Relationship between Macrophages and Tissue Microenvironments in Diabetic Kidneys
Abstract
:1. Introduction
2. Macrophage Polarization in DN
3. Recent Novel Findings from Single-Cell RNA Sequencing
4. Increase of Macrophages in Human DN
5. Interactions between Macrophages and Intrinsic Renal Cells in DN
5.1. Glomerular Cells
5.2. Tubular Epithelial Cells
5.3. Extracellular Vesicles
6. Potential Therapeutics for DN by Targeting Macrophages
6.1. Depletion of Macrophages
6.2. Targeting the Tissue Microenvironment to Modulate Macrophage Infiltration and Function
6.3. Drugs Regulate Polarization of Macrophages
6.4. Increase Autophagy of Macrophages
6.5. MSCs
6.6. Limitations
7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Molitch, M.E.; Adler, A.I.; Flyvbjerg, A.; Nelson, R.G.; So, W.-Y.; Wanner, C.; Kasiske, B.L.; Wheeler, D.C.; de Zeeuw, D.; Mogensen, C.E. Diabetic kidney disease: A clinical update from Kidney Disease: Improving Global Outcomes. Kidney Int. 2015, 87, 20–30. [Google Scholar] [CrossRef]
- Hasegawa, G.; Nakano, K.; Sawada, M.; Uno, K.; Shibayama, Y.; Ienaga, K.; Kondo, M. Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy. Kidney Int. 1991, 40, 1007–1012. [Google Scholar] [CrossRef] [Green Version]
- Bonacina, F.; Baragetti, A.; Catapano, A.L.; Norata, G.D. The Interconnection Between Immuno-Metabolism, Diabetes, and CKD. Curr. Diabetes Rep. 2019, 19, 21. [Google Scholar] [CrossRef]
- Coca, S.G.; Nadkarni, G.N.; Huang, Y.; Moledina, D.G.; Rao, V.; Zhang, J.; Ferket, B.; Crowley, S.T.; Fried, L.F.; Parikh, C.R. Plasma Biomarkers and Kidney Function Decline in Early and Established Diabetic Kidney Disease. J. Am. Soc. Nephrol. 2017, 28, 2786–2793. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Akat, K.M.; Sun, Z.; Zhang, W.; Schlondorff, D.; Liu, Z.; Tuschl, T.; Lee, K.; He, J.C. Single-Cell RNA Profiling of Glomerular Cells Shows Dynamic Changes in Experimental Diabetic Kidney Disease. J. Am. Soc. Nephrol. JASN 2019, 30, 533–545. [Google Scholar] [CrossRef] [Green Version]
- Klessens, C.Q.F.; Zandbergen, M.; Wolterbeek, R.; Bruijn, J.A.; Rabelink, T.J.; Bajema, I.M.; Ijpelaar, D.H.T. Macrophages in diabetic nephropathy in patients with type 2 diabetes. Nephrol. Dial. Transplant. 2017, 32, 1322–1329. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.C.W.; Yiu, W.H. Innate immunity in diabetic kidney disease. Nat. Rev. Nephrol. 2020, 16, 206–222. [Google Scholar] [CrossRef]
- Tuttle, K.R.; Brosius, F.C.; Adler, S.G.; Kretzler, M.; Mehta, R.L.; Tumlin, J.A.; Tanaka, Y.; Haneda, M.; Liu, J.; Silk, M.E.; et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: Results from a Phase 2 randomized controlled clinical trial. Nephrol. Dial. Transplant. 2018, 33, 1950–1959. [Google Scholar] [CrossRef] [Green Version]
- Tesch, G.H. Role of macrophages in complications of type 2 diabetes. Clin. Exp. Pharmacol. Physiol. 2007, 34, 1016–1019. [Google Scholar] [CrossRef]
- Li, H.-D.; You, Y.-K.; Shao, B.-Y.; Wu, W.-F.; Wang, Y.-F.; Guo, J.-B.; Meng, X.-M.; Chen, H. Roles and crosstalks of macrophages in diabetic nephropathy. Front. Immunol. 2022, 13, 1015142. [Google Scholar] [CrossRef]
- Williams, J.W.; Giannarelli, C.; Rahman, A.; Randolph, G.J.; Kovacic, J.C. Macrophage Biology, Classification, and Phenotype in Cardiovascular Disease: JACC Macrophage in CVD Series (Part 1). J. Am. Coll. Cardiol. 2018, 72, 2166–2180. [Google Scholar] [CrossRef]
- Munro, D.A.D.; Hughes, J. The Origins and Functions of Tissue-Resident Macrophages in Kidney Development. Front. Physiol. 2017, 8, 837. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Huen, S.; Nishio, H.; Nishio, S.; Lee, H.K.; Choi, B.-S.; Ruhrberg, C.; Cantley, L.G. Distinct macrophage phenotypes contribute to kidney injury and repair. J. Am. Soc. Nephrol. JASN 2011, 22, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Harris, D.C.H.; Wang, Y. Macrophages in kidney injury, inflammation, and fibrosis. Physiology 2015, 30, 183–194. [Google Scholar] [CrossRef]
- Galli, S.J.; Borregaard, N.; Wynn, T.A. Phenotypic and functional plasticity of cells of innate immunity: Macrophages, mast cells and neutrophils. Nat. Immunol. 2011, 12, 1035–1044. [Google Scholar] [CrossRef] [Green Version]
- Rosin, D.L.; Okusa, M.D. Dangers within: DAMP responses to damage and cell death in kidney disease. J. Am. Soc. Nephrol. JASN 2011, 22, 416–425. [Google Scholar] [CrossRef] [Green Version]
- Engel, J.E.; Chade, A.R. Macrophage polarization in chronic kidney disease: A balancing act between renal recovery and decline? Am. J. Physiol. Ren. Physiol. 2019, 317, F1409–F1413. [Google Scholar] [CrossRef]
- Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 2003, 3, 23–35. [Google Scholar] [CrossRef]
- Calle, P.; Hotter, G. Macrophage Phenotype and Fibrosis in Diabetic Nephropathy. Int. J. Mol. Sci. 2020, 21, 2806. [Google Scholar] [CrossRef] [Green Version]
- Wen, Y.; Yan, H.-R.; Wang, B.; Liu, B.-C. Macrophage Heterogeneity in Kidney Injury and Fibrosis. Front. Immunol. 2021, 12, 681748. [Google Scholar] [CrossRef]
- Feng, Y.; Ren, J.; Gui, Y.; Wei, W.; Shu, B.; Lu, Q.; Xue, X.; Sun, X.; He, W.; Yang, J.; et al. Wnt/β-Catenin-Promoted Macrophage Alternative Activation Contributes to Kidney Fibrosis. J. Am. Soc. Nephrol. JASN 2018, 29, 182–193. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Xu, X.-H.; Jin, L. Macrophage Polarization in Physiological and Pathological Pregnancy. Front. Immunol. 2019, 10, 792. [Google Scholar] [CrossRef]
- Sun, H.; Tian, J.; Xian, W.; Xie, T.; Yang, X. Pentraxin-3 Attenuates Renal Damage in Diabetic Nephropathy by Promoting M2 Macrophage Differentiation. Inflammation 2015, 38, 1739–1747. [Google Scholar] [CrossRef]
- Conway, B.R.; O’sullivan, E.D.; Cairns, C.; O’sullivan, J.; Simpson, D.J.; Salzano, A.; Connor, K.; Ding, P.; Humphries, D.; Stewart, K.; et al. Kidney Single-Cell Atlas Reveals Myeloid Heterogeneity in Progression and Regression of Kidney Disease. J. Am. Soc. Nephrol. JASN 2020, 31, 2833–2854. [Google Scholar] [CrossRef]
- Fu, J.; Sun, Z.; Wang, X.; Zhang, T.; Yuan, W.; Salem, F.; Yu, S.M.-W.; Zhang, W.; Lee, K.; He, J.C. The single-cell landscape of kidney immune cells reveals transcriptional heterogeneity in early diabetic kidney disease. Kidney Int. 2022, 102, 1291–1304. [Google Scholar] [CrossRef]
- Fan, Y.; Yi, Z.; D’agati, V.D.; Sun, Z.; Zhong, F.; Zhang, W.; Wen, J.; Zhou, T.; Li, Z.; He, L.; et al. Comparison of Kidney Transcriptomic Profiles of Early and Advanced Diabetic Nephropathy Reveals Potential New Mechanisms for Disease Progression. Diabetes 2019, 68, 2301–2314. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, A.; Vernon, K.; Zhou, Y.; Marshall, J.; Alimova, M.; Zhang, F.; Slyper, M.; Waldman, J.; Montesinos, M.S.; Dionne, D.; et al. Obesity-instructed TREM2high macrophages identified by comparative analysis of diabetic mouse and human kidney at single cell resolution. bioRxiv 2021. [Google Scholar] [CrossRef]
- Ma, T.; Li, X.; Zhu, Y.; Yu, S.; Liu, T.; Zhang, X.; Chen, D.; Du, S.; Chen, T.; Chen, S.; et al. Excessive Activation of Notch Signaling in Macrophages Promote Kidney Inflammation, Fibrosis, and Necroptosis. Front. Immunol. 2022, 13, 835879. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Zhao, Y. Macrophage phenotype and its relationship with renal function in human diabetic nephropathy. PLoS ONE 2019, 14, e0221991. [Google Scholar] [CrossRef]
- Moratal, C.; Laurain, A.; Naïmi, M.; Florin, T.; Esnault, V.; Neels, J.G.; Chevalier, N.; Chinetti, G.; Favre, G. Regulation of Monocytes/Macrophages by the Renin-Angiotensin System in Diabetic Nephropathy: State of the Art and Results of a Pilot Study. Int. J. Mol. Sci. 2021, 22, 6009. [Google Scholar] [CrossRef]
- You, H.; Gao, T.; Cooper, T.K.; Reeves, W.; Awad, A.S. Macrophages directly mediate diabetic renal injury. Am. J. Physiol. Ren. Physiol. 2013, 305, F1719–F1727. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Song, Z.; Zhou, M.; Yang, Y.; Zhao, Y.; Liu, B.; Zhang, X. Infiltrating macrophages in diabetic nephropathy promote podocytes apoptosis via TNF-α-ROS-p38MAPK pathway. Oncotarget 2017, 8, 53276–53287. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Xie, T.; Li, D.; Du, X.; Wang, T.; Li, C.; Song, X.; Xu, L.; Yi, F.; Liang, X.; et al. Tim-3 aggravates podocyte injury in diabetic nephropathy by promoting macrophage activation via the NF-κB/TNF-α pathway. Mol. Metab. 2019, 23, 24–36. [Google Scholar] [CrossRef]
- Ding, X.; Jing, N.; Shen, A.; Guo, F.; Song, Y.; Pan, M.; Ma, X.; Zhao, L.; Zhang, H.; Wu, L.; et al. MiR-21-5p in macrophage-derived extracellular vesicles affects podocyte pyroptosis in diabetic nephropathy by regulating A20. J. Endocrinol. Investig. 2021, 44, 1175–1184. [Google Scholar] [CrossRef]
- Zhang, X.-L.; Guo, Y.-F.; Song, Z.-X.; Zhou, M. Vitamin D prevents podocyte injury via regulation of macrophage M1/M2 phenotype in diabetic nephropathy rats. Endocrinology 2014, 155, 4939–4950. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.-M.; Wang, J.; Xu, X.-X.; Li, Y.-Y.; Wu, Y.-G. FK506 reduces albuminuria through improving podocyte nephrin and podocin expression in diabetic rats. Inflamm. Res. 2016, 65, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Chen, Y.; Wang, H.; Zhang, W.; He, L.; Wu, J.; Liu, Y. Overexpression of Sirt6 promotes M2 macrophage transformation, alleviating renal injury in diabetic nephropathy. Int. J. Oncol. 2019, 55, 103–115. [Google Scholar] [CrossRef]
- Sato, W.; Kosugi, T.; Zhang, L.; Roncal, C.A.; Heinig, M.; Campbell-Thompson, M.; Yuzawa, Y.; Atkinson, M.A.; Grant, M.B.; Croker, B.P.; et al. The pivotal role of VEGF on glomerular macrophage infiltration in advanced diabetic nephropathy. Lab. Investig. 2008, 88, 949–961. [Google Scholar] [CrossRef] [Green Version]
- Okada, S.; Shikata, K.; Matsuda, M.; Ogawa, D.; Usui, H.; Kido, Y.; Nagase, R.; Wada, J.; Shikata, Y.; Makino, H. Intercellular adhesion molecule-1-deficient mice are resistant against renal injury after induction of diabetes. Diabetes 2003, 52, 2586–2593. [Google Scholar] [CrossRef] [Green Version]
- Seron, D.; Cameron, J.S.; Haskard, D.O. Expression of VCAM-1 in the normal and diseased kidney. Nephrol. Dial. Transplant. 1991, 6, 917–922. [Google Scholar] [CrossRef]
- Kodera, R.; Shikata, K.; Kataoka, H.U.; Takatsuka, T.; Miyamoto, S.; Sasaki, M.; Kajitani, N.; Nishishita, S.; Sarai, K.; Hirota, D.; et al. Glucagon-like peptide-1 receptor agonist ameliorates renal injury through its anti-inflammatory action without lowering blood glucose level in a rat model of type 1 diabetes. Diabetologia 2011, 54, 965–978. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Cheng, Y.; Li, B.; Xue, J.; Yin, Y.; Gao, J.; Gong, Z.; Wang, J.; Mu, Y. M1 macrophages accelerate renal glomerular endothelial cell senescence through reactive oxygen species accumulation in streptozotocin-induced diabetic mice. Int. Immunopharmacol. 2020, 81, 106294. [Google Scholar] [CrossRef]
- Feng, X.; Gao, X.; Wang, S.; Huang, M.; Sun, Z.; Dong, H.; Yu, H.; Wang, G. PPAR-α Agonist Fenofibrate Prevented Diabetic Nephropathy by Inhibiting M1 Macrophages via Improving Endothelial Cell Function in db/db Mice. Front. Med. 2021, 8, 652558. [Google Scholar] [CrossRef]
- Patidar, K.; Versypt, A.N.F. Logic-Based Modeling of Inflammatory Macrophage Crosstalk with Glomerular Endothelial Cells in Diabetic Kidney Disease. bioRxiv 2023. [Google Scholar] [CrossRef]
- Yang, W.-X.; Liu, Y.; Zhang, S.-M.; Wang, H.-F.; Liu, Y.-F.; Liu, J.-L.; Li, X.-H.; Zeng, M.-R.; Han, Y.-Z.; Liu, F.-Y.; et al. Epac activation ameliorates tubulointerstitial inflammation in diabetic nephropathy. Acta Pharmacol. Sin. 2022, 43, 659–671. [Google Scholar] [CrossRef]
- Sasai, Y.; Iwakawa, K.; Yanagida, K.; Shen, Y.; Hosono, T.; Ariga, T.; Seki, T. Advanced glycation endproducts stimulate renal epithelial cells to release chemokines that recruit macrophages, leading to renal fibrosis. Biosci. Biotechnol. Biochem. 2012, 76, 1741–1745. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Guo, Z.; Dong, J.; Sheng, S.; Wang, Y.; Yu, L.; Wang, H.; Tang, L. miR-374a Regulates Inflammatory Response in Diabetic Nephropathy by Targeting MCP-1 Expression. Front. Pharmacol. 2018, 9, 900. [Google Scholar] [CrossRef] [Green Version]
- Tachibana, H.; Ogawa, D.; Matsushita, Y.; Bruemmer, D.; Wada, J.; Teshigawara, S.; Eguchi, J.; Sato-Horiguchi, C.; Uchida, H.A.; Shikata, K.; et al. Activation of liver X receptor inhibits osteopontin and ameliorates diabetic nephropathy. J. Am. Soc. Nephrol. JASN 2012, 23, 1835–1846. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Yang, N.; Zhang, L.; Tan, H.; Huang, B.; Liang, Y.; Chen, M.; Yu, X. Increased expression of toll-like receptor 2 in rat diabetic nephropathy. Am. J. Nephrol. 2010, 32, 179–186. [Google Scholar] [CrossRef]
- Lin, M.; Yiu, W.H.; Wu, H.J.; Chan, L.Y.; Leung, J.C.; Au, W.S.; Chan, K.W.; Lai, K.N.; Tang, S.C. Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J. Am. Soc. Nephrol. JASN 2012, 23, 86–102. [Google Scholar] [CrossRef] [Green Version]
- Veiras, L.C.; Bernstein, E.A.; Cao, D.; Okwan-Duodu, D.; Khan, Z.; Gibb, D.R.; Roach, A.; Skelton, R.; Williams, R.M.; Bernstein, K.E.; et al. Tubular IL-1β Induces Salt Sensitivity in Diabetes by Activating Renal Macrophages. Circ. Res. 2022, 131, 59–73. [Google Scholar] [CrossRef]
- Huang, H.; Liu, H.; Tang, J.; Xu, W.; Gan, H.; Fan, Q.; Zhang, W. M2 macrophage-derived exosomal miR-25-3p improves high glucose-induced podocytes injury through activation autophagy via inhibiting DUSP1 expression. IUBMB Life 2020, 72, 2651–2662. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, W.; Li, R.; Liu, Y. miRNA-93-5p in exosomes derived from M2 macrophages improves lipopolysaccharide-induced podocyte apoptosis by targeting Toll-like receptor 4. Bioengineered 2022, 13, 7683–7696. [Google Scholar] [CrossRef]
- Jiang, W.-J.; Xu, C.-T.; Du, C.-L.; Dong, J.-H.; Xu, S.-B.; Hu, B.-F.; Feng, R.; Zang, D.-D.; Meng, X.-M.; Huang, C.; et al. Tubular epithelial cell-to-macrophage communication forms a negative feedback loop via extracellular vesicle transfer to promote renal inflammation and apoptosis in diabetic nephropathy. Theranostics 2022, 12, 324–339. [Google Scholar] [CrossRef]
- Jia, Y.; Chen, J.; Zheng, Z.; Tao, Y.; Zhang, S.; Zou, M.; Yang, Y.; Xue, M.; Hu, F.; Li, Y.; et al. Tubular epithelial cell-derived extracellular vesicles induce macrophage glycolysis by stabilizing HIF-1α in diabetic kidney disease. Mol. Med. 2022, 28, 95. [Google Scholar] [CrossRef]
- Lv, L.-L.; Feng, Y.; Wu, M.; Wang, B.; Li, Z.-L.; Zhong, X.; Wu, W.-J.; Chen, J.; Ni, H.-F.; Tang, T.-T.; et al. Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death Differ. 2020, 27, 210–226. [Google Scholar] [CrossRef]
- Jia, Y.; Zheng, Z.; Xue, M.; Zhang, S.; Hu, F.; Li, Y.; Yang, Y.; Zou, M.; Li, S.; Wang, L.; et al. Extracellular Vesicles from Albumin-Induced Tubular Epithelial Cells Promote the M1 Macrophage Phenotype by Targeting Klotho. Mol. Ther. 2019, 27, 1452–1466. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, J.; Zhu, W.; Qi, X.; Wu, Y. Exosomal miR-7002-5p derived from highglucose-induced macrophages suppresses autophagy in tubular epithelial cells by targeting Atg9b. FASEB J. 2022, 36, e22501. [Google Scholar] [CrossRef]
- Liu, J.-L.; Zhang, L.; Huang, Y.; Li, X.-H.; Liu, Y.-F.; Zhang, S.-M.; Zhao, Y.-E.; Chen, X.-J.; Liu, Y.; He, L.-Y.; et al. Epsin1-mediated exosomal sorting of Dll4 modulates the tubular-macrophage crosstalk in diabetic nephropathy. Mol. Ther. 2023, 31, 1451–1467. [Google Scholar] [CrossRef]
- Torres, Á.; Muñoz, K.; Nahuelpán, Y.; Saez, A.-P.R.; Mendoza, P.; Jara, C.; Cappelli, C.; Suarez, R.; Oyarzún, C.; Quezada, C.; et al. Intraglomerular Monocyte/Macrophage Infiltration and Macrophage-Myofibroblast Transition during Diabetic Nephropathy Is Regulated by the A(2B) Adenosine Receptor. Cells 2020, 9, 1051. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Bai, Y.; Fu, C.; Liu, W.; Diao, Z. Exosomes from high glucose-treated macrophages promote epithelial-mesenchymal transition of renal tubular epithelial cells via long non-coding RNAs. BMC Nephrol. 2023, 24, 24. [Google Scholar] [CrossRef]
- Wang, Y.; Harris, D.C. Macrophages in renal disease. J. Am. Soc. Nephrol. 2011, 22, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Nikolic-Paterson, D.J.; Atkins, R.C. The role of macrophages in glomerulonephritis. Nephrol. Dial. Transplant. 2001, 16, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yao, B.; Wang, Y.; Fan, X.; Wang, S.; Niu, A.; Yang, H.; Fogo, A.; Zhang, M.-Z.; Harris, R.C. Macrophage Cyclooxygenase-2 Protects Against Development of Diabetic Nephropathy. Diabetes 2017, 66, 494–504. [Google Scholar] [CrossRef] [Green Version]
- Kanemitsu, N.; Kiyonaga, F.; Mizukami, K.; Maeno, K.; Nishikubo, T.; Yoshida, H.; Ito, H. Chronic treatment with the (iso-)glutaminyl cyclase inhibitor PQ529 is a novel and effective approach for glomerulonephritis in chronic kidney disease. Naunyn Schmiedebergs Arch Pharm. 2021, 394, 751–761. [Google Scholar] [CrossRef]
- HHe, Y.; Deng, B.; Liu, S.; Luo, S.; Ning, Y.; Pan, X.; Wan, R.; Chen, Y.; Zhang, Z.; Jiang, J.; et al. Myeloid Piezo1 Deletion Protects Renal Fibrosis by Restraining Macrophage Infiltration and Activation. Hypertension 2022, 79, 918–931. [Google Scholar] [CrossRef]
- Boels, M.G.; Koudijs, A.; Avramut, M.C.; Sol, W.M.; Wang, G.; van Oeveren-Rietdijk, A.M.; van Zonneveld, A.J.; de Boer, H.C.; van der Vlag, J.; van Kooten, C.; et al. Systemic Monocyte Chemotactic Protein-1 Inhibition Modifies Renal Macrophages and Restores Glomerular Endothelial Glycocalyx and Barrier Function in Diabetic Nephropathy. Am. J. Pathol. 2017, 187, 2430–2440. [Google Scholar] [CrossRef] [Green Version]
- Du, Q.; Fu, Y.-X.; Shu, A.-M.; Lv, X.; Chen, Y.-P.; Gao, Y.-Y.; Chen, J.; Wang, W.; Lv, G.-H.; Lu, J.-F.; et al. Loganin alleviates macrophage infiltration and activation by inhibiting the MCP-1/CCR2 axis in diabetic nephropathy. Life Sci. 2021, 272, 118808. [Google Scholar] [CrossRef]
- Ito, S.; Nakashima, H.; Ishikiriyama, T.; Nakashima, M.; Yamagata, A.; Imakiire, T.; Kinoshita, M.; Seki, S.; Kumagai, H.; Oshima, N. Effects of a CCR2 antagonist on macrophages and Toll-like receptor 9 expression in a mouse model of diabetic nephropathy. Am. J. Physiol. Ren. Physiol. 2021, 321, F757–F770. [Google Scholar] [CrossRef]
- Seok, S.J.; Lee, E.S.; Kim, G.T.; Hyun, M.; Lee, J.-H.; Chen, S.; Choi, R.; Kim, H.M.; Chung, C.H. Blockade of CCL2/CCR2 signalling ameliorates diabetic nephropathy in db/db mice. Nephrol. Dial. Transplant. 2013, 28, 1700–1710. [Google Scholar] [CrossRef] [Green Version]
- Tesch, G.H. Diabetic nephropathy—Is this an immune disorder? Clin. Sci. 2017, 131, 2183–2199. [Google Scholar] [CrossRef]
- Nevola, R.; Alfano, M.; Pafundi, P.C.; Brin, C.; Gragnano, F.; Calabrò, P.; Adinolfi, L.E.; Rinaldi, L.; Sasso, F.C.; Caturano, A. Cardiorenal Impact of SGLT-2 Inhibitors: A Conceptual Revolution in The Management of Type 2 Diabetes, Heart Failure and Chronic Kidney Disease. Rev. Cardiovasc. Med. 2022, 23, 106. [Google Scholar] [CrossRef]
- Xu, L.; Nagata, N.; Nagashimada, M.; Zhuge, F.; Ni, Y.; Chen, G.; Mayoux, E.; Kaneko, S.; Ota, T. SGLT2 Inhibition by Empagliflozin Promotes Fat Utilization and Browning and Attenuates Inflammation and Insulin Resistance by Polarizing M2 Macrophages in Diet-induced Obese Mice. eBioMedicine 2017, 20, 137–149. [Google Scholar] [CrossRef] [Green Version]
- Abdollahi, E.; Keyhanfar, F.; Delbandi, A.-A.; Falak, R.; Hajimiresmaiel, S.J.; Shafiei, M. Dapagliflozin exerts anti-inflammatory effects via inhibition of LPS-induced TLR-4 overexpression and NF-κB activation in human endothelial cells and differentiated macrophages. Eur. J. Pharmacol. 2022, 918, 174715. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, Y.; Jiang, Y.; Zhu, X.; Zhang, X. Vitamin D suppresses macrophage infiltration by down-regulation of TREM-1 in diabetic nephropathy rats. Mol. Cell. Endocrinol. 2018, 473, 44–52. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Zhu, X.; Guo, Y.; Yang, Y.; Jiang, Y.; Liu, B. Active vitamin D regulates macrophage M1/M2 phenotypes via the STAT-1-TREM-1 pathway in diabetic nephropathy. J. Cell. Physiol. 2019, 234, 6917–6926. [Google Scholar] [CrossRef]
- Lu, H.; Sun, X.; Jia, M.; Sun, F.; Zhu, J.; Chen, X.; Chen, K.; Jiang, K. Rosiglitazone Suppresses Renal Crystal Deposition by Ameliorating Tubular Injury Resulted from Oxidative Stress and Inflammatory Response via Promoting the Nrf2/HO-1 Pathway and Shifting Macrophage Polarization. Oxidative Med. Cell. Longev. 2021, 2021, 5527137. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Sheng, H.; Liang, C.; Liu, H.; Guerrero, J.A.M.; Lu, Z.; Mao, W.; Dai, Z.; Liu, X.; et al. Hyperoside Suppresses Renal Inflammation by Regulating Macrophage Polarization in Mice with Type 2 Diabetes Mellitus. Front. Immunol. 2021, 12, 733808. [Google Scholar] [CrossRef]
- Shen, S.; Huang, J.; Xu, C.; Shen, Y.; Jiang, S.; Li, Y.; Wang, H.; Zhang, M. ERK Modulates Macrophage Polarization and Alters Exosome miRNA Expression in Diabetic Nephropathy. Clin. Lab. 2021, 67, 210314. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, Y.; Zhu, X.; Liu, Y.; Wu, B.; Guo, Y.; Liu, B.; Zhang, X. Effects of autophagy on macrophage adhesion and migration in diabetic nephropathy. Ren. Fail. 2019, 41, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Guo, Y.; Jiang, Y.; Zhu, X.; Liu, Y.; Zhang, X. Mitophagy regulates macrophage phenotype in diabetic nephropathy rats. Biochem. Biophys. Res. Commun. 2017, 494, 42–50. [Google Scholar] [CrossRef]
- Yuan, Y.; Chen, Y.; Peng, T.; Li, L.; Zhu, W.; Liu, F.; Liu, S.; An, X.; Luo, R.; Cheng, J.; et al. Mitochondrial ROS-induced lysosomal dysfunction impairs autophagic flux and contributes to M1 macrophage polarization in a diabetic condition. Clin. Sci. 2019, 133, 1759–1777. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Hao, H.; Cheng, Y.; Gao, J.; Liu, J.; Xie, Z.; Zhang, Q.; Zang, L.; Han, W.; Mu, Y. The homing of human umbilical cord-derived mesenchymal stem cells and the subsequent modulation of macrophage polarization in type 2 diabetic mice. Int. Immunopharmacol. 2018, 60, 235–245. [Google Scholar] [CrossRef]
- Zhang, Y.; Le, X.; Zheng, S.; Zhang, K.; He, J.; Liu, M.; Tu, C.; Rao, W.; Du, H.; Ouyang, Y.; et al. MicroRNA-146a-5p-modified human umbilical cord mesenchymal stem cells enhance protection against diabetic nephropathy in rats through facilitating M2 macrophage polarization. Stem Cell Res. Ther. 2022, 13, 171. [Google Scholar] [CrossRef]
- Yuan, Y.; Yuan, L.; Li, L.; Liu, F.; Liu, J.; Chen, Y.; Cheng, J.; Lu, Y. Mitochondrial transfer from mesenchymal stem cells to macrophages restricts inflammation and alleviates kidney injury in diabetic nephropathy mice via PGC-1α activation. Stem Cells 2021, 39, 913–928. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, X.-Y.; Song, T.; Zhang, L.; Eirin, A.; Conley, S.; Tang, H.; Saadiq, I.; Jordan, K.; Lerman, A.; et al. Mesenchymal stem cells protect renal tubular cells via TSG-6 regulating macrophage function and phenotype switching. Am. J. Physiol. Ren. Physiol. 2021, 320, F454–F463. [Google Scholar] [CrossRef]
- Mass, E.; Nimmerjahn, F.; Kierdorf, K.; Schlitzer, A. Tissue-specific macrophages: How they develop and choreograph tissue biology. Nat. Rev. Immunol. 2023, 1–17. [Google Scholar] [CrossRef]
Ingredients | Targets | Results | References |
---|---|---|---|
M1 macrophages and podocytes | MCP-1 | M1 macrophages increased podocyte permeability and damaged podocytes function; podocytes treated with high-glucose promoted macrophage migration and accumulation through secreting MCP-1 | [31] |
Macrophages and podocytes | TNF-α | Macrophages released TNF-α under high-glucose conditions and promoted the apoptosis of podocytes | [32] |
Macrophages and podocytes | Tim-3, NF-κB/TNF-α | Macrophage activation induced by Tim-3 accelerated podocyte damage via the NF- κ B/TNF- α pathway | [33] |
Macrophages EVs and podocytes | MiR-21-5p | MiR-21-5p in macrophage-derived EVs increased ROS production through the targeted inhibition of A20, leading to podocyte damage | [34] |
Macrophages and podocytes | Vitamin D, FK506, Sirt6 | Vitamin D, FK506, and overexpression of Sirt6 reduced podocyte damage by inhibiting the activation of M1 macrophages. | [35,36,37] |
Macrophages and GECs | VEGF, NO, Flt-1 | VEGF was chemotactic for macrophages, and negatively regulated VEGF-induced macrophage migration by inhibiting expression | [38] |
Macrophages and GECs | ICAM-1, VCAM-1 | Vascular endothelium-overexpressed cell adhesion molecules, including ICAM-1 and VCAM-1 homed circulating macrophages | [39,40] |
Macrophages and GECs | GLP-1R | Exendin-4 (GLP-1R agonist) directly acted on the GLP-1R on GECs to reduce the expression of ICAM-1 and inhibit macrophage infiltration | [41] |
M1 macrophages and GECs | ROS | The accumulation of M1 macrophages upregulated the ROS level in human GECs to promote cell damage | [42] |
M1 macrophages and GECs | HIF-1α/Notch1, PPAR-α | Injured GECs upregulate the HIF-1α/Notch1 pathway in DN leading to M1 macrophage recruitment, which was reversed by the PPAR-α agonist fenofibrate to improve the GECs = function | [43] |
Macrophages and RTECs | MCP-1, osteopontin | MCP-1 and osteopontin expressed by RTECs were critical factors, playing a key role in the communication between the injured RTECs and infiltrating macrophages under high-glucose conditions | [47,48] |
Macrophages, glomeruli, and tubulointerstitium | TLR2 | TLR2 was proven to be highly expressed in both the glomeruli and tubulointerstitium, and was associated with the increased renal expression of MyD88 and MCP-1, activation of NF-κB, and infiltration of macrophages | [49] |
Macrophages and RTECs | TLR4 | Increased expression of TLR4 in the renal tubules of human kidneys with DN correlated with interstitial macrophage infiltration as well as tubulointerstitial inflammation | [50] |
Macrophages and RTECs | Necroptosis inhibitor necrostatin-1 | Macrophages participated and promoted the necroptosis of RTECs in the high-glucose condition, which could be inhibited by the necroptosis inhibitor necrostatin-1 | [28] |
M1 macrophages and RTECs | IL-1β | High glucose stimulated IL-1β expression in RTECs to induce the M1 polarization of macrophages | [51] |
M2 macrophages exosomes and podocytes | miR-25-3p | miR-25-3p in exosomes produced by M2 macrophages protected podocytes against HG-induced injury through activating autophagy in podocytes via inhibiting dual-specificity protein phosphatase 1 (DUSP1) expression | [52] |
M2 macrophage exosomes and podocytes | miR-93-5p, TLR4 | miR-93-5p expression was markedly upregulated in lipopolysaccharide (LPS)-induced podocytes, and inhibition of miR-93-5p or silencing of TLR4 reversed the reno-protective effects of miR-93-5p-containing exosomes produced by M2 macrophage on LPS-induced podocyte injury | [53] |
RTECs EVs and macrophage | HIF-1α | EVs from HSA-treated RTECs can accelerate macrophage glycolysis by stabilizing HIF-1α expression | [55] |
Urinary EVs and tubulointerstitial inflammation | miR-19b-3p | High levels of miR-19b-3p were found in urinary EVs and were correlated with the severity of tubulointerstitial inflammation in patients with DN | [56] |
Urinary EVs and M1 macrophage | miR-199a-5p, Klotho/TLR4 | Tail-vein injections of miR-199a-5p, which was found to be increased in the urinary EVs from diabetic patients with macroalbuminuria, induced kidney macrophage M1 polarization and accelerated the progression of DN by targeting the Klotho/TLR4 pathway | [57] |
Macrophage EVs and RTECs | miR-7002-5p, Atg9b | miR-7002-5p in EVs derived from high glucose-induced macrophages suppressed autophagy of RTECs by targeting Atg9b, leading to renal tubular dysfunction and inflammation | [58] |
RTECs exosomes and macrophage | Notch 1 | Epsin1 modulated tubulointerstitial inflammation via the regulation of exosomal-Dll4 release from RTECs, which then activated Notch 1 signaling in macrophages under DN conditions | [59] |
RTECs and macrophage | Macrophage–myofibroblast transition | Macrophages have been identified as the main source of myofibroblasts via macrophage–myofibroblast transition, thereby promoting renal fibrosis. | [60] |
Macrophage exosomes and RTECs | LncRNAs | Exosomes from high glucose-treated macrophage promote RTECs to switch to a more pro-fibrosis phenotype via releasing long non-coding RNAs | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, J.; Li, X.; Liu, N.; He, J.C.; Zhong, Y. Relationship between Macrophages and Tissue Microenvironments in Diabetic Kidneys. Biomedicines 2023, 11, 1889. https://doi.org/10.3390/biomedicines11071889
Yan J, Li X, Liu N, He JC, Zhong Y. Relationship between Macrophages and Tissue Microenvironments in Diabetic Kidneys. Biomedicines. 2023; 11(7):1889. https://doi.org/10.3390/biomedicines11071889
Chicago/Turabian StyleYan, Jiayi, Xueling Li, Ni Liu, John Cijiang He, and Yifei Zhong. 2023. "Relationship between Macrophages and Tissue Microenvironments in Diabetic Kidneys" Biomedicines 11, no. 7: 1889. https://doi.org/10.3390/biomedicines11071889
APA StyleYan, J., Li, X., Liu, N., He, J. C., & Zhong, Y. (2023). Relationship between Macrophages and Tissue Microenvironments in Diabetic Kidneys. Biomedicines, 11(7), 1889. https://doi.org/10.3390/biomedicines11071889