Novel Dual Incretin Receptor Agonists in the Spectrum of Metabolic Diseases with a Focus on Tirzepatide: Real Game-Changers or Great Expectations? A Narrative Review
Abstract
:1. Introduction
2. Literature Search Methodology
3. Rationale and Overview of Incretin Receptor Agonists
4. Metabolic Effects of Tirzepatide
4.1. Impact of Tirzepatide on T2D and Glycaemic Control
4.2. Impact of Tirzepatide on Obesity and Weight Loss
4.3. Impact of Tirzepatide on NAFLD Outcomes
Study, Year of Publication | Population | Baseline Characteristics (Mean Values) | Sample Size and Study Groups | Primary Outcome | Results |
---|---|---|---|---|---|
Glycaemic control | |||||
SURPASS-1, 2021 [53] | T2D patients inadequately controlled with diet and exercise alone and naive to injectable diabetes therapy | HbA1c, 7.9% (63 mmol/mol) Age, 54.1 years Women, 231 (48%) Diabetes duration, 4.7 years Weight, 85.9 kg BMI, 31.9 kg/m2 | N = 478 Tirzepatide, 5 mg (n = 121) Tirzepatide, 10 mg (n = 121) Tirzepatide, 15 mg (n = 121) Placebo (n = 115) Duration: 40 weeks | Mean change in HbA1c from baseline at 40 weeks | HbA1c change: −1.87% (tirzepatide, 5 mg) −1.89% (tirzepatide, 10 mg) −2.07% (tirzepatide, 15 mg) +0.04% (placebo) (estimated treatment differences vs. placebo: −1.91% for tirzepatide, 5 mg; −1.93% for tirzepatide, 10 mg; −2.11% for tirzepatide, 15 mg (p < 0.0001 for all comparisons)) Weight change from baseline: −7.0 to −9.5 kg (tirzepatide groups) −0.7 kg (placebo) |
SURPASS-2, 2021 [55] | T2D patients inadequately controlled with metformin, ≥1500 mg per day, for ≥3 months prior to screening | HbA1c, 8.28% (67 mmol/mol) Age, 56.6 years Women, 996 (53%) Diabetes duration, 8.6 years Weight, 93.7 kg BMI, 34.2 kg/m2 | N = 1878 Tirzepatide, 5 mg (n = 470) Tirzepatide, 10 mg (n = 469) Tirzepatide, 15 mg (n = 470) Semaglutide, 1 mg (n = 469) Duration: 40 weeks | Mean change in HbA1c from baseline at 40 weeks | HbA1c change: −2.01% (tirzepatide, 5 mg) −2.24% (tirzepatide, 10 mg) −2.30% (tirzepatide, 15 mg) −1.86% (semaglutide, 1 mg) (estimated treatment differences vs. semaglutide: −0.15% for tirzepatide, 5 mg (p = 0.02); −0.39% for tirzepatide, 10 mg (p < 0.001); −0.45% for tirzepatide, 15 mg (p < 0.001)) Weight change from baseline: −7.6 to −11.2 kg (tirzepatide groups) −5.7 kg (semaglutide, 1 mg) |
SURPASS-3, 2021 [56] | T2D patients inadequately controlled with metformin with or without SGLT2 inhibitors | HbA1c, 8.17% (66 mmol/mol) Age, 57.4 years Women, 635 (44%) Diabetes duration, 8.4 years Weight, 94.3 kg BMI, 33.5 kg/m2 | N = 1437 Tirzepatide, 5 mg (n = 358) Tirzepatide, 10 mg (n = 360) Tirzepatide, 15 mg (n = 359) Degludec (titrated) (n = 360) Duration: 52 weeks | Non-inferiority of tirzepatide, 10 or 15 mg, or both vs. insulin degludec in mean change from baseline in HbA1c at week 52 | HbA1c change: −1.93% (tirzepatide, 5 mg) −2.20% (tirzepatide, 10 mg) −2.37% (tirzepatide, 15 mg) −1.34% (degludec) (estimated treatment difference vs. degludec: –0.59% to –1.04% for tirzepatide (p < 0.0001 for all tirzepatide doses)) The non-inferiority margin of 0.3% was met for both types of doses Weight change from baseline: −7.5 to −12.9 kg (tirzepatide groups) +2.3 kg (degludec) |
SURPASS-4, 2021 [58] | T2D patients with increased CV risk treated with metformin, a sulfonylurea or an SGLT2 inhibitor | HbA1c, 8.52% (70 mmol/mol) Age, 63.6 years Women, 749 (38%) Diabetes duration, 10.5 years Weight, 90.3 kg BMI, 32.6 kg/m2 | N = 1995 Tirzepatide, 5 mg (n = 329) Tirzepatide, 10 mg (n = 328) Tirzepatide, 15 mg (n = 338) Glargine (titrated) (n = 1000) Duration: 52 weeks | Non-inferiority (0.3% non-inferiority boundary) of tirzepatide, 10 or 15 mg, or both vs. glargine in HbA1c change from baseline at 52 weeks | HbA1c change: −2.24% (tirzepatide, 5 mg) −2.43% (tirzepatide, 10 mg) −2.58% (tirzepatide, 15 mg) −1.44% (glargine) (estimated treatment difference vs. glargine: −0.80 for tirzepatide, 5 mg; −0.99% for tirzepatide, 10 mg; −1.14% for tirzepatide, 15 mg (p < 0.0001 for all comparisons)) The non-inferiority margin of 0.3% was met for both types of doses Weight change from baseline: −7.1 kg to −11.7 kg (tirzepatide groups) +1.9 kg (glargine) |
SURPASS-5, 2022 [59] | T2D patients inadequately controlled with insulin glargine with or without metformin | HbA1c, 8.31% (67 mmol/mol) Age, 60.6 years Women, 211 (44%) Diabetes duration, 13.3 years Weight, 95 kg BMI, 33.4 kg/m2 | N = 475 Tirzepatide, 5 mg (n = 116) Tirzepatide, 10 mg (n = 119) Tirzepatide, 15 mg (n = 120) Placebo (n = 120) Duration: 40 weeks | Mean change in HbA1c from baseline at week 40 | HbA1c change: −2.11% (tirzepatide, 5 mg) −2.40% (tirzepatide, 10 mg) −2.34% (tirzepatide, 15 mg) −0.86% (placebo) (p < 0.001 for all comparisons with placebo) Weight change from baseline: −5.4 to −8.8 kg (tirzepatide groups) +1.6 kg (placebo) |
SURPASS-3CGM, 2022 (Substudy of SURPASS-3) [57] | T2D patients, insulin-naive, treated with metformin alone or in combination with an SGLT2 inhibitor for ≥3 months before screening | HbA1c, 8.2% (66 mmol/mol) Age, 57.0 years Women, 110 (45%) Diabetes duration, 8.8 years Weight, 95.8 kg BMI, 33.9 kg/m2 | N = 243 Tirzepatide, 5 mg (n = 64) Tirzepatide, 10 mg (n = 51) Tirzepatide, 15 mg (n = 73) Degludec (titrated) (n = 55) Duration: 52 weeks | Proportion of time that CGM values were in the tight target range (71–140 mg/dL) at 52 weeks (comparing pooled participants assigned to 10 and 15 mg of tirzepatide vs. degludec) | Patients on tirzepatide (pooled 10 and 15 mg groups) had a greater proportion of time in tight target range vs. degludec group (estimated treatment difference, 25% [95% CI, 16–33]; p < 0.0001) |
SURPASS J-mono, 2022 [62] | Japanese T2D patients, treatment-naive or discontinued from oral antihyperglycaemic monotherapy | HbA1c, 8.2% (66 mmol/mol) Age, 56.6 years Women, 155 (24%) Diabetes duration, 4.8 years Weight, 78.2 kg BMI, 28.1 kg/m2 | N = 636 Tirzepatide, 5 mg (n = 159) Tirzepatide, 10 mg (n = 158) Tirzepatide, 15 mg (n = 160) Dulaglutide, 0.75 mg (n = 159) Duration: 52 weeks | Mean change in HbA1c from baseline at week 52 | HbA1c change: −2.40% (tirzepatide, 5 mg) −2.60% (tirzepatide, 10 mg) −2.80% (tirzepatide, 15 mg) −1.30% (dulaglutide, 0.75 mg) (estimated treatment differences vs. dulaglutide: −1.1% for tirzepatide, 5 mg; −1.3% for tirzepatide, 10 mg; −1.5% for tirzepatide, 15 mg (p < 0.0001 for all)) Weight change from baseline: −5.8 to −10.7 kg (tirzepatide groups) −0.5 kg (dulaglutide, 0.75 mg) |
SURPASS J-combo, 2022 [63] | Japanese T2D patients inadequately controlled with oral antihyperglycaemic monotherapy for ≥3 months before screening | HbA1c, 8.6% (70 mmol/mol) Age, 57 years Women, 107 (24%) Diabetes duration, 8.6 years Weight, 77.5 kg BMI, 27.9 kg/m2 | N = 443 Tirzepatide, 5 mg (n = 148) Tirzepatide, 10 mg (n = 147) Tirzepatide, 15 mg (n = 148) Duration: 52 weeks | Safety and tolerability during 52 weeks of treatment, assessed as the incidence of treatment-emergent adverse events in the modified intention-to-treat population | In total, 90% of participants completed the study and treatment In total, 77% of participants had ≥1 treatment-emergent adverse event HbA1c change from baseline: −2.50% (tirzepatide, 5 mg) −3.0% (tirzepatide, 10 mg) −3.0% (tirzepatide, 15 mg) Weight change from baseline: −3.8 to −10.2 kg |
Body weight | |||||
SURMOUNT-1, 2022 [43] | Adults with BMI ≥ 30 or BMI ≥ 27 and ≥1 weight-related complication excluding diabetes | Age, 44.9 years Women, 1714 (67.5%) Weight, 104.8 kg BMI, 38.0 kg/m2 Obesity duration, 14.4 years HbA1c, 5.6% | N = 2539 Tirzepatide, 5 mg (n = 630) Tirzepatide, 10 mg (n = 636) Tirzepatide, 15 mg (n = 630) Placebo (n = 643) Duration: 72 weeks | % change in weight from baseline at week 72 % of participants having ≥5% weight reduction from baseline at week 72 | Weight change: −15.0% (tirzepatide, 5 mg) −19.5% (tirzepatide, 10 mg) −20.9% (tirzepatide, 15 mg) −3.1% (placebo) (p < 0.001 for all comparisons with placebo) Participants with ≥5% weight reduction: 85% (tirzepatide, 5 mg) 89% (tirzepatide, 10 mg) 91% (tirzepatide, 15 mg) 35% (placebo) (p < 0.001 for all comparisons with placebo) Participants with ≥20% weight reduction: 50% (tirzepatide, 10 mg) 57% (tirzepatide, 15 mg) 3% (placebo) (p < 0.001 for all comparisons with placebo) |
Liver fat content | |||||
SURPASS-3MRI, 2022 (Substudy of SURPASS-3) [70] | T2D patients with fatty liver index ≥ 60, (insulin-naive) treated with metformin alone or in combination with an SGLT2 inhibitor for ≥3 months before screening | LFC, 15.71% HbA1c, 8.2% (67 mmol/mol) Age, 56.2 years Women, 124 (42%) Diabetes duration, 8.3 years Weight, 94.4 kg BMI, 33.5 kg/m2 | N = 296 Tirzepatide, 5 mg (n = 71) Tirzepatide, 10 mg (n = 79) Tirzepatide, 15 mg (n = 72) Degludec (titrated) (n = 74) Duration: 52 weeks | Change from baseline in LFC at week 52 (pooled data from the tirzepatide, 10 and 15 mg, groups vs. insulin degludec) | Change in LFC: −8.09% (pooled tirzepatide, 10 and 15 mg, groups) −3.38% (degludec) (estimated treatment difference vs. degludec −4.71% (95% CI, −6.72 to −2.70; p < 0.0001)) |
5. Safety and Tolerability Issues
6. Knowledge Gaps and Areas for Future Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; Available online: https://www.diabetesatlas.org (accessed on 21 November 2022).
- Reed, J.; Bain, S.; Kanamarlapudi, V. A Review of Current Trends with Type 2 Diabetes Epidemiology, Aetiology, Pathogenesis, Treatments and Future Perspectives. Diabetes Metab. Syndr. Obes. 2021, 14, 3567–3602. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Forouzanfar, M.H.; Reitsma, M.B.; Sur, P.; Estep, K.; Lee, A.; Marczak, L.; Mokdad, A.H.; Moradi-Lakeh, M.; Naghavi, M.; et al. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [PubMed]
- Noureddin, M.; Rinella, M.E. Nonalcoholic Fatty liver disease, diabetes, obesity, and hepatocellular carcinoma. Clin. Liver Dis. 2015, 19, 361–379. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Tariq, R.; Axley, P.; Singal, A.K. Extra-Hepatic Manifestations of Nonalcoholic Fatty Liver Disease: A Review. J. Clin. Exp. Hepatol. 2020, 10, 81–87. [Google Scholar] [CrossRef]
- Parry, S.A.; Hodson, L. Managing NAFLD in Type 2 Diabetes: The Effect of Lifestyle Interventions, a Narrative Review. Adv. Ther. 2020, 37, 1381–1406. [Google Scholar] [CrossRef] [Green Version]
- Nauck, M.A.; Meier, J.J. Incretin hormones: Their role in health and disease. Diabetes Obes. Metab. 2018, 20 (Suppl. S1), 5–21. [Google Scholar] [CrossRef]
- Drucker, D.J. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018, 27, 740–756. [Google Scholar] [CrossRef] [Green Version]
- Muzurović, E.M.; Volčanšek, Š.; Tomšić, K.Z.; Janež, A.; Mikhailidis, D.P.; Rizzo, M.; Mantzoros, C.S. Glucagon-Like Peptide-1 Receptor Agonists and Dual Glucose-Dependent Insulinotropic Polypeptide/Glucagon-Like Peptide-1 Receptor Agonists in the Treatment of Obesity/Metabolic Syndrome, Prediabetes/Diabetes and Non-Alcoholic Fatty Liver Disease-Current Evidence. J. Cardiovasc. Pharmacol. Ther. 2022, 27, 10742484221146371. [Google Scholar]
- Andreadis, P.; Karagiannis, T.; Malandris, K.; Avgerinos, I.; Liakos, A.; Manolopoulos, A.; Bekiari, E.; Matthews, D.R.; Tsapas, A. Semaglutide for type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetes Obes. Metab. 2018, 20, 2255–2263. [Google Scholar] [CrossRef]
- Jensterle, M.; Rizzo, M.; Haluzík, M.; Janež, A. Efficacy of GLP-1 RA Approved for Weight Management in Patients with or Without Diabetes: A Narrative Review. Adv. Ther. 2022, 39, 2452–2467. [Google Scholar] [CrossRef]
- Karagiannis, T.; Avgerinos, I.; Liakos, A.; Del Prato, S.; Matthews, D.R.; Tsapas, A.; Bekiari, E. Management of type 2 diabetes with the dual GIP/GLP-1 receptor agonist tirzepatide: A systematic review and meta-analysis. Diabetologia 2022, 65, 1251–1261. [Google Scholar] [CrossRef]
- Frías, J.P. An update on tirzepatide for the management of type 2 diabetes: A focus on the phase 3 clinical development program. Expert Rev. Endocrinol. Metab. 2023, 18, 111–130. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Papamargaritis, D.; Sargeant, J.A.; Davies, M.J. Efficacy and Safety of Tirzepatide in Type 2 Diabetes and Obesity Management. J. Obes. Metab. Syndr. 2023, 32, 25–45. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, A.A.; Rizzo, M. The Emerging Role of Dual GLP-1 and GIP Receptor Agonists in Glycemic Management and Cardiovascular Risk Reduction. Diabetes Metab. Syndr. Obes. 2022, 15, 1023–1030. [Google Scholar] [CrossRef]
- United States Food and Drug Administration. FDA News Release. FDA Approves Novel, Dual-Targeted Treatment for Type 2 Diabetes. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-novel-dual-targeted-treatment-type-2-diabetes (accessed on 19 November 2022).
- European Commission Grants Marketing Authorisation for Lilly’s Mounjaro® (Tirzepatide), the First GIP and GLP-1 Receptor Agonist for Adults with Type 2 Diabetes in Europe. Available online: https://www.lillyeu.com/story/european-commission-grants-marketing-authorisation-for-lillys-mounjaro-r (accessed on 22 November 2022).
- Nauck, M.A.; D’Alessio, D.A. Tirzepatide, a dual GIP/GLP-1 receptor co-agonist for the treatment of type 2 diabetes with unmatched effectiveness regrading glycaemic control and body weight reduction. Cardiovasc. Diabetol. 2022, 21, 169. [Google Scholar] [CrossRef] [PubMed]
- Lafferty, R.A.; Flatt, P.R.; Irwin, N. GLP-1/GIP analogs: Potential impact in the landscape of obesity pharmacotherapy. Expert Opin. Pharmacother. 2023, 24, 587–597. [Google Scholar] [CrossRef]
- Koliaki, C.; Liatis, S.; Dalamaga, M.; Kokkinos, A. The Implication of Gut Hormones in the Regulation of Energy Homeostasis and Their Role in the Pathophysiology of Obesity. Curr. Obes. Rep. 2020, 9, 255–271. [Google Scholar] [CrossRef]
- Holst, J.J.; Vilsbøll, T.; Deacon, C.F. The incretin system and its role in type 2 diabetes mellitus. Mol. Cell. Endocrinol. 2009, 297, 127–136. [Google Scholar] [CrossRef] [Green Version]
- Wren, A.M.; Bloom, S.R. Gut hormones and appetite control. Gastroenterology 2007, 132, 2116–2130. [Google Scholar] [CrossRef]
- Alexiadou, K.; Tan, T.M. Gastrointestinal Peptides as Therapeutic Targets to Mitigate Obesity and Metabolic Syndrome. Curr. Diab. Rep. 2020, 20, 26. [Google Scholar] [CrossRef]
- Angelidi, A.M.; Belanger, M.J.; Kokkinos, A.; Koliaki, C.C.; Mantzoros, C.S. Novel Noninvasive Approaches to the Treatment of Obesity: From Pharmacotherapy to Gene Therapy. Endocr. Rev. 2022, 43, 507–557. [Google Scholar] [CrossRef] [PubMed]
- Zinman, B.; Nauck, M.A.; Bosch-Traberg, H.; Frimer-Larsen, H.; Ørsted, D.D.; Buse, J.B.; The LEADER Publication Committee on behalf of the LEADER Trial Investigators. Liraglutide and Glycaemic Outcomes in the LEADER Trial. Diabetes Ther. 2018, 9, 2383–2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aroda, V.R.; Rosenstock, J.; Terauchi, Y.; Altuntas, Y.; Lalic, N.M.; Morales Villegas, E.C.; Jeppesen, O.K.; Christiansen, E.; Hertz, C.L.; Haluzík, M. PIONEER 1: Randomized Clinical Trial of the Efficacy and Safety of Oral Semaglutide Monotherapy in Comparison with Placebo in Patients With Type 2 Diabetes. Diabetes Care 2019, 42, 1724–1732. [Google Scholar] [CrossRef] [PubMed]
- Liarakos, A.L.; Tentolouris, A.; Kokkinos, A.; Eleftheriadou, I.; Tentolouris, N. Impact of Glucagon-like peptide 1 receptor agonists on peripheral arterial disease in people with diabetes mellitus: A narrative review. J. Diabetes Complicat. 2023, 37, 108390. [Google Scholar] [CrossRef]
- Bastin, M.; Andreelli, F. Dual GIP-GLP1-Receptor Agonists In The Treatment Of Type 2 Diabetes: A Short Review On Emerging Data And Therapeutic Potential. Diabetes Metab. Syndr. Obes. 2019, 12, 1973–1985. [Google Scholar] [CrossRef] [Green Version]
- Khoo, B.; Tan, T.M. Combination gut hormones: Prospects and questions for the future of obesity and diabetes therapy. J. Endocrinol. 2020, 246, R65–R74. [Google Scholar] [CrossRef]
- Tschöp, M.H.; Finan, B.; Clemmensen, C.; Gelfanov, V.; Perez-Tilve, D.; Müller, T.D.; DiMarchi, R.D. Unimolecular Polypharmacy for Treatment of Diabetes and Obesity. Cell Metab. 2016, 24, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Jall, S.; Sachs, S.; Clemmensen, C.; Finan, B.; Neff, F.; DiMarchi, R.D.; Tschöp, M.H.; Müller, T.D.; Hofmann, S.M. Monomeric GLP-1/GIP/glucagon triagonism corrects obesity, hepatosteatosis, and dyslipidemia in female mice. Mol. Metab. 2017, 6, 440–446. [Google Scholar] [CrossRef]
- Tan, T.; Behary, P.; Tharakan, G.; Minnion, J.; Al-Najim, W.; Albrechtsen, N.W.; Holst, J.J.; Bloom, S.R. The Effect of a Subcutaneous Infusion of GLP-1, OXM, and PYY on Energy Intake and Expenditure in Obese Volunteers. J. Clin. Endocrinol. Metab. 2017, 102, 2364–2372. [Google Scholar] [CrossRef]
- Pocai, A. Action and therapeutic potential of oxyntomodulin. Mol. Metab. 2014, 3, 241–251. [Google Scholar] [CrossRef]
- Pocai, A. Unraveling oxyntomodulin, GLP1’s enigmatic brother. J. Endocrinol. 2012, 215, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Raffort, J.; Lareyre, F.; Massalou, D.; Fénichel, P.; Panaïa-Ferrari, P.; Chinetti, G. Insights on glicentin, a promising peptide of the proglucagon family. Biochem. Med. 2017, 27, 308–324. [Google Scholar] [CrossRef]
- Nielsen, M.S.; Ritz, C.; Wewer Albrechtsen, N.J.; Holst, J.J.; le Roux, C.W.; Sjödin, A. Oxyntomodulin and Glicentin May Predict the Effect of Bariatric Surgery on Food Preferences and Weight Loss. J. Clin. Endocrinol. Metab. 2020, 105, e1064–e1074. [Google Scholar] [CrossRef]
- Sun, B.; Willard, F.S.; Feng, D.; Alsina-Fernandez, J.; Chen, Q.; Vieth, M.; Ho, J.D.; Showalter, A.D.; Stutsman, C.; Ding, L.; et al. Structural determinants of dual incretin receptor agonism by tirzepatide. Proc. Natl. Acad. Sci. USA 2022, 119, e2116506119. [Google Scholar] [CrossRef] [PubMed]
- Pelle, M.C.; Provenzano, M.; Zaffina, I.; Pujia, R.; Giofrè, F.; Lucà, S.; Andreucci, M.; Sciacqua, A.; Arturi, F. Role of a Dual Glucose-Dependent Insulinotropic Peptide (GIP)/Glucagon-like Peptide-1 Receptor Agonist (Twincretin) in Glycemic Control: From Pathophysiology to Treatment. Life 2021, 12, 29. [Google Scholar] [CrossRef]
- Wang, L. Designing a Dual GLP-1R/GIPR Agonist from Tirzepatide: Comparing Residues between Tirzepatide, GLP-1, and GIP. Drug Des. Devel. Ther. 2022, 16, 1547–1559. [Google Scholar] [CrossRef] [PubMed]
- Coskun, T.; Sloop, K.W.; Loghin, C.; Alsina-Fernandez, J.; Urva, S.; Bokvist, K.B.; Cui, X.; Briere, D.A.; Cabrera, O.; Roell, W.C.; et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept. Mol. Metab. 2018, 18, 3–14. [Google Scholar] [CrossRef]
- Chavda, V.P.; Ajabiya, J.; Teli, D.; Bojarska, J.; Apostolopoulos, V. Tirzepatide, a New Era of Dual-Targeted Treatment for Diabetes and Obesity: A Mini-Review. Molecules 2022, 27, 4315. [Google Scholar] [CrossRef] [PubMed]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Lin, F.; Yu, B.; Ling, B.; Lv, G.; Shang, H.; Zhao, X.; Jie, X.; Chen, J.; Li, Y. Weight loss efficiency and safety of tirzepatide: A Systematic review. PLoS ONE 2023, 18, e0285197. [Google Scholar] [CrossRef] [PubMed]
- Tall Bull, S.; Nuffer, W.; Trujillo, J.M. Tirzepatide: A novel, first-in-class, dual GIP/GLP-1 receptor agonist. J. Diabetes Complicat. 2022, 36, 108332. [Google Scholar] [CrossRef] [PubMed]
- Irwin, N.; McClean, P.L.; Cassidy, R.S.; O’harte, F.P.; Green, B.D.; Gault, V.A.; Harriott, P.; Flatt, P.R. Comparison of the anti-diabetic effects of GIP- and GLP-1-receptor activation in obese diabetic (ob/ob) mice: Studies with DPP IV resistant N-AcGIP and exendin(1-39)amide. Diabetes Metab. Res. Rev. 2007, 23, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Gault, V.A.; Kerr, B.D.; Harriott, P.; Flatt, P.R. Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with Type 2 diabetes and obesity. Clin. Sci. 2011, 121, 107–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pathak, N.M.; Pathak, V.; Gault, V.A.; McClean, S.; Irwin, N.; Flatt, P.R. Novel dual incretin agonist peptide with antidiabetic and neuroprotective potential. Biochem. Pharmacol. 2018, 155, 264–274. [Google Scholar] [CrossRef]
- Schmitt, C.; Portron, A.; Jadidi, S.; Sarkar, N.; DiMarchi, R. Pharmacodynamics, pharmacokinetics and safety of multiple ascending doses of the novel dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-1 agonist RG7697 in people with type 2 diabetes mellitus. Diabetes Obes. Metab. 2017, 19, 1436–1445. [Google Scholar] [CrossRef]
- Frias, J.P.; Bastyr, E.J.; Vignati, L.; Tschoep, M.H.; Schmitt, C.; Owen, K.; Christensen, R.H.; DiMarchi, R.D. The Sustained Effects of a Dual GIP/GLP-1 Receptor Agonist, NNC0090-2746, in Patients with Type 2 Diabetes. Cell Metab. 2017, 26, 343–352.e2. [Google Scholar] [CrossRef]
- Frias, J.P.; Nauck, M.A.; Van, J.; Kutner, M.E.; Cui, X.; Benson, C.; Urva, S.; Gimeno, R.E.; Milicevic, Z.; Robins, D.; et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: A randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 2018, 392, 2180–2193. [Google Scholar] [CrossRef]
- Frias, J.P.; Nauck, M.A.; Van, J.; Benson, C.; Bray, R.; Cui, X.; Milicevic, Z.; Urva, S.; Haupt, A.; Robins, D.A. Efficacy and tolerability of tirzepatide, a dual glucose-dependent insulinotropic peptide and glucagon-like peptide-1 receptor agonist in patients with type 2 diabetes: A 12-week, randomized, double-blind, placebo-controlled study to evaluate different dose-escalation regimens. Diabetes Obes. Metab. 2020, 22, 938–946. [Google Scholar]
- Rosenstock, J.; Wysham, C.; Frías, J.P.; Kaneko, S.; Lee, C.J.; Landó, L.F.; Mao, H.; Cui, X.; Karanikas, C.A.; Thieu, V.T. Efficacy and safety of a novel dual GIP and GLP-1 receptor agonist tirzepatide in patients with type 2 diabetes (SURPASS-1): A double-blind, randomised, phase 3 trial. Lancet 2021, 398, 143–155. [Google Scholar] [CrossRef]
- Lee, C.J.; Mao, H.; Thieu, V.T.; Landó, L.F.; Thomas, M.K. Tirzepatide as Monotherapy Improved Markers of Beta-cell Function and Insulin Sensitivity in Type 2 Diabetes (SURPASS-1). J. Endocr. Soc. 2023, 7, bvad056. [Google Scholar] [CrossRef] [PubMed]
- Frías, J.P.; Davies, M.J.; Rosenstock, J.; Pérez Manghi, F.C.; Fernández Landó, L.; Bergman, B.K.; Liu, B.; Cui, X.; Brown, K. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Ludvik, B.; Giorgino, F.; Jódar, E.; Frias, J.P.; Landó, L.F.; Brown, K.; Bray, R.; Rodríguez, Á. Once-weekly tirzepatide versus once-daily insulin degludec as add-on to metformin with or without SGLT2 inhibitors in patients with type 2 diabetes (SURPASS-3): A randomised, open-label, parallel-group, phase 3 trial. Lancet 2021, 398, 583–598. [Google Scholar] [CrossRef]
- Battelino, T.; Bergenstal, R.M.; Rodríguez, A.; Landó, L.F.; Bray, R.; Tong, Z.; Brown, K. Efficacy of once-weekly tirzepatide versus once-daily insulin degludec on glycaemic control measured by continuous glucose monitoring in adults with type 2 diabetes (SURPASS-3 CGM): A substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet Diabetes Endocrinol. 2022, 10, 407–417. [Google Scholar]
- Del Prato, S.; Kahn, S.E.; Pavo, I.; Weerakkody, G.J.; Yang, Z.; Doupis, J.; Aizenberg, D.; Wynne, A.G.; Riesmeyer, J.S.; Heine, R.J.; et al. Tirzepatide versus insulin glargine in type 2 diabetes and increased cardiovascular risk (SURPASS-4): A randomised, open-label, parallel-group, multicentre, phase 3 trial. Lancet 2021, 398, 1811–1824. [Google Scholar] [CrossRef]
- Dahl, D.; Onishi, Y.; Norwood, P.; Huh, R.; Bray, R.; Patel, H.; Rodríguez, Á. Effect of Subcutaneous Tirzepatide vs. Placebo Added to Titrated Insulin Glargine on Glycemic Control in Patients with Type 2 Diabetes: The SURPASS-5 Randomized Clinical Trial. JAMA 2022, 327, 534–545. [Google Scholar] [CrossRef]
- Heise, T.; Mari, A.; DeVries, J.H.; Urva, S.; Li, J.; Pratt, E.J.; Coskun, T.; Thomas, M.K.; Mather, K.J.; Haupt, A.; et al. Effects of subcutaneous tirzepatide versus placebo or semaglutide on pancreatic islet function and insulin sensitivity in adults with type 2 diabetes: A multicentre, randomised, double-blind, parallel-arm, phase 1 clinical trial. Lancet Diabetes Endocrinol. 2022, 10, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Møller, J.B.; Pedersen, M.; Tanaka, H.; Ohsugi, M.; Overgaard, R.V.; Lynge, J.; Almind, K.; Vasconcelos, N.-M.; Poulsen, P.; Keller, C.; et al. Body composition is the main determinant for the difference in type 2 diabetes pathophysiology between Japanese and Caucasians. Diabetes Care 2014, 37, 796–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inagaki, N.; Takeuchi, M.; Oura, T.; Imaoka, T.; Seino, Y. Efficacy and safety of tirzepatide monotherapy compared with dulaglutide in Japanese patients with type 2 diabetes (SURPASS J-mono): A double-blind, multicentre, randomised, phase 3 trial. Lancet Diabetes Endocrinol. 2022, 10, 623–633. [Google Scholar] [CrossRef]
- Kadowaki, T.; Chin, R.; Ozeki, A.; Imaoka, T.; Ogawa, Y. Safety and efficacy of tirzepatide as an add-on to single oral antihyperglycaemic medication in patients with type 2 diabetes in Japan (SURPASS J-combo): A multicentre, randomised, open-label, parallel-group, phase 3 trial. Lancet Diabetes Endocrinol. 2022, 10, 634–644. [Google Scholar] [CrossRef]
- Irwin, N.; Hunter, K.; Frizzell, N.; Flatt, P.R. Antidiabetic effects of sub-chronic activation of the GIP receptor alone and in combination with background exendin-4 therapy in high fat fed mice. Regul. Pept. 2009, 153, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Rosato, V.; Masarone, M.; Dallio, M.; Federico, A.; Aglitti, A.; Persico, M. NAFLD and Extra-Hepatic Comorbidities: Current Evidence on a Multi-Organ Metabolic Syndrome. Int. J. Environ. Res. Public Health 2019, 16, 3415. [Google Scholar] [CrossRef] [Green Version]
- Quek, J.; Chan, K.E.; Wong, Z.Y.; Tan, C.; Tan, B.; Lim, W.H.; Tan, D.J.H.; Tang, A.S.P.; Tay, P.; Xiao, J.; et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 8, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Ciardullo, S.; Perseghin, G. Prevalence of elevated liver stiffness in patients with type 1 and type 2 diabetes: A systematic review and meta-analysis. Diabetes Res. Clin. Pract. 2022, 190, 109981. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; de Avila, L.; Paik, J.M.; Srishord, M.; Fukui, N.; Qiu, Y.; Burns, L.; Afendy, A.; Nader, F. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J. Hepatol. 2019, 71, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Hartman, M.L.; Sanyal, A.J.; Loomba, R.; Wilson, J.M.; Nikooienejad, A.; Bray, R.; Karanikas, C.A.; Duffin, K.L.; Robins, D.A.; Haupt, A. Effects of Novel Dual GIP and GLP-1 Receptor Agonist Tirzepatide on Biomarkers of Nonalcoholic Steatohepatitis in Patients with Type 2 Diabetes. Diabetes Care 2020, 43, 1352–1355. [Google Scholar] [CrossRef]
- Gastaldelli, A.; Cusi, K.; Fernández Landó, L.; Bray, R.; Brouwers, B.; Rodríguez, Á. Effect of tirzepatide versus insulin degludec on liver fat content and abdominal adipose tissue in people with type 2 diabetes (SURPASS-3 MRI): A substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet Diabetes Endocrinol. 2022, 10, 393–406. [Google Scholar] [CrossRef]
- Moon, J.S.; Hong, J.H.; Jung, Y.J.; Ferrannini, E.; Nauck, M.A.; Lim, S. SGLT-2 inhibitors and GLP-1 receptor agonists in metabolic dysfunction-associated fatty liver disease. Trends Endocrinol. Metab. 2022, 33, 424–442. [Google Scholar] [CrossRef]
- Ma, Z.; Jin, K.; Yue, M.; Chen, X.; Chen, J. Research Progress on the GIP/GLP-1 Receptor Coagonist Tirzepatide, a Rising Star in Type 2 Diabetes. J. Diabetes Res. 2023, 2023, 5891532. [Google Scholar] [CrossRef]
- Lingvay, I.; Mosenzon, O.; Brown, K.; Cui, X.; O’Neill, C.; Fernández Landó, L.; Patel, H. Systolic blood pressure reduction with tirzepatide in patients with type 2 diabetes: Insights from SURPASS clinical program. Cardiovasc. Diabetol. 2023, 22, 66. [Google Scholar] [CrossRef]
- Sattar, N.; McGuire, D.K.; Pavo, I.; Weerakkody, G.J.; Nishiyama, H.; Wiese, R.J.; Zoungas, S. Tirzepatide cardiovascular event risk assessment: A pre-specified meta-analysis. Nat. Med. 2022, 28, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Vadher, K.; Patel, H.; Mody, R.; Levine, J.A.; Hoog, M.; Cheng, A.Y.; Pantalone, K.M.; Sapin, H. Efficacy of tirzepatide 5, 10 and 15 mg versus semaglutide 2 mg in patients with type 2 diabetes: An adjusted indirect treatment comparison. Diabetes Obes. Metab. 2022, 24, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
- Alkhezi, O.S.; Alahmed, A.A.; Alfayez, O.M.; Alzuman, O.A.; Almutairi, A.R.; Almohammed, O.A. Comparative effectiveness of glucagon-like peptide-1 receptor agonists for the management of obesity in adults without diabetes: A network meta-analysis of randomized clinical trials. Obes. Rev. 2023, 24, e13543. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liarakos, A.L.; Koliaki, C. Novel Dual Incretin Receptor Agonists in the Spectrum of Metabolic Diseases with a Focus on Tirzepatide: Real Game-Changers or Great Expectations? A Narrative Review. Biomedicines 2023, 11, 1875. https://doi.org/10.3390/biomedicines11071875
Liarakos AL, Koliaki C. Novel Dual Incretin Receptor Agonists in the Spectrum of Metabolic Diseases with a Focus on Tirzepatide: Real Game-Changers or Great Expectations? A Narrative Review. Biomedicines. 2023; 11(7):1875. https://doi.org/10.3390/biomedicines11071875
Chicago/Turabian StyleLiarakos, Alexandros Leonidas, and Chrysi Koliaki. 2023. "Novel Dual Incretin Receptor Agonists in the Spectrum of Metabolic Diseases with a Focus on Tirzepatide: Real Game-Changers or Great Expectations? A Narrative Review" Biomedicines 11, no. 7: 1875. https://doi.org/10.3390/biomedicines11071875
APA StyleLiarakos, A. L., & Koliaki, C. (2023). Novel Dual Incretin Receptor Agonists in the Spectrum of Metabolic Diseases with a Focus on Tirzepatide: Real Game-Changers or Great Expectations? A Narrative Review. Biomedicines, 11(7), 1875. https://doi.org/10.3390/biomedicines11071875