dynamics in Wistar Rats and Rats Selected for Predisposition to Catatonic Reactions (GC Rats). Mosc. Univ. Biol.Sci. Bull. 2022, 77, 126–132. [Google Scholar] [CrossRef]
- Clinton, S.M.; Bedrosian, T.A.; Abraham, A.D.; Watson, S.J.; Akil, H. Neural and environmental factors impacting maternal behavior differences in high- versus low-novelty-seeking rats. Horm. Behav. 2010, 57, 463–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, J.W.; Grizzell, J.A.; Philpot, R.M.; Wecker, L. Postpartum depression in rats: Differences in swim test immobility, sucrose preference and nurturing behaviors. Behav. Brain Res. 2014, 272, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Popova, N.K.; Barykina, N.N.; Alekhina, T.A.; Naumenko, K.S.; Kulikov, A.V. Effect of blockade of 5-HT1 receptors on the startle reflex and its prepulse inhibition in mice and rats of different strains. Russ. J. Physiol. 1999, 85, 857. [Google Scholar]
- Ryazanova, M.A.; Prokudina, O.I.; Plekanchuk, V.S.; Alekhina, T.A. Expression of catecholaminergic genes in the midbrain and prepulse inhibition in rats with a genetic catatonia. Vavilovskii Zhurnal Genet. Sel. 2017, 21, 798–803. [Google Scholar] [CrossRef] [Green Version]
- Swerdlow, N.R.; Weber, M.; Qu, Y.; Light, G.A.; Braff, D.L. Realistic expectations of prepulse inhibition in translational models for schizophrenia research. Psychopharmacology 2008, 199, 331–388. [Google Scholar] [CrossRef] [Green Version]
- Alekhina, T.A.; Palchikova, N.A.; Igonina, T.N.; Kuznetsova, N.V. Comparative analysis of imipramine intake reactions in catatonic and Wistar rats. Russ. J. Physiol. 2015, 101, 249–257. [Google Scholar]
- Markel, A.L.; Achkasov, A.F.; Alekhina, T.A.; Prokudina, O.I.; Ryazanova, M.A.; Ukolova, T.N.; Efimov, V.M.; Boldyreva, E.V.; Boldyrev, V.V. Effects of the alpha- and gamma-polymorphs of glycine on the behavior of catalepsy prone rats. Pharm. Biochem. Behav. 2011, 98, 234–240. [Google Scholar] [CrossRef]
- Prokudina, O.I.; Alekhina, T.A. Effect of D-serine on Anxiety-like Behavior and Spatial Learning Ability in GC Rats Selected for the Predisposition to Catatonic Reactions. J. Evol. Biochem. Phys. 2021, 57, 1267–1276. [Google Scholar] [CrossRef]
- Kulikov, A.V.; Tikhonova, M.A.; Chugui, V.F.; Alekhina, T.A.; Kolpakov, V.G.; Popova, N.K. Chronic administration of imipramine decreases freezing time in rats genetically predisposed to catalepsy. Bull. Exp. Biol. Med. 2004, 138, 401–403. [Google Scholar] [CrossRef]
- Akulov, A.E.; Alekhina, T.A.; Meshkov, O.I. Selection for catatonic reaction in rats: A study of interstrain differences by magnetic resonance imaging. Zhurnal Vyss. Nervn. Deiatelnosti Im. I P Pavlov. 2014, 64, 439–447. [Google Scholar]
- Gallup, G.G. Tonic Immobility: The Role of Fear and Predation. Psychol. Rec. 1977, 27, 41–61. [Google Scholar] [CrossRef]
- Sanberg, P.R. Haloperidol-induced catalepsy is mediated by postsynaptic dopamine receptors. Nature 1980, 284, 472–473. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, G.C.; Chand, J.G.; Sultana, S.A.; Lakshmi, K.; Tony, D.E.; Babu, A.N.; Nadendla, N.N. Evaluation of Anti-Catatonic Effect of Stem Extracts of Securinega leucopyrus on Haloperidol Induced Catatonia in Rats. Int. J. Pharm. Biol. Sci. 2019, 9, 337–341. [Google Scholar]
- Mahmoudi, M.; Abounoori, M.; Azadmanesh, B.; Arimi, A.A.; Maddah, M.M.; Goudarzi, M.; Houshmand, G. An Evaluation of the Effect of Naringenin on Perphenazine-Induced Catatonia in Rats. Herb. Med. J. 2020, 5, 21–30. [Google Scholar] [CrossRef]
- Bansode, M.T.; Chaware, V.J.; Redasani, V.K. Evaluation of anticataleptic activity of Hydroxytyrosol on Haloperidol induced Catalepsy in Experimental Animal. Asian J. Pharm. Res. Dev. 2021, 9, 75–80. [Google Scholar] [CrossRef]
- Da Costa, J.; Very, E.; Rousseau, V.; Virolle, J.; Redon, M.; Taib, S.; Revet, A.; Montastruc, F. Comparative Effects of 30 Antipsychotics on Risk of Catatonia: An Analysis of the WHO Pharmacovigilance Database. J. Clin. Psychiatry 2022, 84, 44592. [Google Scholar] [CrossRef] [PubMed]
- Dalmau, J.; Gleichman, A.J.; Hughes, E.G.; Rossi, J.E.; Peng, X.; Lai, M.; Dessain, S.K.; Rosenfeld, M.R.; Balice-Gordon, R.; Lynch, D.R. Anti-NMDA-receptor encephalitis: Case series and analysis of the effects of antibodies. Lancet Neurol. 2008, 7, 1091–1098. [Google Scholar] [CrossRef] [Green Version]
- Radford, K.D.; Berman, R.Y.; Zhang, M.; Wu, T.J.; Choi, K.H. Sex-related differences in intravenous ketamine effects on dissociative stereotypy and antinociception in male and female rats. Pharm. Biochem. Behav. 2020, 199, 173042. [Google Scholar] [CrossRef]
- Costall, B.; Olley, J.E. Cholinergic- and neuroleptic-induced catalepsy: Modification by lesions in the caudate-putamen. Neuropharmacology 1971, 10, 297–306. [Google Scholar] [CrossRef]
- Maśliński, C.; Lebrecht, U.; Nowak, J.Z.; Pilc, A.; Wieczorek-Fila, Z. Catalepsia-like symptoms produced by histidine in rats. Agents Actions 1973, 3, 185–186. [Google Scholar] [CrossRef]
- Mierzejewski, P.; Kolaczkowski, M.; Nowak, N.; Korkosz, A.; Scinska, A.; Sienkiewicz-Jarosz, H.; Samochowiec, J.; Kostowski, W.; Bienkowski, P. Pharmacological characteristics of zolpidem-induced catalepsy in the rat. Neurosci. Lett. 2013, 556, 99–103. [Google Scholar] [CrossRef]
- Dhossche, D.M.; Wachtel, L.E. Catatonia is Hidden in Plain Sight Among Different Pediatric Disorders: A Review Article. Pediatr. Neurol. 2010, 43, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Mader, E.C., Jr.; Rathore, S.H.; England, J.D.; Branch, L.A.; Copeland, B.J. Benzodiazepine Withdrawal Catatonia, Delirium, and Seizures in a Patient with Schizoaffective Disorder. J. Investig. Med. High Impact. Case Rep. 2020, 8, 2324709620969498. [Google Scholar] [CrossRef] [PubMed]
- Kulikov, A.V.; Sinyakova, N.A.; Naumenko, V.S.; Bazovkina, D.V.; Popova, N.K. Association of glycoprotein gp130 with hereditary catalepsy in mice. Genes Brain Behav. 2010, 9, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.A.; Mazurek, M.F.; Rosebush, P.I. Catatonia: Our current understanding of its diagnosis, treatment and pathophysiology. WJP 2016, 6, 391. [Google Scholar] [CrossRef]
- Edinoff, A.N.; Kaufman, S.E.; Hollier, J.W.; Virgen, C.G.; Karam, C.A.; Malone, G.W.; Cornett, E.M.; Kaye, A.M.; Kaye, A.D. Catatonia: Clinical Overview of the Diagnosis, Treatment, and Clinical Challenges. Neurol. Int. 2021, 13, 570–586. [Google Scholar] [CrossRef]
- Fundaro, A. Pinch-induced catalepsy in mice: A useful model to investigate antidepressant or anxiolytic drugs. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 1998, 22, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Ornstein, K.; Amir, S. Pinch-induced catalepsy in mice. J. Comp. Physiol. Psychol. 1981, 95, 827–835. [Google Scholar] [CrossRef]
- Surina, N.M.; Fedotova, I.B.; Kulikov, A.V.; Poletaeva, I.I. Pinch-induced catalepsy in rats of various genetic groups with different predisposition to audiogenic epilepsy. Zh Vyss. Nerv. Deiat. Im. I P Pavlov. 2010, 60, 364–371. [Google Scholar]
- Kulikov, A.V.; Bazovkina, D.V.; Kondaurova, E.M.; Popova, N.K. Genetic structure of hereditary catalepsy in mice. Genes Brain Behav. 2008, 7, 506–512. [Google Scholar] [CrossRef] [PubMed]
- Tikhonova, M.; Kulikov, A.V. Antidepressant-Like Effects of Central BDNF Administration in Mice of Antidepressant Sensitive Catalepsy (ASC) Strain. Chin. J. Physiol. 2012, 55, 284–293. [Google Scholar] [CrossRef]
- De Jong, H. Experimental catatonia in rats produced by centrifugation. J. Comp. Psychol. 1945, 38, 17–26. [Google Scholar] [CrossRef]
- Karmanova, I.G.; Mileikovskii, B. Neurophysiology and analysis of the phenomenon of catalepsy. Ross. Fiziol. Zh. Im. I M Sechenova 1997, 83, 1–12. [Google Scholar]
- Nosek, K.; Dennis, K.; Andrus, B.M.; Ahmadiyeh, N.; Baum, A.E.; Solberg Woods, L.C.; Redei, E.E. Context and strain-dependent behavioral response to stress. Behav. Brain Funct. 2008, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Fedotova, I.B.; Surina, N.M.; Nikolaev, G.M.; Revishchin, A.V.; Poletaeva, I.I. Rodent Brain Pathology, Audiogenic Epilepsy. Biomedicines 2021, 9, 1641. [Google Scholar] [CrossRef] [PubMed]
- Alekhina, T.A.; Plekanchuk, V.S.; Osadchuk, L.V. Prodromal Characteristics of Epilepsy in Rats with Pendulum-Like Movements. J. Evol. Biochem. Phys. 2021, 57, 492–502. [Google Scholar] [CrossRef]
- Ghosh, S.; Sinha, J.K.; Khan, T.; Devaraju, K.S.; Singh, P.; Vaibhav, K.; Gaur, P. Pharmacological and Therapeutic Approaches in the Treatment of Epilepsy. Biomedicines 2021, 9, 470. [Google Scholar] [CrossRef] [PubMed]
- Grzegorzewska, A.M.; Wiglusz, M.S.; Landowski, J.; Jakuszkowiak-Wojten, K.; Cubala, W.J.; Wlodarczyk, A.; Szarmach, J. Multiple Comorbidity Profile of Psychiatric Disorders in Epilepsy. J. Clin. Med. 2021, 10, 4104. [Google Scholar] [CrossRef] [PubMed]
- Grone, B.P.; Baraban, S.C. Animal models in epilepsy research: Legacies and new directions. Nat. Neurosci. 2015, 18, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Kolpakov, V.G.; Borodin, P.M.; Barykina, N.N. Catatonic behaviour in the Norway rat. Behaviour 1977, 62, 190–208. [Google Scholar] [CrossRef]
- Kolpakov, V.G. Catatonia in Animals: Genetics, Neurophysiology, Neurochemistry; Publishing House Nauka, Siberian Branch: Novosibirsk, Russia, 1990. [Google Scholar]
- Geenen, K.R.; Patel, S.; Thiele, E.A. Sunflower syndrome: A poorly understood photosensitive epilepsy. Dev. Med. Child. Neurol. 2021, 63, 259–262. [Google Scholar] [CrossRef]
- Kolpakov, V.G.; Alekhina, T.A.; Barykina, N.N.; Chugui, V.F.; Popova, N.K. Some physiological manifestations of the activity of the gene controlling the predisposition to pendulum-like movements in rats. Neurosci. Behav. Physiol. 2001, 31, 311–316. [Google Scholar] [CrossRef]
- Aleksina, T.A.; Prokudina, O.I.; Riazanova, M.A.; Ukolova, T.N.; Barykina, N.N.; Kolpakov, V.G. Typological characteristics of behavior in strains of rats bred for enhancement and absence of pendulum movements. Association with brain monoamines. Zh Vyss. Nerv. Deiat. Im. I P Pavlov. 2007, 57, 336–343. [Google Scholar]
- Alekhina, T.A.; Kozhemyakina, R.V. Modeling of Focal Seizures with Automatisms in Rats with Pendulum Movements. Bull. Exp. Biol. Med. 2019, 168, 300–303. [Google Scholar] [CrossRef]
- Poletaeva, I.I.; Kostyna, Z.A.; Surina, N.M.; Fedotova, I.B.; Zorina, Z.A. The Krushinsky—Molodkina genetic rat strain as a unique experimental model of seizure states. Vestn. VOGiS 2017, 21, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Brooks-Kayal, A.R.; Bath, K.G.; Berg, A.T.; Galanopoulou, A.S.; Holmes, G.L.; Jensen, F.E.; Kanner, A.M.; O’Brien, T.J.; Whittemore, V.H.; Winawer, M.R.; et al. Issues related to symptomatic and disease-modifying treatments affecting cognitive and neuropsychiatric comorbidities of epilepsy. Epilepsia 2013, 54 (Suppl. S4), 44–60. [Google Scholar] [CrossRef]
- Deb, S.; Akrout Brizard, B.; Limbu, B. Association between epilepsy and challenging behaviour in adults with intellectual disabilities: Systematic review and meta-analysis. BJPsych Open 2020, 6, e114. [Google Scholar] [CrossRef]
- Adachi, N.; Ito, M. Epilepsy in patients with schizophrenia: Pathophysiology and basic treatments. Epilepsy Behav. 2022, 127, 108520. [Google Scholar] [CrossRef] [PubMed]
- Jaballah, F.; Romdhane, I.; Nasri, J.; Ferhi, M.; Bellazrag, N.; Saidi, Y.; Mannaii, J. Focal epilepsy and psychosis symptoms: A case report and review of the literature. Ann. Med. Surg. 2022, 84, 104862. [Google Scholar] [CrossRef]
- Barykina, N.N.; Chuguĭ, V.F.; Alekhina, T.A.; Riazanova, M.A.; Ukolova, T.N.; Sakharov, D.G.; Kolpakov, V.G. Learning of rats predisposed to catalepsy in Morris water test. Zh Vyss. Nerv. Deiat. Im. I P Pavlov. 2009, 59, 728–735. [Google Scholar]
- Jakaria, M.; Azam, S.; Haque, M.E.; Jo, S.H.; Uddin, M.S.; Kim, I.S.; Choi, D.K. Taurine and its analogs in neurological disorders: Focus on therapeutic potential and molecular mechanisms. Redox Biol. 2019, 24, 101223. [Google Scholar] [CrossRef]
- Alekhina, T.A. Effect of Taurine on Manifestation of Audiogenic Epilepsy in Rats With Pendulum Movements. J. High. Nerv. Act. 2023, 73, 1–6. [Google Scholar] [CrossRef]
- Duncan, J.S.; Sander, J.W.; Sisodiya, S.M.; Walker, M.C. Adult epilepsy. Lancet 2006, 367, 1087–1100. [Google Scholar] [CrossRef]
- Ferrier, D. Experimental Researches in Cerebral Physiology and Pathology. BMJ 1873, 1, 457. [Google Scholar] [CrossRef] [Green Version]
- Mortazavi, F.; Ericson, M.; Story, D.; Hulce, V.D.; Dunbar, G.L. Spatial learning deficits and emotional impairments in pentylenetetrazole-kindled rats. Epilepsy Behav. 2005, 7, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Alachkar, A.; Ojha, S.K.; Sadeq, A.; Adem, A.; Frank, A.; Stark, H.; Sadek, B. Experimental Models for the Discovery of Novel Anticonvulsant Drugs: Focus on Pentylenetetrazole-Induced Seizures and Associated Memory Deficits. Curr. Pharm. Des. 2020, 26, 1693–1711. [Google Scholar] [CrossRef]
- Scorza, F.A.; Arida, R.M.; Naffah-Mazzacoratti Mda, G.; Scerni, D.A.; Calderazzo, L.; Cavalheiro, E.A. The pilocarpine model of epilepsy: What have we learned? Acad. Bras. Cienc. 2009, 81, 345–365. [Google Scholar] [CrossRef] [Green Version]
- Levesque, M.; Biagini, G.; de Curtis, M.; Gnatkovsky, V.; Pitsch, J.; Wang, S.; Avoli, M. The pilocarpine model of mesial temporal lobe epilepsy: Over one decade later, with more rodent species and new investigative approaches. Neurosci. Biobehav. Rev. 2021, 130, 274–291. [Google Scholar] [CrossRef]
- Loscher, W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure 2011, 20, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, P.P.; Bozzi, Y. The role of dopaminergic and serotonergic systems in neurodevelopmental disorders: A focus on epilepsy and seizure susceptibility. Bioimpacts 2015, 5, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Gilad, D.; Shorer, S.; Ketzef, M.; Friedman, A.; Sekler, I.; Aizenman, E.; Hershfinkel, M. Homeostatic regulation of KCC2 activity by the zinc receptor mZnR/GPR39 during seizures. Neurobiol. Dis. 2015, 81, 4–13. [Google Scholar] [CrossRef] [Green Version]
- Doboszewska, U.; Sawicki, J.; Sajnog, A.; Szopa, A.; Serefko, A.; Socala, K.; Pierog, M.; Nieoczym, D.; Mlyniec, K.; Nowak, G.; et al. Alterations of Serum Magnesium Concentration in Animal Models of Seizures and Epilepsy-The Effects of Treatment with a GPR39 Agonist and Knockout of the Gpr39 Gene. Cells 2022, 11, 1987. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, P.P.; Sgadò, P.; Scali, M.; Viaggi, C.; Casarosa, S.; Simon, H.H.; Vaglini, F.; Corsini, G.U.; Bozzi, Y. Increased susceptibility to kainic acid–induced seizures in Engrailed-2 knockout mice. Neuroscience 2009, 159, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Baulac, S.; Ishida, S.; Mashimo, T.; Boillot, M.; Fumoto, N.; Kuwamura, M.; Ohno, Y.; Takizawa, A.; Aoto, T.; Ueda, M.; et al. A rat model for LGI1-related epilepsies. Hum. Mol. Genet. 2012, 21, 3546–3557. [Google Scholar] [CrossRef] [Green Version]
- Kinboshi, M.; Shimizu, S.; Mashimo, T.; Serikawa, T.; Ito, H.; Ikeda, A.; Takahashi, R.; Ohno, Y. Down-Regulation of Astrocytic Kir4.1 Channels during the Audiogenic Epileptogenesis in Leucine-Rich Glioma-Inactivated 1 (Lgi1) Mutant Rats. Int. J. Mol. Sci. 2019, 20, 1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, F.H.; Mantegazza, M.; Westenbroek, R.E.; Robbins, C.A.; Kalume, F.; Burton, K.A.; Spain, W.J.; McKnight, G.S.; Scheuer, T.; Catterall, W.A. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci. 2006, 9, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Salgueiro-Pereira, A.R.; Duprat, F.; Pousinha, P.A.; Loucif, A.; Douchamps, V.; Regondi, C.; Ayrault, M.; Eugie, M.; Stunault, M.I.; Escayg, A.; et al. A two-hit story: Seizures and genetic mutation interaction sets phenotype severity in SCN1A epilepsies. Neurobiol. Dis. 2019, 125, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Menten-Dedoyart, C.; Serrano Navacerrada, M.E.; Bartholome, O.; Sanchez Gil, J.; Neirinckx, V.; Wislet, S.; Becker, G.; Plenevaux, A.; Van den Ackerveken, P.; Rogister, B. Development and Validation of a New Mouse Model to Investigate the Role of SV2A in Epilepsy. PLoS ONE 2016, 11, e0166525. [Google Scholar] [CrossRef]
- Heisler, L.K.; Tecott, L.H. Knockout Corner: Neurobehavioural consequences of a serotonin 5-HT(2C) receptor gene mutation. Int. J. Neuropsychopharmacol. 1999, 2, 67–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonato, M.; Brooks-Kayal, A.R.; Engel, J., Jr.; Galanopoulou, A.S.; Jensen, F.E.; Moshe, S.L.; O’Brien, T.J.; Pitkanen, A.; Wilcox, K.S.; French, J.A. The challenge and promise of anti-epileptic therapy development in animal models. Lancet Neurol. 2014, 13, 949–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lidster, K.; Jefferys, J.G.; Blumcke, I.; Crunelli, V.; Flecknell, P.; Frenguelli, B.G.; Gray, W.P.; Kaminski, R.; Pitkanen, A.; Ragan, I.; et al. Opportunities for improving animal welfare in rodent models of epilepsy and seizures. J. Neurosci. Methods 2016, 260, 2–25. [Google Scholar] [CrossRef] [Green Version]
- Coenen, A.M.; Van Luijtelaar, E.L. Genetic animal models for absence epilepsy: A review of the WAG/Rij strain of rats. Behav. Genet. 2003, 33, 635–655. [Google Scholar] [CrossRef]
- Marques-Carneiro, J.E.; Faure, J.B.; Cosquer, B.; Koning, E.; Ferrandon, A.; de Vasconcelos, A.P.; Cassel, J.C.; Nehlig, A. Anxiety and locomotion in Genetic Absence Epilepsy Rats from Strasbourg (GAERS): Inclusion of Wistar rats as a second control. Epilepsia 2014, 55, 1460–1468. [Google Scholar] [CrossRef]
- Sitnikova, E. Sleep Disturbances in Rats with Genetic Pre-disposition to Spike-Wave Epilepsy (WAG/Rij). Front. Neurol. 2021, 12, 766566. [Google Scholar] [CrossRef]
- Sarkisova, K.; van Luijtelaar, G. The impact of early-life environment on absence epilepsy and neuropsychiatric comorbidities. IBRO Neurosci. Rep. 2022, 13, 436–468. [Google Scholar] [CrossRef]
- De Sarro, G.; Russo, E.; Citraro, R.; Meldrum, B.S. Genetically epilepsy-prone rats (GEPRs) and DBA/2 mice: Two animal models of audiogenic reflex epilepsy for the evaluation of new generation AEDs. Epilepsy Behav. 2017, 71, 165–173. [Google Scholar] [CrossRef]
- Garcia-Cairasco, N.; Umeoka, E.H.L.; Cortes de Oliveira, J.A. The Wistar Audiogenic Rat (WAR) strain and its contributions to epileptology and related comorbidities: History and perspectives. Epilepsy Behav. 2017, 71, 250–273. [Google Scholar] [CrossRef] [PubMed]
- Munoz, L.J.; Carballosa-Gautam, M.M.; Yanowsky, K.; Garcia-Atares, N.; Lopez, D.E. The genetic audiogenic seizure hamster from Salamanca: The GASH:Sal. Epilepsy Behav. 2017, 71, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Semiokhina, A.F.; Fedotova, I.B.; Poletaeva, I.I. Rats of Krushinsky-Molodkina strain: Studies of audiogenic epilepsy, vascular pathology, and behavior. Zh Vyss. Nerv. Deiat. Im. I P Pavlov. 2006, 56, 298–316. [Google Scholar]
- Kandratavicius, L.; Balista, P.A.; Lopes-Aguiar, C.; Ruggiero, R.N.; Umeoka, E.H.; Garcia-Cairasco, N.; Bueno-Junior, L.S.; Leite, J.P. Animal models of epilepsy: Use and limitations. Neuropsychiatr. Dis. Treat. 2014, 10, 1693–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Phenotype | Approach | References |
---|---|---|
Strain-specific traits | ||
ISIAH rat strain breeding and general assessment [basal and stress-induced BP, hypertrophy of target organs (kidney and heart), age-dependent changes in basal and restraint stress–induced BP, age-dependent changes in activity of the hypothalamic–pituitary–adrenocortical system, age-dependent changes in dopamine and norepinephrine levels in brain structures (pons, medulla, hypothalamus, cortex)] | Genetic selection, BP measurement, body and target organs’ weight measurement, high-performance liquid chromatography (HPLC) | [2,3] |
The structural organization of the adenohypophysis corresponds to an enhanced response of the hypothalamic–pituitary–adrenal axis in prehypertensive ISIAH rats | Electron microscopic analysis | [5] |
Morphological signs of natriuretic peptide hypersecretion precede the development of genetically programmed high BP; in adult hypertensive rats, hypertrophic and degenerative changes in myocytes have been described | Electron microscopic analysis | [6] |
Changes in hemodynamics and brain metabolites have been evaluated | Magnetic resonance imaging (MRI), MRI spectroscopy | [7] |
Hypertrophy of renal corpuscles accompanied by structural changes that lead to an increase in the filtration barrier functional load and glomerular sclerosis | Electron microscopic analysis | [8] |
Characteristics of the neurohormonal system | HPLC, immunohistochemistry | [4,9,10,11] |
Behavior | The open field test and measuring the total activity in the home cage | [12,13,14] |
Decreased bioavailability of nitric oxide in blood plasma | 19F NMR measurement of NO production | [15] |
Increased levels of triglycerides, very LDL and LDL cholesterols, a decreased content of HDL cholesterol, a high level of apolipoprotein B-100, and a decreased level of apolipoprotein A-I | Immunoblotting analysis | [16] |
Increased basal activity of the central (brain) renin–angiotensin–aldosterone system (RAAS) in ISIAH rats. The RAAS is inhibited in the kidneys of adult ISIAH rats | Real-time PCR | [17,18,19] |
Homozygosity of ISIAH rats | DNA fingerprinting | [20] |
Genetic specificity of the ISIAH rat strain | Single nucleotide polymorphisms (SNPs) | [21,22] |
Steps toward drug discovery and translational medicine | ||
A long-term reduction in basal and stress-induced BP has been obtained via injections of dopamine precursor L-DOPA during early development (21–25 days after birth). | [23] | |
The BP-lowering effect in ISIAH rats treated with reishi (Ganoderma lucidum) for 7 weeks is comparable with that of losartan. Unlike losartan, intragastric administration of reishi significantly increases cerebral blood flow. | [24] | |
Arginase inhibitor L-norvaline administered intraperitoneally (30 mg/kg) for 7 days to ISIAH rats causes a decrease in BP and an increase in diuresis. | [25,26] | |
A single intraperitoneal injection of nanocomposites containing antisense oligonucleotides (targeting ACE1 or AT1A mRNA) conjugated with SiO2 or TiO2 nanoparticles leads to a decrease (pronounced within a week: ~30 mmHg) in systolic BP in ISIAH rats. | [27,28] | |
Molecular markers of the hypertensive state in ISIAH rats | ||
In two groups of male F2(ISIAH×WAG) hybrids at the ages of 3 and 6 months, genetic loci that are associated with traits related to the manifestation of the hypertensive status of ISIAH rats have been identified. The following has been analyzed: BP at rest and under short-term restraint stress; body weight; weights of target organs (kidneys, heart, and adrenal glands); plasma corticosterone concentration at rest and under stress; and behavior of the rats in the open field test. In a group of male F2(ISIAHxWAG) hybrids at an age of 6 months, QTLs for dopamine concentration in the brainstem, for norepinephrine concentration in the hypothalamus, as well as spleen weight were also determined. | Quantitative trait locus (QTL) analysis | [14,29,30,31,32,33,34,35] |
A comparative analysis of the transcriptomes of the brainstem, hypothalamus, adrenal glands, renal cortex, and renal medulla has been carried out in hypertensive ISIAH rats and control (WAG) rats at the age of 3 months. | RNA-seq | [36,37,38,39,40,41] |
Identification of candidate genes in genetic loci that are associated with BP and increased stress reactivity in ISIAH rats | QTL analysis RNA-seq | [42,43,44] |
Identification of candidate genes that are associated with the manifestation of hypertensive status in ISIAH rats and changes in transcription levels during short-term restraint stress | RNA-seq Real-time PCR | [17,19,45,46,47,48,49,50] |
Validation of candidate genes | Enzyme-linked immunosorbent assay (ELISA) | [51] |
Phenotype | Tests | References |
---|---|---|
Strain-specific traits | ||
Cataleptic freezing (immobility and posturing/catalepsy) and hyperkinetic reactions (hyperexcitation: extreme nondirectional locomotor activity) | Test for catalepsy Open field test Light-dark box test | [85,86,90] |
Impaired development of food-reinforced instrumental behavior | Instrumental conditioning | [90] |
Altered social behavior in different situations Decreased social interactions in a new place Increased social exploration in a home cage | Three-chamber test Resident–intruder test | [91] |
Slower solving of the Barnes maze | Barnes maze test | [91] |
Increased startle reflex | SR-Pilot (San Diego Instruments) Startle response system (TSE) | [85,95] |
Deficit of prepulse inhibition | Startle response system (TSE) | [96] |
Altered maternal behavior | Visual registration in a home cage | [92] |
High plasma corticosterone level Reduced plasma corticosterone level by chronic oral imipramine administration | ELISA kits | [98] |
Smaller striatum area (in the right hemisphere) Larger cortex area (in the right hemisphere) Smaller area of anterior horns of lateral ventricles | MRI (magnetic resonance imaging) | [102] |
Steps toward drug discovery and translational medicine | ||
Chronic per os administration of imipramine reduces cataleptic freezing | Test for catalepsy | [98,101] |
Oral administration of the γ-polymorph of glycine reduces catalepsy, alleviates anxiety in the elevated plus maze test, and increases exploratory activity in rats in the light-dark box test Oral administration of both α- and γ-polymorphs of glycine enhances the exploratory activity of rats in the open field test | Test for catalepsy Open field test Light-dark box test Elevated plus maze test | [99] |
Treatment with D-serine heightens anxiety and diminishes locomotor activity in the elevated plus maze test | Elevated plus maze test | [100] |
Molecular markers of catatonia | ||
Decreased transcription of α1A adrenoreceptor in the medulla oblongata and midbrain Elevated transcription of α2A adrenoreceptor in the frontal cortex | Real-time PCR | [86,96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryazanova, M.A.; Plekanchuk, V.S.; Prokudina, O.I.; Makovka, Y.V.; Alekhina, T.A.; Redina, O.E.; Markel, A.L. Animal Models of Hypertension (ISIAH Rats), Catatonia (GC Rats), and Audiogenic Epilepsy (PM Rats) Developed by Breeding. Biomedicines 2023, 11, 1814. https://doi.org/10.3390/biomedicines11071814
Ryazanova MA, Plekanchuk VS, Prokudina OI, Makovka YV, Alekhina TA, Redina OE, Markel AL. Animal Models of Hypertension (ISIAH Rats), Catatonia (GC Rats), and Audiogenic Epilepsy (PM Rats) Developed by Breeding. Biomedicines. 2023; 11(7):1814. https://doi.org/10.3390/biomedicines11071814
Chicago/Turabian StyleRyazanova, Marina A., Vladislava S. Plekanchuk, Olga I. Prokudina, Yulia V. Makovka, Tatiana A. Alekhina, Olga E. Redina, and Arcady L. Markel. 2023. "Animal Models of Hypertension (ISIAH Rats), Catatonia (GC Rats), and Audiogenic Epilepsy (PM Rats) Developed by Breeding" Biomedicines 11, no. 7: 1814. https://doi.org/10.3390/biomedicines11071814
APA StyleRyazanova, M. A., Plekanchuk, V. S., Prokudina, O. I., Makovka, Y. V., Alekhina, T. A., Redina, O. E., & Markel, A. L. (2023). Animal Models of Hypertension (ISIAH Rats), Catatonia (GC Rats), and Audiogenic Epilepsy (PM Rats) Developed by Breeding. Biomedicines, 11(7), 1814. https://doi.org/10.3390/biomedicines11071814