An Automated Broncho-Arterial (BA) Pair Segmentation Process and Assessment of BA Ratios in Children with Bronchiectasis Using Lung HRCT Scans: A Pilot Study
Abstract
:1. Introduction
- To identify BA pairs, lung segmentation and image cleaning are conducted using several image preprocessing and custom-developed algorithms.
- Potential bronchi and arteries are identified by applying several algorithms based on their characteristics, and the BA pairs are extracted by matching the coordinates of potential bronchi and arteries.
- The BA ratio of the detected BA pares is determined in an automated approach, and the results are evaluated and validated based on human assessment and deep learning-based techniques.
2. Methods
2.1. Study Design
2.2. Participants
2.3. Sample Collection
3. Test Methods
3.1. Lung Segmentation
3.2. Image Cleaning Based on Histogram Analysis
Algorithm 1: Pseudo-Code of Histogram Analysis-Based Image Cleaning. |
|
3.3. Potential Artery Detection
3.3.1. Balanced Histogram Thresholding and Morphological Opening
3.3.2. Condition-Based Potential Artery Detection
- Condition-1: Object area within threshold limits
- Condition-2: Object circularity above a threshold value
- Condition-3: Height to the width of the ratio of rectangular bounding box above a threshold value
- Condition-4: Ratio of the area to the area of the enclosed circle above a threshold value.
Algorithm 2: Object Area-Based Potential Artery Extraction Process. |
1. START 2. Read input image im(x,y) 3. Find each connected component, C, from im(x,y) 4. FOR C in im(x,y): 5. Derive the area, A of C 6. IF A > 10 | A < 300 7. Keep C in im(x,y) 8. ELSE 9. Discard C from im(x,y) 10. END IF 11. END FOR 12. END |
Algorithm 3: Object Circularity-Based Potential Artery Extraction Process. |
1. START 2. Read input image im(x,y) 3. Find each connected component, C, from im(x,y) 4. FOR C in im(x,y): 5. Derive the circularity, Cr of C 6. IF Cr > 0.3 7. Keep C in im(x,y) 8. ELSE 9. Discard C from im(x,y) 10. END IF 11. END FOR 12. END |
Algorithm 4: Rectangular Boundary Box-Based Potential Artery Extraction Process. |
1. START 2. Read input image im(x,y) 3. Find each connected component, C from im(x,y) 4. FOR C in im(x,y): 5. Determine four co-ordinates, W, X, Y, Z 6. Draw a rectangular bounding box, RB through W, X, Y, Z 7. Denote H = height of the bounding box 8. Denote W = width of the bounding box 9. IF H > W: 10. Ratio, R = W / H 11. ELSE 12. R = H / W 13. IF R > 0.4 14. Keep C in im(x,y) 15. ELSE 16. Discard C from im(x,y) 17. END IF 18. END FOR 19. END |
Algorithm 5: Enclosed Circle-Based Potential Artery Extraction Process. |
1. START 2. Read input image im(x,y) 3. Find each connected component, C from im(x,y) 4. FOR C in im(x,y): 5. Determine four co-ordinates, W, X, Y, Z 6. Draw an enclosed circle, Cr through W, X, Y, Z 7. Derive area of C = AC 8. Denote area of Cr = ACr 9. Ratio, R = AC / ACr 10. IF R > 0.4 11. Keep C in im(x,y) 12. ELSE 13. Discard C from im(x,y) 14. END IF 15. END FOR 16. END |
- CC denotes the connected component,
- PA denotes the potential artery,
- C1CC refers to the condition-1 applied to the connected component,
- C2CC refers to the condition-2 applied to the connected component,
- C3CC refers to the condition-3 applied to the connected component and
- C4CC refers to condition-4 applied to a connected component.
3.4. Extraction of Objects Adjacent to the Potential Arteries
3.5. Potential Bronchi Extraction
3.6. BA Pair Extraction
4. Analysis of Results
4.1. Performance Validation of the Proposed Approach
4.2. Comparison with Existing Competitive Methods
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, A.B.; Grimwood, K.; Maguire, G.; King, P.T.; Morris, P.S.; Torzillo, P.J. Management of bronchiectasis and chronic suppurative lung disease in Indigenous children and adults from rural and remote Australian communities. Med. J. Aust. 2008, 189, 386–393. [Google Scholar] [CrossRef]
- Chang, A.B.; Grimwood, K.; Mulholland, E.K.; Torzillo, P.J. Bronchiectasis in Indigenous children in remote Australian communities. Med. J. Aust. 2002, 177, 200–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fantino, E.; Gangell, C.L.; Hartl, D.; Sly, P.D. Airway, but not serum or urinary, levels of YKL-40 reflect inflammation in early cystic fibrosis lung disease. BMC Pulm. Med. 2014, 14, 28. [Google Scholar] [CrossRef] [Green Version]
- Sly, P.D.; Gangell, C.L.; Chen, L.; Ware, R.S.; Ranganathan, S.; Mott, L.S.; Murray, C.P.; Stick, S.M. Risk Factors for Bronchiectasis in Children with Cystic Fibrosis. N. Engl. J. Med. 2013, 368, 1963–1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tepper, L.A.; Caudri, D.; Rovira, A.P.; Tiddens, H.A.W.M.; de Bruijne, M. The development of bronchiectasis on chest computed tomography in children with cystic fibrosis: Can pre-stages be identified? Eur. Radiol. 2016, 26, 4563–4569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, A.B.; Bilton, D. Exacerbations in cystic fibrosis: 4·Non-cystic fibrosis bronchiectasis. Thorax 2008, 63, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Pizzutto, S.J.; Hare, K.M.; Upham, J.W. Bronchiectasis in children: Current concepts in immunology and microbiology. Front. Pediatr. 2017, 5, 123. [Google Scholar] [CrossRef] [Green Version]
- Gaillard, E.A.; Carty, H.; Heaf, D.; Smyth, R.L. Reversible bronchial dilatation in children: Comparison of serial high-resolution computer tomography scans of the lungs. Eur. J. Radiol. 2003, 47, 215–220. [Google Scholar] [CrossRef]
- Kapur, N.; Masel, J.P.; Watson, D.; Masters, I.B.; Chang, A.B. Bronchoarterial ratio on high-resolution CT scan of the chest in children without pulmonary pathology: Need to redefine bronchial dilatation. Chest 2011, 139, 1445–1450. [Google Scholar] [CrossRef]
- Wu, J.; Bracken, J.; Lam, A.; Francis, K.L.; Ramanauskas, F.; Chang, A.B.; Robinson, P.; McCallum, P.; Wurzel, D.F. Refining diagnostic criteria for paediatric bronchiectasis using low-dose CT scan. Respir. Med. 2021, 187, 106547. [Google Scholar] [CrossRef]
- Kuo, W.; de Bruijne, M.; Petersen, J.; Nasserinejad, K.; Ozturk, H.; Chen, Y.; Perez-Rovira, A.; Tiddens, H.A.W.M. Diagnosis of bronchiectasis and airway wall thickening in children with cystic fibrosis: Objective airway-artery quantification. Eur. Radiol. 2017, 27, 4680–4689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naseri, Z.; Sherafat, S.; Abrishami Moghaddam, H.; Modaresi, M.; Pak, N.; Zamani, F. Semi-automatic Methods for Airway and Adjacent Vessel Measurement in Bronchiectasis Patterns in Lung HRCT Images of Cystic Fibrosis Patients. J. Digit. Imaging 2018, 31, 727–737. [Google Scholar] [CrossRef]
- Prasad, M.; Sowmya, A.; Wilson, P. Automatic detection of bronchial dilatation in HRCT lung images. J. Digit. Imaging 2008, 21, 148–163. [Google Scholar] [CrossRef]
- Gao, H.; Liu, C. Demarcation of arteriopulmonary segments: A novel and effective method for the identification of pulmonary segments. J. Int. Med. Res. 2021, 49, 1–11. [Google Scholar] [CrossRef]
- Schmidt, M.; Kuhnigk, J.-M.; Krass, S.; Owsijewitsch, M.; de Hoop, B.; Peitgen, H.-O. Reproducibility of airway wall thickness measurements. In Medical Imaging 2010: Computer-Aided Diagnosis; SPIE: Bellingham, WA, USA, 2010; Volume 7624, pp. 487–496. [Google Scholar] [CrossRef]
- Meng, Q.; Kitasaka, T.; Nimura, Y.; Oda, M.; Ueno, J.; Mori, K. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 245–261. [Google Scholar] [CrossRef]
- Prasad, M.; Sowmya, A. Multi-view learning for Bronchovascular pair detection. In Proceedings of the 2004 Intelligent Sensors, Sensor Networks and Information Processing Conference ISSNIP ‘04, Melbourne, Australia, 14–17 December 2004; pp. 587–592. [Google Scholar] [CrossRef]
- Perez-Rovira, A.; Kuo, W.; Petersen, J.; Tiddens, H.A.W.M.; De Bruijne, M. Automatic airway-artery analysis on lung CT to quantify airway wall thickening and bronchiectasis. Med. Phys. 2016, 43, 5736–5744. [Google Scholar] [CrossRef] [Green Version]
- Zrimec, T.; Busayarat, S. A system for computer aided detection of diseases patterns in high resolution CT images of the lungs. In Proceedings of the Twentieth IEEE International Symposium on Computer-Based Medical Systems (CBMS’07), Maribor, Slovenia, 20–22 June 2007; pp. 41–46. [Google Scholar] [CrossRef]
- Busayarat, S.; Zrimec, T. Automatic detection of pulmonary arteries and assessment of Bronchial dilatation in HRCT images of the lungs. In Proceedings of the 2005 ICSC Congress on Computational Intelligence Methods and Applications, Istanbul, Turkey, 15–17 December 2005; Volume 2005, pp. 2–6. [Google Scholar] [CrossRef]
- Diaz, A.A.; Young, T.P.; Maselli, D.J.; Martinez, C.H.; Gill, R.; Nardelli, P.; Wang, W.; Kinney, G.L.; Hokanson, J.E.; Washko, G.R.; et al. Quantitative CT Measures of Bronchiectasis in Smokers. Chest 2017, 151, 1255–1262. [Google Scholar] [CrossRef]
- Matsuoka, S.; Uchiyama, K.; Shima, H.; Ueno, N.; Oish, S.; Nojiri, Y. Bronchoarterial ratio and bronchial wall thickness on high-resolution CT in asymptomatic subjects: Correlation with age and smoking. Am. J. Roentgenol. 2003, 180, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Park, C.S.; Müller, N.L.; Worthy, S.A.; Kim, J.S.; Awadh, N.; Fitzgerald, M. Airway obstruction in asthmatic and healthy individuals: Inspiratory and expiratory thin-section CT findings. Radiology 1997, 203, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Berend, N.; Woolcock, A.J.; Marlin, G.E. Relationship between bronchial and arterial diameters in normal human lungs. Thorax 1979, 34, 354–358. [Google Scholar] [CrossRef] [Green Version]
- Large COVID-19 CT Scan Slice Dataset|Kaggle. Available online: https://www.kaggle.com/datasets/maedemaftouni/large-covid19-ct-slice-dataset (accessed on 1 June 2023).
- McShane, P.J.; Naureckas, E.T.; Tino, G.; Strek, M.E. Non-cystic fibrosis bronchiectasis. Am. J. Respir. Crit. Care Med. 2013, 188, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Chabat, F.; Hu, X.; Hansell, D.M.; Yang, G.-Z. ERS transform for the automated detection of bronchial abnormalities on CT of the lungs. IEEE Trans. Med. Imaging 2001, 20, 942–952. [Google Scholar] [CrossRef]
- Montaha, S.; Azam, S.; Kalam, A.; Rakibul, M.; Rafid, H.; Ghosh, P.; Hasan, Z.; Jonkman, M.; De Boer, F. BreastNet18: A High Accuracy Fine-Tuned VGG16 Model Evaluated Using Ablation Study for Diagnosing Breast Cancer from Enhanced Mammography Images. Biology 2021, 10, 1347. [Google Scholar] [CrossRef] [PubMed]
- Zdilla, M.J.; Hatfield, S.A.; McLean, K.A.; Cyrus, L.M.; Laslo, J.M.; Lambert, H.W. Circularity, solidity, axes of a best fit ellipse, aspect ratio, and roundness of the foramen ovale: A morphometric analysis with neurosurgical considerations. J. Craniofac. Surg. 2016, 27, 222. [Google Scholar] [CrossRef] [Green Version]
- Montaha, S.; Azam, S.; Rakibul Haque Rafid, A.K.M.; Islam, S.; Ghosh, P.; Jonkman, M. A shallow deep learning approach to classify skin cancer using down-scaling method to minimize time and space complexity. PLoS ONE 2022, 17, e0269826. [Google Scholar] [CrossRef]
- Azam, S.; Rafid, A.K.M.R.H.; Montaha, S.; Karim, A.; Jonkman, M. Automated Detection of Broncho-Arterial Pairs Using CT Scans Employing Different Approaches to Classify Lung Diseases. Biomedicines 2023, 11, 133. [Google Scholar] [CrossRef]
- Thia, L.P.; Calder, A.; Stocks, J.; Bush, A.; Owens, C.M.; Wallis, C.; Young, C.; Sullivan, Y.; Wade, A.; McEwan, A.; et al. Is chest CT useful in newborn screened infants with cystic fibrosis at 1 year of age? Thorax 2014, 69, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Poeta, M.; Maglione, M.; Borrelli, M.; Santamaria, F. Non-Cystic Fibrosis Bronchiectasis in Children: Diagnosis and Management. Pediatr. Neonatol. 2016, 5, 237–241. [Google Scholar]
- Chalwadi, U.K.; Swamy, N.; Greenberg, S.B.; Agarwal, A.; Lensing, S.; Gauss, C.H.; Lyons, K. Redefining Bronchoarterial Ratio in Children by Computed Tomography. ATS J. 2020, 49, A2349. [Google Scholar] [CrossRef]
- Reiff, D.B.; Wells, A.U.; Carr, D.H.; Cole, P.J.; Hansell, D.M. CT findings in bronchiectasis: Limited value in distinguishing between idiopathic and specific types. Am. J. Roentgenol. 1995, 165, 261–267. [Google Scholar] [CrossRef]
Data Acquisition Information | Technical Parameters Details | Patient Details | ||||
---|---|---|---|---|---|---|
Scanner: Philips Ingenuity Core 64 | Parameters | Parameter Value | No. | Sex | Age | Slice/Frames |
Acquisition Mode | Spiral | 1 | Male | 5 years 6 months | 429 | |
Single Collimation Width | 0.625 mm | 2 | Female | 3 years 3 months | 465 | |
Scanner: Toshiba Aquilion | Total Collimation Width | 64 × 0.625 = 40 mm | 3 | Male | 2 years 8 months | 553 |
Spiral Pitch Factor | 1.725 | 4 | Male | 1 year 10 months | 465 | |
Kilovoltage Peak | 80 kVp | 5 | Female | 9 years 9 months | 689 | |
Location: Royal Darwin Hospital, Northern Territory, Australia | Gantry Tilt | 0 | 6 | Male | 1 year 6 months | 54 |
Reconstructed Slice Thickness | 0.67 mm | 7 | Male | 2 years 6 months | 20 | |
DFOV (Average) | 170 mm | 8 | Female | 8 years 4 months | 26 | |
Estimated Dose Saving (Average) | −10 | 9 | Male | 1 years 2 months | 24 |
Patient Number | Total Number of Slices | Number of Detected BA Pairs | |
---|---|---|---|
Right Lung | Left Lung | ||
1 | 429 | 42 | 16 |
2 | 465 | 23 | 14 |
3 | 553 | 21 | 11 |
4 | 465 | 25 | 10 |
5 | 689 | 15 | 9 |
6 | 54 | 6 | 2 |
7 | 20 | 6 | 4 |
8 | 26 | 6 | 4 |
9 | 24 | 8 | 5 |
BA Pair No. | Slice No. | Co-Ordinate (x, y Position) | Lung Side | Validated by Radiologists? |
---|---|---|---|---|
1 | 281 | 179, 259 | Right | YES |
2 | 282 | 177, 258 | Right | YES |
3 | 282 | 163, 279 | Left | YES |
4 | 284 | 357, 234 | Right | YES |
5 | 288 | 176, 254 | Right | YES |
6 | 288 | 156, 276 | Right | YES |
7 | 296 | 174, 250 | Right | YES |
8 | 316 | 175, 235 | Right | YES |
9 | 322 | 174, 232 | Right | YES |
10 | 322 | 149, 265 | Right | YES |
BA Pair | BD1 (px) | BD2 (px) | BD3 (px) | BD4 (px) | ABD (px) | AD1 (px) | AD2 (px) | AD3 (px) | AD4 (px) | AAD (px) | BADR | BAr (px) | AAr (px) | BAAR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4.12 | 3.00 | 6.01 | 6.01 | 4.79 | 9.16 | 8.17 | 10.00 | 10.17 | 9.38 | 0.51 | 12.00 | 61.00 | 0.20 |
2 | 7.24 | 6.07 | 7.16 | 7.03 | 6.87 | 9.11 | 8.21 | 11.02 | 9.20 | 9.38 | 0.73 | 33.00 | 63.50 | 0.52 |
3 | 5.17 | 5.27 | 6.04 | 7.07 | 5.89 | 7.03 | 7.05 | 8.01 | 8.06 | 7.54 | 0.78 | 26.00 | 41.50 | 0.63 |
4 | 7.24 | 6.16 | 8.18 | 8.21 | 7.45 | 10.06 | 9.20 | 11.03 | 12.01 | 10.57 | 0.70 | 32.50 | 76.00 | 0.43 |
5 | 7.08 | 7.04 | 9.12 | 8.12 | 7.84 | 10.01 | 16.00 | 13.01 | 14.11 | 13.29 | 0.59 | 42.00 | 125.00 | 0.34 |
6 | 5.06 | 5.09 | 5.20 | 5.20 | 5.14 | 8.04 | 9.00 | 8.03 | 8.04 | 8.28 | 0.62 | 16.00 | 51.50 | 0.31 |
7 | 2.48 | 3.00 | 3.53 | 4.15 | 3.29 | 5.09 | 5.14 | 6.12 | 5.05 | 5.35 | 0.62 | 5.00 | 18.00 | 0.28 |
8 | 6.22 | 7.04 | 7.00 | 7.13 | 6.85 | 9.03 | 10.00 | 13.01 | 13.05 | 11.27 | 0.61 | 35.00 | 82.00 | 0.43 |
9 | 5.03 | 5.04 | 6.25 | 4.35 | 5.17 | 8.03 | 7.04 | 11.07 | 9.14 | 8.82 | 0.59 | 18.00 | 49.50 | 0.36 |
BA Pair No. | BADR: Proposed Approach | BADR: Human Observer | BAAR: Proposed Approach | BAAR: Human Observer |
---|---|---|---|---|
1 | 0.51 | 0.53 | 0.20 | 0.22 |
2 | 0.73 | 0.70 | 0.52 | 0.49 |
3 | 0.78 | 0.82 | 0.63 | 0.67 |
4 | 0.70 | 0.65 | 0.43 | 0.39 |
5 | 0.59 | 0.60 | 0.34 | 0.34 |
6 | 0.62 | 0.62 | 0.31 | 0.34 |
7 | 0.62 | 0.59 | 0.28 | 0.26 |
8 | 0.61 | 0.57 | 0.43 | 0.40 |
9 | 0.59 | 0.58 | 0.36 | 0.33 |
Performance Matrices | Result (%) | Performance Matrices | Result (%) |
---|---|---|---|
Training Accuracy | 98.82 | F1 Score | 98.59 |
Test Accuracy | 98.53 | Precision | 98.62 |
Sensitivity | 98.45 | Specificity | 97.74 |
No. | Paper | Age Group | BA Ratio |
---|---|---|---|
1 | Kapur et al. [9] | 5–214 months | 0.437–0.739 |
2 | Thia et al. [32] | 52.7 weeks | 0.67–0.93 |
3 | Nitin Kapur et al. [33] | 3–5 years | 0.626 (average) |
4 | Chalwadi et al. [34] | 0–18 years | 0.49 (average) |
5 | Wu et al. [10] | 0–19 years | 0.42–0.89 |
6 | Reiff et al. [35] | 45 years (average) | >1 |
7 | Matsuoka et al. [22] | 21–40 years; 41–64 years; ≥65 years | 0.524–0.706; 0.599–0.851; 0.689–0.943 |
8 | Berend et al. [24] | 16–60 years | 0.62 ± 0.02 |
9 | Park et al. [23] | 26–63 years | 0.65 (average) |
10 | Proposed algorithm | 1–8 years | 0.51–0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azam, S.; Montaha, S.; Rafid, A.K.M.R.H.; Karim, A.; Jonkman, M.; De Boer, F.; McCallum, G.; Masters, I.B.; Chang, A. An Automated Broncho-Arterial (BA) Pair Segmentation Process and Assessment of BA Ratios in Children with Bronchiectasis Using Lung HRCT Scans: A Pilot Study. Biomedicines 2023, 11, 1874. https://doi.org/10.3390/biomedicines11071874
Azam S, Montaha S, Rafid AKMRH, Karim A, Jonkman M, De Boer F, McCallum G, Masters IB, Chang A. An Automated Broncho-Arterial (BA) Pair Segmentation Process and Assessment of BA Ratios in Children with Bronchiectasis Using Lung HRCT Scans: A Pilot Study. Biomedicines. 2023; 11(7):1874. https://doi.org/10.3390/biomedicines11071874
Chicago/Turabian StyleAzam, Sami, Sidratul Montaha, A. K. M. Rakibul Haque Rafid, Asif Karim, Mirjam Jonkman, Friso De Boer, Gabrielle McCallum, Ian Brent Masters, and Anne Chang. 2023. "An Automated Broncho-Arterial (BA) Pair Segmentation Process and Assessment of BA Ratios in Children with Bronchiectasis Using Lung HRCT Scans: A Pilot Study" Biomedicines 11, no. 7: 1874. https://doi.org/10.3390/biomedicines11071874
APA StyleAzam, S., Montaha, S., Rafid, A. K. M. R. H., Karim, A., Jonkman, M., De Boer, F., McCallum, G., Masters, I. B., & Chang, A. (2023). An Automated Broncho-Arterial (BA) Pair Segmentation Process and Assessment of BA Ratios in Children with Bronchiectasis Using Lung HRCT Scans: A Pilot Study. Biomedicines, 11(7), 1874. https://doi.org/10.3390/biomedicines11071874