Pain Modulation in Chronic Musculoskeletal Disorders: Botulinum Toxin, a Descriptive Analysis
Abstract
:1. Introduction
2. Relevant Literature
2.1. Plantar Fasciitis
2.2. Knee Osteoarthritis
2.3. Painful Knee Arthroplasty
2.4. Joint Contractures
2.5. Chronic Lateral Epicondylitis
2.6. Neuropathic Pain
2.7. Carpal Tunnel Syndrome
2.8. Morton Neuroma
2.9. Myofascial Pain Syndrome
3. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Lew, M.F. Review of the FDA-approved uses of botulinum toxins, including data suggesting efficacy in pain reduction. Clin. J. Pain 2002, 18 (Suppl. S6), S142–S146. [Google Scholar] [CrossRef] [PubMed]
- Chen, S. Clinical uses of botulinum neurotoxins: Current indications, limitations and future developments. Toxins 2012, 4, 913–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babcock, M.S.; Foster, L.; Pasquina, P.; Jabbari, B. Treatment of pain attributed to plantar fasciitis with botulinum toxin A: A short-term, randomized, placebo-controlled, doubleblind study. Am. J. Phys. Med. Rehabil. 2005, 84, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Placzek, R.; Deuretzbacher, G.; Buttgereit, F.; Meiss, A.L. Treatment of chronic plantar fasciitis with botulinum toxin A: An open case series with a 1 year follow up. Ann. Rheum. Dis. 2005, 64, 1659–1661. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wei, S.; Wang, H.; Lieu, F. Ultrasonographic guided botulinum toxin type A treatment for plantar fasciitis; an outcome-based investigation for treating pain and gait changes. J. Rehabil. Med. 2010, 42, 136–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, L.W.; Hong, C.Z.; Wu, E.S.; Hsueh, W.H.; Kao, M.J. Serial Ultrasonographic Findings of Plantar Fasciitis After Treatment with Botulinum Toxin A: A Case Study. Arch. Phys. Med. Rehabil. 2011, 92, 316–319. [Google Scholar] [CrossRef]
- Peterlein, C.D.; Funk, J.F.; Hölscher, A.; Schuh, A.; Placzek, R. Is Botulinum Toxin An Effective for the Treatment of Plantar Fasciitis? Clin. J. Pain 2012, 28, 527–533. [Google Scholar] [CrossRef]
- Díaz-Llopis, I.V.; Gómez-Gallego, D.; Mondéjar-Gómez, F.J.; López-García, A.; Climent-Barberá, J.M.; Rodríguez-Ruiz, C.M. Botulinum toxin type A in chronic plantar fasciitis: Clinical effects one year after injection. Clin. Rehabil. 2013, 27, 681–685. [Google Scholar] [CrossRef]
- Elizondo-Rodríguez, J.; Simental-Mendía, M.; Peña-Martínez, V.; Vilchez-Cavazos, F.; Tamez-Mata, Y.; Acosta-Olivo, C. Comparison of Botulinum Toxin A, Corticosteroid, and Anesthetic Injection for Plantar Fasciitis. Foot Ankle Int. 2021, 42, 305–313. [Google Scholar] [CrossRef]
- Ahmad, J.; Ahmad, S.H.; Jones, K. Treatment of Plantar Fasciitis with Botulinum Toxin. Foot Ankle Int. 2017, 38, 1–7. [Google Scholar] [CrossRef]
- Radovic, P. Treatment of “Plantar Fasciitis”/Plantar Heel Pain Syndrome with Botulinum Toxin- A Novel Injection Paradigm Pilot Study. Foot 2020, 45, 101711. [Google Scholar] [CrossRef] [PubMed]
- Abbasian, M.; Baghbani, S.; Barangi, S.; Fairhurst, P.G.; Ebrahimpour, A.; Krause, F.; Hashemi, M. Outcomes of Ultrasound-Guided Gastrocnemius Injection With Botulinum Toxin for Chronic Plantar Fasciitis. Foot Ankle Int. 2020, 41, 63–68. [Google Scholar] [CrossRef]
- Boon, A.J.; Smith, J.; Dahm, D.L.; Sorenson, E.J.; Larson, D.R.; Fitz-Gibbon, P.D.; Dykstra, D.D.; Singh, J.A. Efficacy of intra-articular botulinum toxin type A in painful knee osteoarthritis: A pilot study. PM R 2010, 2, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Kellgren, J.; Lawrence, J. Radiological assessment of osteoarthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.L.; Lee, S.H.; Lu, S.Y.; Tsai, K.L.; Ho, C.Y.; Lai, H.C. Therapeutic effects of intra-articular botulinum neurotoxin in advanced knee osteoarthritis. J. Chin. Med. Assoc. 2010, 73, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, L.F.; Wu, C.W.; Chou, C.C.; Yang, S.W.; Wu, S.H.; Lin, Y.J.; Hsu, W.C. Effects of Botulinum Toxin Landmark-Guided Intra-articular Injection in Subjects With Knee Osteoarthritis. PM R J. Inj. Funct. Rehabil. 2016, 8, 1127–1135. [Google Scholar] [CrossRef]
- Mendes, J.G.; Natour, J.; Nunes-Tamashiro, J.C.; Toffolo, S.R.; Rosenfeld, A.; Furtado, R.N.V. Comparison between intra-articular Botulinum toxin type A, corticosteroid, and saline in knee osteoarthritis: A randomized controlled trial. Clin. Rehabil. 2019, 33, 1015–1026. [Google Scholar] [CrossRef]
- Bao, X.; Tan, J.W.; Flyzik, M.; Ma, X.C.; Liu, H.; Liu, H.Y. Effect of therapeutic exercise on knee osteoarthritis after intra-articular injection of botulinum toxin type A, hyaluronate or saline: A randomized controlled trial. J. Rehabil. Med. 2018, 50, 534–541. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.F.; Hsu, C.W.; Lin, H.S.; Chou, Y.J.; Chen, J.Y.; Wang, J.L. Efficacy of intraarticular botulinum toxin A and intraarticular hyaluronate plus rehabilitation exercise in patients with unilateral ankle osteoarthritis: A randomized controlled trial. J. Foot Ankle Res. 2014, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.A.; Mahowald, M.L.; Noorbaloochi, S. Intraarticular botulinum toxin A for refractory painful total knee arthroplasty: A randomized controlled trial. J. Rheumatol. 2010, 37, 2377–2386, Erratum in J. Rheumatol. 2011, 38, 1534. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.A. Efficacy of Long-term Effect and Repeat Intraarticular Botulinum toxin in Patients with Painful Total Joint Arthroplasty: A Retrospective Study. Br. J. Med. Med. Res. 2014, 4, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.B.; Shafi, K.A.; Greis, A.C.; Maltenfort, M.G.; Chen, A.F. Decreased flexion contracture after total knee arthroplasty using Botulinum toxin A: A randomized controlled trial. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 3229–3234. [Google Scholar] [CrossRef] [PubMed]
- Vahedi, H.; Khlopas, A.; Szymczuk, V.L.; Peterson, M.K.; Hammouda, A.I.; Conway, J.D. Treatment with posterior capsular release, botulinum toxin injection, hamstring tenotomy, and peroneal nerve decompression improves flexion contracture after total knee arthroplasty: Minimum 2-year follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 2706–2714. [Google Scholar] [CrossRef]
- Berend, M.E.; Smith, A.; Meding, J.B.; Ritter, M.A.; Lynch, T.; Davis, K. Long-term outcome and risk factors of proximal femoral fracture in uncemented and cemented total hip arthroplasty in 2551 hips. J. Arthroplast. 2006, 21, 53. [Google Scholar] [CrossRef] [PubMed]
- Bhave, A.; Marker, D.R.; Seyler, T.M.; Ulrich, S.D.; Plate, J.F.; Mont, M.A. Functional problems and treatment solutions after total hip arthroplasty. J. Arthroplast. 2007, 22, 116–124. [Google Scholar] [CrossRef]
- Bhave, A.; Zywiel, M.G.; Ulrich, S.D.; McGrath, M.S.; Seyler, T.M.; Marker, D.R.; Delanois, R.E.; Mont, M.A. Botulinum toxin type A injections for the management of muscle tightness following total hip arthroplasty: A case series. J. Orthop. Surg. Res. 2009, 4, 34. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.M.; Hui, A.C.F.; Tong, P.Y.; Poon, D.W.F.; Yu, E.; Wong, L.K.S. Treatment of Lateral Epicondylitis with Botulinum Toxin. Ann. Intern. Med. 2005, 143, 793. [Google Scholar] [CrossRef]
- Placzek, R.; Drescher, W.; Deuretzbacher, G.; Hempfing, A.; Meiss, A.L. Treatment of Chronic Radial Epicondylitis with Botulinum Toxin A. J. Bone Jt. Surg. 2007, 89, 255–260. [Google Scholar] [CrossRef]
- Hayton, M.J.; Santini, A.J.A.; Hughes, P.J.; Frostick, S.P.; Trail, I.A.; Stanley, J.K. Botulinum Toxin Injection in the Treatment of Tennis Elbow. J. Bone Jt. Surg. 2005, 87, 503–507. [Google Scholar] [CrossRef]
- Espandar, R.; Heidari, P.; Rasouli, M.R.; Saadat, S.; Farzan, M.; Rostami, M.; Yazdanian, S.; Mortazavi, S.M. Use of anatomic measurement to guide injection of botulinum toxin for the management of chronic lateral epicondylitis: A randomized controlled trial. CMAJ. 2010, 182, 768–773. [Google Scholar] [CrossRef] [Green Version]
- Creuzé, A.; Petit, H.; de Sèze, M. Short-Term Effect of Low-Dose, Electromyography-Guided Botulinum Toxin A Injection in the Treatment of Chronic Lateral Epicondylar Tendinopathy: A Randomized, Double-Blinded Study. J. Bone Jt. Surg. Am. 2018, 100, 818–826. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Day, D.; Jayaram, P. Efficacy of Botulinum Toxin in Treating Lateral Epicondylitis—Does Injection Location Matter? Am. J. Phys. Med. Rehabil. 2020, 99, 1157–1163. [Google Scholar] [CrossRef]
- Ranoux, D.; Attal, N.; Morain, F.; Bouhassira, D. Botulinum toxin type A induces direct analgesic effects in chronic neuropathic pain. Ann. Neurol. 2008, 64, 274–283, Erratum in Ann. Neurol. 2009, 65, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Lian, Y.; Zhang, H.; Chen, Y.; Wu, C.; Li, S.; Zheng, Y.; Wang, Y.; Cheng, W.; Huang, Z. Botulinum Toxin Type A for refractory trigeminal neuralgia in older patients: A better therapeutic effect. J. Pain Res. 2019, 12, 2177–2186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zúñiga, C.; Piedimonte, F.; Díaz, S.; Micheli, F. Acute treatment of trigeminal neuralgia with onabotulinum toxin A. Clin. Neuropharmacol. 2013, 36, 146–150. [Google Scholar] [CrossRef]
- Zhang, H.; Lian, Y.; Ma, Y.; Chen, Y.; He, C.; Xie, N.; Wu, C. Two doses of botulinum toxin type A for the treatment of trigeminal neuralgia: Observation of therapeutic effect from a randomized, double-blind, placebo-controlled trial. J. Headache Pain 2014, 15, 65. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Lian, Y.; Xie, N.; Cheng, X.; Chen, C.; Xu, H.; Zheng, Y. Factors affecting the therapeutic effect of botulinum toxin A on trigeminal neuralgia: A follow-up retrospective study of 152 patients. Exp. Ther. Med. 2019, 18, 3375–3382. [Google Scholar] [CrossRef] [Green Version]
- Türk Börü, Ü.; Duman, A.; Bölük, C.; Coşkun Duman, S.; Taşdemir, M. Botulinum toxin in the treatment of trigeminal neuralgia: 6-Month follow-up. Medicine 2017, 96, e8133. [Google Scholar] [CrossRef]
- Shackleton, T.; Ram, S.; Black, M.; Ryder, J.; Clark, G.T.; Enciso, R. The efficacy of botulinum toxin for the treatment of trigeminal and postherpetic neuralgia: A systematic review with meta-analyses. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 122, 61–71. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Sindrup, S.H.; Jensen, T.S. Recent advances in pharmacological treatment of neuropathic pain. F1000 Med. Rep. 2010, 2, 52. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, M.; Ansari, M.; Basiri, K.; Shaigannejad, V. The effects of intradermal botulinum toxin type a injections on pain symptoms of patients with diabetic neuropathy. J. Res. Med. Sci. 2014, 19, 106–111. [Google Scholar]
- Yuan, R.Y.; Sheu, J.J.; Yu, J.M.; Chen, W.T.; Tseng, I.J.; Chang, H.H.; Hu, C.J. Botulinum toxin for diabetic neuropathic pain: A randomized double-blind crossover trial. Neurology 2009, 72, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Safarpour, D.; Salardini, A.; Richardson, D.; Jabbari, B. Botulinum Toxin A for Treatment of Allodynia of Complex Regional Pain Syndrome: A Pilot Study. Pain Med. 2010, 11, 1411–1414. [Google Scholar] [CrossRef] [PubMed]
- Bellon, G.; Venturin, A.; Masiero, S.; Del Felice, A. Intra-articular botulinum toxin injection in complex regional pain syndrome: Case report and review of the literature. Toxicon 2019, 159, 41–44. [Google Scholar] [CrossRef]
- Kharkar, S.; Ambady, P.; Venkatesh, Y.; Schwartzman, R.J. Intramuscular botulinum toxin in complex regional pain syndrome: Case series and literature review. Pain Physician 2011, 14, 419–424. [Google Scholar] [PubMed]
- Carroll, I.; Clark, J.D.; Mackey, S. Sympathetic block with botulinum toxin to treat complex regional pain syndrome. Ann. Neurol. 2009, 65, 348–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, E.; Cho, C.W.; Kim, H.Y.; Lee, P.B.; Nahm, F.S. Lumbar Sympathetic Block with Botulinum Toxin Type B for Complex Regional Pain Syndrome: A Case Study. Pain Physician 2015, 18, E911–E916. [Google Scholar]
- Tsai, C.P.; Liu, C.Y.; Lin, K.P.; Wang, K.C. Efficacy of botulinum toxin type a in the relief of Carpal tunnel syndrome: A preliminary experience. Clin. Drug Investig. 2006, 26, 511–515. [Google Scholar] [CrossRef]
- Hablas, S.A.; Nada, D.W.; Alashkar, D.S.; Elsharkawy, A.A. The effect of botulinum toxin type A injection in decreasing intratunnel tendon tension in carpal tunnel syndrome: A randomized controlled trial for efficacy and safety. Egypt. Rheumatol. Rehabil. 2019, 46, 299–303. [Google Scholar] [CrossRef]
- Climent, J.M.; Mondéjar-Gómez, F.; Rodríguez-Ruiz, C.; Díaz-Llopis, I.; Gómez-Gallego, D.; Martín-Medina, P. Treatment of Morton Neuroma with Botulinum Toxin A: A Pilot Study. Clin. Drug Investig. 2013, 33, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Ojala, T.; Arokoski, J.P.A.; Partanen, J. The Effect of Small Doses of Botulinum Toxin A on Neck-Shoulder Myofascial Pain Syndrome: A Double-Blind, Randomized, and Controlled Crossover Trial. Clin. J. Pain 2006, 22, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Kamanli, A.; Kaya, A.; Ardicoglu, O.; Ozgocmen, S.; Zengin, F.O.; Bayık, Y. Comparison of lidocaine injection, botulinum toxin injection, and dry needling to trigger points in myofascial pain syndrome. Rheumatol. Int. 2004, 25, 604–611. [Google Scholar] [CrossRef]
- Göbel, H.; Heinze, A.; Reichel, G.; Hefter, H.; Benecke, R. Efficacy and safety of a single botulinum type A toxin complex treatment (Dysport®) for the relief of upper back myofascial pain syndrome: Results from a randomized double-blind placebo-controlled multicentre study. Pain 2006, 125, 82–88. [Google Scholar] [CrossRef]
- Graboski, C.L.; Gray, S.D.; Burnham, R.S. Botulinum toxin A versus bupivacaine trigger point injections for the treatment of myofascial pain syndrome: A randomised double blind crossover study. Pain 2005, 118, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, P.; Boyd, K.; Shipton, M. Surgery for patients with recalcitrant plantar fasciitis: Good results at short-, medium-, and long-term follow-up. Orthop. J. Sports Med. 2014, 2, 2325967114527901. [Google Scholar] [CrossRef]
- Neufeld, S.K.; Cerrato, R. Plantar fasciitis: Evaluation and treatment. J. Am. Acad. Orthop. Surg. 2008, 16, 338–346. [Google Scholar] [CrossRef] [Green Version]
- Nakale, N.T.; Strydom, A.; Saragas, N.P.; Ferrao, P.N.F. Association Between Plantar Fasciitis and Isolated Gastrocnemius Tightness. Foot Ankle Int. 2017, 39, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Fonfria, E.; Maignel, J.; Lezmi, S.; Martin, V.; Splevins, A.; Shubber, S.; Kalinichev, M.; Foster, K.; Picaut, P.; Krupp, J. The Expanding Therapeutic Utility of Botulinum Neurotoxins. Toxins 2018, 10, 208. [Google Scholar] [CrossRef] [Green Version]
- Najafi, S.; Sanati, E.; Khademi, M.; Abdorrazaghi, F.; Mofrad, R.K.; Rezasoltani, Z. Intra-articular botulinum toxin type A for treatment of knee osteoarthritis: Clinical trial. Toxicon 2019, 165, 69–77. [Google Scholar] [CrossRef]
- Zhai, S.; Huang, B.; Yu, K. The efficacy and safety of Botulinum Toxin Type A in painful knee osteoarthritis: A systematic review and meta-analysis. J. Int. Med. Res. 2020, 48, 300060519895868. [Google Scholar] [CrossRef] [Green Version]
- Knobe, K.; Berntorp, E. Haemophilia and joint disease: Pathophysiology, evaluation, and management. J. Comorb. 2011, 1, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daffunchio, C.; Caviglia, H.; Nassif, J.; Morettil, N.; Galatro, G. Knee flexion contracture treated with botulinum toxin type A in patients with haemophilia (PWH). Haemophilia 2015, 22, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Cogné, M.; Creuzé, A.; Petit, H.; Delleci, C.; Dehail, P.; de Seze, M. Number of botulinum toxin injections needed to stop requests for treatment for chronic lateral epicondylar tendinopathy. A 1-year follow-up study. Ann. Phys. Rehabil. Med. 2019, 62, 336–341. [Google Scholar] [CrossRef]
- Lin, Y.C.; Wu, W.T.; Hsu, Y.C.; Han, D.S.; Chang, K.V. Comparative effectiveness of botulinum toxin versus non-surgical treatments for treating lateral epicondylitis: A systematic review and meta-analysis. Clin. Rehabil. 2017, 32, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Mackey, S.; Hui, H.; Xong, D.; Zhang, Q.; Zhang, D. Subcutaneous injection of botulinum toxin a is beneficial in postherpetic neuralgia. Pain Med. 2010, 11, 1827–1833. [Google Scholar] [CrossRef] [Green Version]
- Apalla, Z.; Sotiriou, E.; Lallas, A.; Lazaridou, E.; Ioannides, D. Botulinum Toxin A in Postherpetic Neuralgia. Clin. J. Pain 2013, 29, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lee, C.J.; Choi, E.; Lee, P.B.; Lee, H.J.; Nahm, F.S. Lumbar Sympathetic Block with Botulinum Toxin Type A and Type B for the Complex Regional Pain Syndrome. Toxins 2018, 10, 164. [Google Scholar] [CrossRef] [Green Version]
- De Andrés, J.; Adsuara, V.M.; Palmisani, S.; Villanueva, V.; López-Alarcón, M.D. A double-blind, controlled, randomized trial to evaluate the efficacy of botulinum toxin for the treatment of lumbar myofascial pain in humans. Reg. Anesth. Pain Med. 2010, 35, 255–260. [Google Scholar] [CrossRef]
- Porta, M. A comparative trial of botulinum toxin type A and methylprednisolone for the treatment of myofascial pain syndrome and pain from chronic muscle spasm. Pain 2000, 85, 101–105. [Google Scholar] [CrossRef]
Disease | Administration | Number of Studies |
---|---|---|
Plantar fasciitis | Intrafascial Intramuscular (short plantar muscles) Intramuscular (medial head gastrocnemius) | 10 |
Knee osteoarthritis | Intra-articular | 6 |
Painful knee arthroplasty | Intra-articular Intramuscular (for contractures) | 3 |
Painful muscular contractures | Intramuscular | 3 |
Chronic lateral epicondylitis | Intratendinous Intramuscular | 6 |
Neuropathic pain | Intradermal, subcutaneous/submucosal Perinervous Sympathetic block | 16 |
Carpal tunnel syndrome | Intracannalar Intramuscular | 1 |
Morton neuroma | Perineural | 1 |
Myofascial pain syndrome | Trigger point injection | 6 |
Author | Type of Study | Disease | Methodology of Injection | Timing | Outcomes | Results |
---|---|---|---|---|---|---|
Babcock, 2005 [3] | Randomized, double-blind, placebo-controlled, 43 pts | Plantar fasciitis, refractory, | Intrafascial Babcock method (Botox) | 3 weeks, 8 weeks | Pain Function (Maryland Foot Score) | Significant improvement versus placebo |
Placzek, 2006 [4] | Open case series, 9 pts | Plantar fasciitis, refractory | Intrafascial 200 UI BoNT/A (Dysport) | 2, 6, 10, 14 weeks | Pain | Significant improvement |
Huang, 2010 [5] | Randomized, double-blind, 50 pts | Plantar fasciitis, refractory | Intrafascial 50 UI BoNT/A (Botox) Ultrasound guidance | 3 weeks, 3 months | Pain, Thickness of the plantar fascia, Walking | Reduced pain, Reduced fascia thickness, Walking parameters improved Significantly. |
Chou, 2011 [6] | Case report | Plantar fasciitis, refractory | Intrafascial Babcock method | 1, 3, 5, and 7 weeks | Pain, Thickness of the plantar fascia (ultrasound) | Pain decreased, Thickness of the fascia decreased significantly. |
Peterlein, 2012 [7] | Randomized, double-blind, placebo-controlled, 40 pts | Plantar fasciitis, refractory | Intrafascial 200 UI BoNT/A (Dysport) | 2, 6, 10, 14, 18 weeks | Pain | Pain decreased but not significantly compared with placebo |
Diaz-Llopis, 2013 [8] | Prospective, observational, 24 pts | Plantar fasciitis | Intrafascial Babcock method | 6 months, 12 months | Pain Function (FHSQ) | Significant improvement |
Elizondo-Rodriguez (2021) [9] | Randomized, controlled, double-blind, 78 pts | Plantar fasciitis, refractory (BoNT/A, anesthetic, corticosteroid) | Intrafascial 200 UI (Dysport)/anesthetic (5 mL ropivacaine)/1 mL betamethasone | 2 weeks, 1, 3, and 6 months | Pain Function Plantar fascia thickness | All groups improved significantly, but no difference between them |
Ahmad, 2017 [10] | Prospective, randomized, placebo-controlled, 89 pts | Plantar fasciitis, refractory | Intramuscular Flexor digitorum brevis 100 UI inobotulinum (Xeomin) | 6, 12 weeks, and 6, 12 months | Pain, Function (FAAM) | Pain reduction and Functional improvement Significant |
Radovic, 2020 [11] | Case series, 4 pts | Plantar fasciitis, refractory | Intramuscular Abductor hallucis 50 UI Quadratus plantae 50 UI (Dysport) | 1, 3, 6, 12, 26 weeks | Pain Function (FAAM) | Pain reduction, Functional improvement |
Abbasian, 2019 [12] | Prospective, randomized, placebo-controlled, double-blind, 32 pts | Plantar fasciitis, refractory | Intramuscular Medial gastrocnemius 70 UI | 1, 3, 6, and 12 months | Pain Function | Pain reduction, Functional improvement Significant |
Boon, 2010 [13] | Prospective, randomized, double-blind, 60 pts | Knee osteoarthritis grade II, III, (CS, low dose BoNT/A, high-dose BoNT/A) | Intraarticular Low-dose 100 UI High-dose 200 UI | 8 weeks, 6 months | Pain Function (WOMAC) | Pain improved significantly with low dose and CS |
Chou, 2010 [14] | Prospective, observational, 24 pts | Knee osteoarthritis grade III, IV | Intraarticular 100 UI BoNT/A (Botox), 2 injections 3 months apart | 3, 6 months | Pain Function (WOMAC) | Pain relief, Functional improvement |
Hsieh, 2016 [15] | Prospective, randomized, controlled, 46 pts | Knee osteoarthritis grade II, III | Intraarticular 100 UI BoNT/A | One week, 6 months | Pain Function (WOMAC) | Pain relief, Functional improvement in BoNT/A group versus control |
Najafi, 2019 [16] | Prospective, single group, 46 pts | Knee osteoarthritis, grade III, IV | Intraarticular 250 UI BoNT/A (Dysport) | 4 weeks | Pain Function (KOOS) | Pain relief, Functional improvement |
Mendes, 2019 [17] | Prospective, randomized, controlled, 105 pts | Knee osteoarthritis, grade II, III, 3 groups (BoNT/A 100 UI, 200 UI or CS) | Intraarticular 100 UI BoNT/A (Botox), 40 mg triamcinolone, saline | 4 weeks, 12 weeks | Pain Function (WOMAC) | No benefits in the BoNT/A group, CS group improved pain and function |
Bao, 2018 [18] | Prospective, single-blinded, randomized, controlled, 60 pts | Knee osteoarthritis, grade II, III, IV 3 groups (HA, BoNT/A, saline) + exercise | Intraarticular 100 UI BoNT/A (Botox) | 8 weeks | Pain Function (WOMAC) Quality of life | HA and BoNT/A followed by exercise effective in reducing pain and disability. BoNT/A more effective |
Singh, 2010 [19] | Randomized, placebo-controlled, 54 pts | Painful knee arthroplasty | Intraarticular 100 UI BoNT/A (Botox) | 2 months | Pain Function (WOMAC) | Pain reduction, Functional improvement significant |
Singh, 2014 [20] | Retrospective, 11 pts | Painful knee arthroplasty | Intraarticular 100 UI BoNT/A (Botox) | 28 months | Pain Function (WOMAC) | Pain reduction, Functional improvement |
Smith, 2016 [21] | Randomized, double-blind, placebo-controlled, 14 pts | Flexion contracture knee arthroplasty | Intramuscular (hamstrings) 100 UI BoNT/A (Botox) | 1, 6, 12 months | Extension ROM | Extension improved significantly in the BoNT/A group |
Vahedi, 2020 [22] | Retrospective, 19 pts | Flexion contracture knee arthroplasty | Intramuscular (hamstrings, gastrocnemius) | 31 months | Knee extension | Extension improved |
Daffunchio, 2016 [23] | Prospective, 17 pts | Flexion contracture, hemophilia | Intramuscular (calf and hamstrings muscles, fascia lata) 100 UI BoNT/A | 1, 3, 6, and 12 months | Knee ROM | ROM increased significantly |
Bhave, 2009 [24] | Case series, 10 pts | Hip flexion contracture, arthroplasty | Intramuscular (adductor magnus, brevis, tensor fascia lata, rectus femoris) 100 UI BoNT/A | 12 months | Hip ROM Function (Harris hip scores) | ROM increased Functional improvement |
Wong, 2005 [25] | Randomized, double-blind, placebo-controlled, 60 pts | Chronic lateral epicondylitis | Intramuscular 60 UI BoNT/A (Dysport) | 4, 12 weeks | Pain Function (grip strength) | Pain relief significant |
Placzel, 2007 [26] | Randomized, placebo-controlled, double-blind, 130 pts | Chronic lateral epicondylitis | Intramuscular 60 UI BoNT/A (Dysport) | 2, 6, 12, 18 weeks | Pain Function (grip strength) | Pain relief, Functional improvement significant |
Hayton, 2005 [27] | Randomized, placebo-controlled, double-blind, 40 pts | Chronic lateral epicondylitis | Intramuscular 50 UI BoNT/A (Botox) | 3 months | Pain Function (grip strength) | No significant difference between groups |
Espandar, 2010 [28] | Randomized, placebo-controlled, double-blind, 48 pts | Chronic lateral epicondylitis | Intramuscular 60 UI BoNT/A | 4, 8, 16 weeks | Pain Function (grip strength) | Pain relief, Functional improvement significant |
Creuze, 2018, [29] | Randomized, placebo-controlled, double-blind, 67 pts | Chronic lateral epicondylitis | Intramuscular (ECRB) 40 UI BoNT/A (Dysport) | 1, 3 months | Pain | Pain reduction significant |
Cogne, 2018, [30] | Open study, prospective, 50 pts | Chronic lateral epicondylitis | Intramuscular (ECRB) 40 UI BoNT/A (Dysport) | 3, 6, 9, 12 months | Pain | After 2 injections, 90% pts reported significant pain reduction |
Ranoux, 2008 [31] | Randomized, placebo-controlled, double-blind, 29 pts | Postherpetic and posttraumatic neuralgia | Intradermally 100 UI BoNT/A (Botox) | 4, 12, 24 weeks | Pain Allodynia | Long-lasting and significant reduction in pain |
Wu, 2019 [32] | Retrospective cohort, 104 pts | Trigeminal neuralgia | Intradermally, 100 UI BoNT/A | Every 2 months, up to 12 months | Pain | Pain reduction significant |
Zuniga, 2008 [33] | Case series, 12 pts | Trigeminal neuralgia | Subcutaneous, 20–50 UI BoNT/A (Botox) | 8 weeks | Pain | Pain reduction significant |
Zhang, 2014 [34] | Randomized, placebo-controlled, double-blind, 84 pts | Trigeminal neuralgia | Intradermally, 25 or 75 UI BoNT/A | 8 weeks | Pain | Pain reduction significant, Both doses have similar efficacies |
Zhang, 2019, [35] | Retrospective, 152 pts | Trigeminal neuralgia | Intradermally, 50, 70, and over 70 UI BoNT/A | Up to 28 months | Pain | Pain reduction at 2 weeks, persistent at 28 months |
Turk Boru, 2017 [36] | Prospective, observational, 27 pts | Trigeminal neuralgia | Perineural 50 UI BoNT/A per root (Botox) | 2, 6 months | Pain | Pain and attack frequency reduction significant |
Xiao, 2010 [37] | Prospective, randomized, placebo-controlled, double-blind, 60 pts | Postherpetic neuralgia | Subcutaneous 100 UI BoNT/A versus lidocaine versus saline | 3 months | Pain, allodynia | Significant pain reduction at 7 days, persistent at 3 months |
Apalla, 2013 [38] | Prospective, randomized, placebo-controlled, double-blind, 30 pts | Postherpetic neuralgia | Subcutaneous 100 UI BoNT/A | 2, 4, 6, 8, 10, 12 weeks | Pain, Sleep quality | Pain reduction, Sleep improvement significant |
Ghasemi, 2014 [39] | Prospective, randomized, placebo-controlled, double-blind, 40 pts | Diabetic neuropathy in lower limbs | Intradermal 100 UI BoNT/A (Botox) | 3 weeks | Neuropathy pain scale | Improvement of all sensations except cold |
Yuan, 2009 [40] | Prospective, randomized, placebo-controlled, double-blind, 18 pts | Diabetic neuropathy in lower limbs | Intradermal 100 UI BoNT/A (Botox) | 4, 8, 12 weeks | Pain | Significant pain reduction at all time points |
Safarpour, 2010 [41] | Pilot study, 14 pts | Complex regional pain syndrome | Indermal and subcutaneous, 40–200 UI BoNT/A | 3 weeks, 2 months | Pain | Failure of pain reduction |
Bellon, 2019 [42] | Case report | Complex regional pain syndrome, upper arm | Intraarticular 100 UI BoNT/A (Xeomin) | 1 and 4 months | Pain | Pain reduction |
Kharkar, 2011 [43] | Case series, 37 pts | Complex regional pain syndrome upper girdle | Intramuscular 100 UI BoNT/A | 4 weeks | Pain | Pain reduction |
Carroll, 2009 [44] | Prospective, randomized, double-blind, pilot, 9 pts | Complex regional pain syndrome, lower limb | Lumbar sympathetic block 75 UI BoNT/A | 1 month | Pain | Pain reduction |
Choi, 2015 [45] | Case report, 2 pts | Complex regional pain syndrome, lower limb | Lumbar sympathetic block 5000 UI BoNT/B | 1 month | Pain, Skin color | Pain reduction, skin color normal |
Lee, 2018 [46] | Retrospective, comparative, 18 pts | Complex regional pain syndrome, lower limbs | Lumbar sympathetic block, 100 UI BoNT/A versus 5000 UI BoNT/B | 1 week | Pain | Both groups had pain relief |
Tsai, 2006 [47] | Prospective, open-label, pilot study, 5 pts | Carpal tunnel syndrome | Intracannalar 60 UI BoNT/A | 3 months | Pain, electrophysiological studies | Pain relief, electrophysiological parameters improvement |
Climent, 2013 [48] | Prospective, pilot study, 17 pts | Unresponsive Morton neuroma | Perineural, 50 UI BoNT/A | 3 months | Pain Function (FHSQ) | Pain relief at rest and walking, at all time points |
Ojala, 2006 [49] | Prospective, double-blind, placebo-controlled, 31 pts | Myofascial syndrome | Trigger point injection, a total of 15–50 UI BoNT/A/session, 2 sessions 4 weeks apart | 4, 8 weeks | Pain | No difference between groups |
Kamanli, 2005 [50] | Prospective, single-blind, 87 pts | Myofascial syndrome | Trigger point injection, 10–20 UI versus lidocaine versus dry needling | 1 month | Pain Subjective complaints | No statistical difference between groups |
Gobel, 2006 [51] | Randomized, double-blind, placebo-controlled, 145 pts | Myofascial syndrome | Trigger point injection, a total of 40 UI BoNT/A (Dysport) | 12 weeks | Pain | Pain relief significant |
Graboski, 2005 [52] | Randomized, double-blind, 18 pts | Myofascial syndrome | Trigger point injection, 25 UI BoNT/A per point, maximum 8 points/pt versus bupivacaine | 10 weeks | Pain | Both groups improved significantly, without a difference |
De Andres, 2010 [53] | Prospective, randomized, double-blind, controlled, 27 pts | Myofascial syndrome iliopsoas and/or quadratus lumborum | Intramuscular 50 UI BoNT/A/muscle versus bupivacaina | 15, 30, 90 days | Pain | Both groups improved significantly, without a difference |
Porta, 2000 [54] | Randomized, comparative, placebo-controlled, double-blind, 40 pts | Myofascial syndrome | Intramuscular 80–150 UI/muscle BoNT/A versus CS | 30, 60 days | Pain Spasms | BoNT group improved pain and spasms significantly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poenaru, D.; Sandulescu, M.I.; Cinteza, D. Pain Modulation in Chronic Musculoskeletal Disorders: Botulinum Toxin, a Descriptive Analysis. Biomedicines 2023, 11, 1888. https://doi.org/10.3390/biomedicines11071888
Poenaru D, Sandulescu MI, Cinteza D. Pain Modulation in Chronic Musculoskeletal Disorders: Botulinum Toxin, a Descriptive Analysis. Biomedicines. 2023; 11(7):1888. https://doi.org/10.3390/biomedicines11071888
Chicago/Turabian StylePoenaru, Daniela, Miruna Ioana Sandulescu, and Delia Cinteza. 2023. "Pain Modulation in Chronic Musculoskeletal Disorders: Botulinum Toxin, a Descriptive Analysis" Biomedicines 11, no. 7: 1888. https://doi.org/10.3390/biomedicines11071888
APA StylePoenaru, D., Sandulescu, M. I., & Cinteza, D. (2023). Pain Modulation in Chronic Musculoskeletal Disorders: Botulinum Toxin, a Descriptive Analysis. Biomedicines, 11(7), 1888. https://doi.org/10.3390/biomedicines11071888