Predicting Lung Function Using Biomarkers in Alpha-1 Antitrypsin Deficiency
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Study Population
2.2. Sample Collection and Biomarker Measurement
2.3. Statistical Analysis
3. Results
3.1. Cohort Overview
3.2. Biomarkers
3.3. Predicting Cross-Sectional Lung Function
3.4. Predicting Changes in Lung Function
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Newnham, M.; Quinn, M.; Turner, A.M. Estimating the Prevalence of AATD Patients in the UK to Identify Underdiagnosis and Determine the Eligibility for Potential Augmentation Therapy. Int. J. Chron. Obstruct. Pulmon. Dis. 2023, 18, 1197–1205. [Google Scholar] [CrossRef] [PubMed]
- Barjaktarevic, I.; Campos, M. Management of Lung Disease in Alpha-1 Antitrypsin Deficiency: What We Do and What We Do Not Know. Ther. Adv. Chronic Dis. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Piitulainen, E.; Eriksson, S. Decline in FEV1 Related to Smoking Status in Individuals with Severe Alpha1-Antitrypsin Deficiency (PiZZ). Eur. Respir. J. 1999, 13, 247–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketelaars, C.A.J.; Schlösser, M.A.G.; Mostert, R.; Huyer Abu-Saad, H.; Halfens, R.J.G.; Wouters, E.F.M. Determinants of Health-Related Quality of Life in Patients with Chronic Obstructive Pulmonary Disease. Thorax 1996, 51, 39–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebi-Kryston, K.L. Respiratory Symptoms and Pulmonary Function as Predictors of 10-Year Mortality from Respiratory Disease, Cardiovascular Disease, and All Causes in the Whitehall Study. J. Clin. Epidemiol. 1988, 41, 251–260. [Google Scholar] [CrossRef]
- Bikov, A.; Lange, P.; Anderson, J.A.; Brook, R.D.; Calverley, P.M.A.; Celli, B.R.; Cowans, N.J.; Crim, C.; Dixon, I.J.; Martinez, F.J.; et al. FEV1 Is a Stronger Mortality Predictor than FVC in Patients with Moderate COPD and with an Increased Risk for Cardiovascular Disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 1135–1142. [Google Scholar] [CrossRef]
- Marott, J.L.; Ingebrigtsen, T.S.; Çolak, Y.; Vestbo, J.; Lange, P. Lung Function Trajectories Leading to Chronic Obstructive Pulmonary Disease as Predictors of Exacerbations and Mortality. Am. J. Respir. Crit. Care Med. 2020, 202, 210–218. [Google Scholar] [CrossRef]
- Ni, Y.; Yu, Y.; Dai, R.; Shi, G. Diffusing Capacity in Chronic Obstructive Pulmonary Disease Assessment: A Meta-Analysis. Chron. Respir. Dis. 2021, 18, 14799731211056340. [Google Scholar] [CrossRef]
- de-Torres, J.P.; O’Donnell, D.E.; Marín, J.M.; Cabrera, C.; Casanova, C.; Marín, M.; Ezponda, A.; Cosio, B.G.; Martinez, C.; Solanes, I.; et al. Clinical and Prognostic Impact of Low Diffusing Capacity for Carbon Monoxide Values in Patients With Global Initiative for Obstructive Lung Disease I COPD. Chest 2021, 160, 872–878. [Google Scholar] [CrossRef]
- Chapman, K.R.; Stockley, R.A.; Dawkins, C.; Wilkes, M.M.; Navickis, R.J. Augmentation Therapy for Alpha1 Antitrypsin Deficiency: A Meta-Analysis. COPD J. Chronic Obstr. Pulm. Dis. 2009, 6, 177–184. [Google Scholar] [CrossRef]
- Vreim, C.E.; Wu, M.; Crystal, R.G.; Buist, A.S.; Burrows, B.; Cohen, A.B.; Fallat, R.J.; Gadek, J.E.; Rousell, R.H.; Schwartz, R.S.; et al. Survival and FEV1 Decline in Individuals with Severe Deficiency of Alpha1-Antitrypsin. The Alpha-1-Antitrypsin Deficiency Registry Study Group. Am. J. Respir. Crit. Care Med. 1998, 158, 49–59. [Google Scholar] [CrossRef]
- Stockley, R.A.; Edgar, R.G.; Pillai, A.; Turner, A.M. Individualized Lung Function Trends in Alpha-1-Antitrypsin Deficiency: A Need for Patience in Order to Provide Patient Centered Management? Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 1745–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.M.; Han, M.K.; Labaki, W.W. Chronic Obstructive Pulmonary Disease Risk Assessment Tools: Is One Better than the Others? Curr. Opin. Pulm. Med. 2022, 28, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Serban, K.A.; Pratte, K.A.; Bowler, R.P. Protein Biomarkers for COPD Outcomes. Chest 2021, 159, 2244–2253. [Google Scholar] [CrossRef]
- Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for Prevention, Diagnosis and Management of COPD: 2023 Report; Global Initiative for Chronic Obstructive Lung Disease: Deer Park, IL, USA, 2023. [Google Scholar]
- Park, H.Y.; Churg, A.; Wright, J.L.; Li, Y.; Tam, S.; Man, S.F.P.; Tashkin, D.; Wise, R.A.; Connett, J.E.; Sin, D.D. Club Cell Protein 16 and Disease Progression in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2013, 188, 1413–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coxson, H.O.; Dirksen, A.; Edwards, L.D.; Yates, J.C.; Agusti, A.; Bakke, P.; Calverley, P.M.; Celli, B.; Crim, C.; Duvoix, A.; et al. The Presence and Progression of Emphysema in COPD as Determined by CT Scanning and Biomarker Expression: A Prospective Analysis from the ECLIPSE Study. Lancet. Respir. Med. 2013, 1, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.; Madsen, J.; Clark, H.W. SP-A and SP-D: Dual Functioning Immune Molecules With Antiviral and Immunomodulatory Properties. Front. Immunol. 2021, 11, 622598. [Google Scholar] [CrossRef]
- Duan, H.; Liang, L.; Liu, X.; Xie, S.; Wang, C. PARC/CCL18 Is Associated with Inflammation, Emphysema Severity and Application of Inhaled Corticosteroids in Hospitalized COPD Patients. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 1287–1297. [Google Scholar] [CrossRef]
- Sin, D.D.; Miller, B.E.; Duvoix, A.; Man, S.F.P.; Zhang, X.; Silverman, E.K.; Connett, J.E.; Anthonisen, N.A.; Wise, R.A.; Tashkin, D.; et al. Serum PARC/CCL-18 Concentrations and Health Outcomes in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2011, 183, 1187–1192. [Google Scholar] [CrossRef] [Green Version]
- Rong, B.; Fu, T.; Rong, C.; Liu, W.; Li, K.; Liu, H. Association between Serum CCL-18 and IL-23 Concentrations and Disease Progression of Chronic Obstructive Pulmonary Disease. Sci. Rep. 2020, 10, 17756. [Google Scholar] [CrossRef]
- Bradford, E.; Jacobson, S.; Varasteh, J.; Comellas, A.P.; Woodruff, P.; O’Neal, W.; DeMeo, D.L.; Li, X.; Kim, V.; Cho, M.; et al. The Value of Blood Cytokines and Chemokines in Assessing COPD. Respir. Res. 2017, 18, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faner, R.; Tal-Singer, R.; Riley, J.H.; Celli, B.; Vestbo, J.; MacNee, W.; Bakke, P.; Calverley, P.M.A.; Coxson, H.; Crim, C.; et al. Lessons from ECLIPSE: A Review of COPD Biomarkers. Thorax 2014, 69, 666–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stockley, R.A.; Halpin, D.M.G.; Celli, B.R.; Singh, D. Chronic Obstructive Pulmonary Disease Biomarkers and Their Interpretation. Am. J. Respir. Crit. Care Med. 2019, 199, 1195–1204. [Google Scholar] [CrossRef] [PubMed]
- Zemans, R.L.; Jacobson, S.; Keene, J.; Kechris, K.; Miller, B.E.; Tal-Singer, R.; Bowler, R.P. Multiple Biomarkers Predict Disease Severity, Progression and Mortality in COPD. Respir. Res. 2017, 18, 117. [Google Scholar] [CrossRef] [Green Version]
- Omachi, T.A.; Eisner, M.D.; Rames, A.; Markovtsova, L.; Blanc, P.D. Matrix Metalloproteinase-9 Predicts Pulmonary Status Declines in A1-Antitrypsin Deficiency. Respir. Res. 2011, 12, 35. [Google Scholar] [CrossRef] [Green Version]
- Ma, S.; Lin, Y.Y.; Cantor, J.O.; Chapman, K.R.; Sandhaus, R.A.; Fries, M.; Edelman, J.M.; McElvaney, G.; Turino, G.M. The Effect of Alpha-1 Proteinase Inhibitor on Biomarkers of Elastin Degradation in Alpha-1 Antitrypsin Deficiency: An Analysis of the RAPID/RAPID Extension Trials. Chronic Obstr. Pulm. Dis. 2016, 4, 34–44. [Google Scholar] [CrossRef]
- Beiko, T.; Janech, M.G.; Alekseyenko, A.V.; Atkinson, C.; Coxson, H.O.; Barth, J.L.; Stephenson, S.E.; Wilson, C.L.; Schnapp, L.M.; Barker, A.; et al. Serum Proteins Associated with Emphysema Progression in Severe Alpha-1 Antitrypsin Deficiency. Chronic Obstr. Pulm. Dis. 2017, 4, 204–216. [Google Scholar] [CrossRef] [Green Version]
- Walter, R.E.; Wilk, J.B.; Larson, M.G.; Vasan, R.S.; Keaney, J.F.; Lipinska, I.; O’Connor, G.T.; Benjamin, E.J. Systemic Inflammation and COPD: The Framingham Heart Study. Chest 2008, 133, 19–25. [Google Scholar] [CrossRef]
- Lu, Y.; Feng, L.; Feng, L.; Nyunt, M.S.; Yap, K.B.; Ng, T.P. Systemic Inflammation, Depression and Obstructive Pulmonary Function: A Population-Based Study. Respir. Res. 2013, 14, 53. [Google Scholar] [CrossRef] [Green Version]
- Thorleifsson, S.J.; Margretardottir, O.B.; Gudmundsson, G.; Olafsson, I.; Benediktsdottir, B.; Janson, C.; Buist, A.S.; Gislason, T. Chronic Airflow Obstruction and Markers of Systemic Inflammation: Results from the BOLD Study in Iceland. Respir. Med. 2009, 103, 1548–1553. [Google Scholar] [CrossRef] [Green Version]
- Pinto-Plata, V.; Toso, J.; Lee, K.; Park, D.; Bilello, J.; Mullerova, H.; De Souza, M.M.; Vessey, R.; Celli, B. Profiling Serum Biomarkers in Patients with COPD: Associations with Clinical Parameters. Thorax 2007, 62, 595–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sin, D.D.; Leung, R.; Gan, W.Q.; Man, S.P. Circulating Surfactant Protein D as a Potential Lung-Specific Biomarker of Health Outcomes in COPD: A Pilot Study. BMC Pulm. Med. 2007, 7, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qaisar, R.; Karim, A.; Muhammad, T. Circulating Biomarkers of Handgrip Strength and Lung Function in Chronic Obstructive Pulmonary Disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 311–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rong, B.; Fu, T.; Gao, W.; Li, M.; Rong, C.; Liu, W.; Liu, H. Reduced Serum Concentration of CC16 Is Associated with Severity of Chronic Obstructive Pulmonary Disease and Contributes to the Diagnosis and Assessment of the Disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Bhavani, S.; Tsai, C.-L.; Perusich, S.; Hesselbacher, S.; Coxson, H.; Pandit, L.; Corry, D.B.; Kheradmand, F. Clinical and Immunological Factors in Emphysema Progression. Five-Year Prospective Longitudinal Exacerbation Study of Chronic Obstructive Pulmonary Disease (LES-COPD). Am. J. Respir. Crit. Care Med. 2015, 192, 1171–1178. [Google Scholar] [CrossRef] [Green Version]
- Higashimoto, Y.; Iwata, T.; Okada, M.; Satoh, H.; Fukuda, K.; Tohda, Y. Serum Biomarkers as Predictors of Lung Function Decline in Chronic Obstructive Pulmonary Disease. Respir. Med. 2009, 103, 1231–1238. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.-P.; Wang, X.; Liu, F.; Cheng, Y.; Hu, Z.-W.; Zhang, L.-N.; Xia, G.-G.; Zhang, C.; Ma, J.; Wang, G.-F. Serum Surfactant Protein D, Lung Function Decline, and Incident Chronic Obstructive Pulmonary Disease: A Longitudinal Study in Beijing. J. Thorac. Dis. 2021, 13, 92–100. [Google Scholar] [CrossRef]
- Stockley, R.A. Antitrypsin Deficiency Assessment and Programme for Treatment (ADAPT): The United Kingdom Registry. COPD 2015, 12 (Suppl. 1), 63–68. [Google Scholar] [CrossRef]
- British Thoracic Society Spirometry Quality Improvement. Available online: https://www.brit-thoracic.org.uk/quality-improvement/clinical-resources/copd-spirometry/spirometry/ (accessed on 31 January 2023).
- Edgar, R.G.; Patel, M.; Bayliss, S.; Crossley, D.; Sapey, E.; Turner, A.M. Treatment of Lung Disease in Alpha-1 Antitrypsin Deficiency: A Systematic Review. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 1295–1308. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, H.; Rubino, A.; Müllerová, H.; Morris, T.; Varghese, P.; Xu, Y.; De Nigris, E.; Quint, J.K. Frequency and Severity of Exacerbations of COPD Associated with Future Risk of Exacerbations and Mortality: A UK Routine Health Care Data Study. Int. J. Chron. Obstruct. Pulmon. Dis. 2022, 17, 427–437. [Google Scholar] [CrossRef]
- Quint, J.K.; Donaldson, G.C.; Hurst, J.R.; Goldring, J.J.P.; Seemungal, T.R.; Wedzicha, J.A. Predictive Accuracy of Patient-Reported Exacerbation Frequency in COPD. Eur. Respir. J. 2011, 37, 501–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quanjer, P.H.; Cooper, B.; Ruppel, G.L.; Swanney, M.P.; Stocks, J.; Culver, B.H.; Thompson, B.R. Defining Airflow Obstruction. Eur. Respir. J. 2015, 45, 561–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almuntashiri, S.; Zhu, Y.; Han, Y.; Wang, X.; Somanath, P.R.; Zhang, D. Club Cell Secreted Protein CC16: Potential Applications in Prognosis and Therapy for Pulmonary Diseases. J. Clin. Med. 2020, 9, 4039. [Google Scholar] [CrossRef] [PubMed]
- Laucho-Contreras, M.E.; Polverino, F.; Tesfaigzi, Y.; Pilon, A.; Celli, B.R.; Owen, C.A. Club Cell Protein 16 (CC16) Augmentation: A Potential Disease-Modifying Approach for Chronic Obstructive Pulmonary Disease (COPD). Expert Opin. Ther. Targets 2016, 20, 869–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Guerra, S.; Ledford, J.G.; Kraft, M.; Li, H.; Hastie, A.T.; Castro, M.; Denlinger, L.C.; Erzurum, S.C.; Fahy, J.V.; et al. Low CC16 MRNA Expression Levels in Bronchial Epithelial Cells Are Associated with Asthma Severity. Am. J. Respir. Crit. Care Med. 2023, 207, 438–451. [Google Scholar] [CrossRef] [PubMed]
- Lomas, D.A.; Silverman, E.K.; Edwards, L.D.; Miller, B.E.; Coxson, H.O.; Tal-Singer, R. Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Investigators Evaluation of Serum CC-16 as a Biomarker for COPD in the ECLIPSE Cohort. Thorax 2008, 63, 1058–1063. [Google Scholar] [CrossRef] [Green Version]
- Buendía-Roldán, I.; Ruiz, V.; Sierra, P.; Montes, E.; Ramírez, R.; Vega, A.; Salgado, A.; Vargas, M.H.; Mejía, M.; Pardo, A.; et al. Increased Expression of CC16 in Patients with Idiopathic Pulmonary Fibrosis. PLoS ONE 2016, 11, e0168552. [Google Scholar] [CrossRef] [Green Version]
- Kokuho, N.; Ishii, T.; Kamio, K.; Hayashi, H.; Kurahara, M.; Hattori, K.; Motegi, T.; Azuma, A.; Gemma, A.; Kida, K. Diagnostic Values For Club Cell Secretory Protein (CC16) in Serum of Patients of Combined Pulmonary Fibrosis and Emphysema. COPD 2015, 12, 347–354. [Google Scholar] [CrossRef]
- Hasegawa, M.; Fujimoto, M.; Hamaguchi, Y.; Matsushita, T.; Inoue, K.; Sato, S.; Takehara, K. Use of Serum Clara Cell 16-KDa (CC16) Levels as a Potential Indicator of Active Pulmonary Fibrosis in Systemic Sclerosis. J. Rheumatol. 2011, 38, 877–884. [Google Scholar] [CrossRef]
- Kucejko, W.; Chyczewska, E.; Naumnik, W.; Ossolińska, M. Concentration of Surfactant Protein D, Clara Cell Protein CC-16 and IL-10 in Bronchoalveolar Lavage (BAL) in Patients with Sarcoidosis, Hypersensivity Pneumonitis and Idiopathic Pulmonary Fibrosis. Folia Histochem. Cytobiol. 2009, 47, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Dewhurst, J.A.; Lea, S.; Hardaker, E.; Dungwa, J.V.; Ravi, A.K.; Singh, D. Characterisation of Lung Macrophage Subpopulations in COPD Patients and Controls. Sci. Rep. 2017, 7, 7143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esther, C.R.; O’Neal, W.K.; Anderson, W.H.; Kesimer, M.; Ceppe, A.; Doerschuk, C.M.; Alexis, N.E.; Hastie, A.T.; Barr, R.G.; Bowler, R.P.; et al. Identification of Sputum Biomarkers Predictive of Pulmonary Exacerbations in COPD. Chest 2022, 161, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, H.; Gao, J.; Koskela, J.; Kinnula, V.; Kobayashi, H.; Laitinen, T.; Mazur, W. Differences in Plasma and Sputum Biomarkers between COPD and COPD-Asthma Overlap. Eur. Respir. J. 2014, 43, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Lawyer, G.; McDonough, S.; Wang, Q.; Kassem, N.O.; Kas-Petrus, F.; Ye, D.; Singh, K.P.; Kassem, N.O.; Rahman, I. Systemic Biomarkers of Inflammation, Oxidative Stress and Tissue Injury and Repair among Waterpipe, Cigarette and Dual Tobacco Smokers. Tob. Control 2020, 29, s102–s109. [Google Scholar] [CrossRef]
- Bhatt, S.P.; Kim, Y.-I.; Harrington, K.F.; Hokanson, J.E.; Lutz, S.M.; Cho, M.H.; DeMeo, D.L.; Wells, J.M.; Make, B.J.; Rennard, S.I.; et al. Smoking Duration Alone Provides Stronger Risk Estimates of Chronic Obstructive Pulmonary Disease than Pack-Years. Thorax 2018, 73, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Aldington, S.; Williams, M.; Nowitz, M.; Weatherall, M.; Pritchard, A.; McNaughton, A.; Robinson, G.; Beasley, R. Effects of Cannabis on Pulmonary Structure, Function and Symptoms. Thorax 2007, 62, 1058–1063. [Google Scholar] [CrossRef] [Green Version]
- Mahor, D.; Kumari, V.; Vashisht, K.; Galgalekar, R.; Samarth, R.M.; Mishra, P.K.; Banerjee, N.; Dixit, R.; Saluja, R.; De, S.; et al. Elevated Serum Matrix Metalloprotease (MMP-2) as a Candidate Biomarker for Stable COPD. BMC Pulm. Med. 2020, 20, 302. [Google Scholar] [CrossRef]
- Carter, R.I.; Ungurs, M.J.; Pillai, A.; Mumford, R.A.; Stockley, R.A. The Relationship of the Fibrinogen Cleavage Biomarker Aα-Val360 With Disease Severity and Activity in A1-Antitrypsin Deficiency. Chest 2015, 148, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Miniati, M.; Monti, S.; Basta, G.; Cocci, F.; Fornai, E.; Bottai, M. Soluble Receptor for Advanced Glycation End Products in COPD: Relationship with Emphysema and Chronic Cor Pulmonale: A Case-Control Study. Respir. Res. 2011, 12, 37. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-H.; Hoopmann, M.R.; Castaldi, P.J.; Simonsen, K.A.; Midha, M.K.; Cho, M.H.; Criner, G.J.; Bueno, R.; Liu, J.; Moritz, R.L.; et al. Lung Proteomic Biomarkers Associated with Chronic Obstructive Pulmonary Disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 321, L1119–L1130. [Google Scholar] [CrossRef]
- Serban, K.A.; Pratte, K.A.; Strange, C.; Sandhaus, R.A.; Turner, A.M.; Beiko, T.; Spittle, D.A.; Maier, L.; Hamzeh, N.; Silverman, E.K.; et al. Unique and Shared Systemic Biomarkers for Emphysema in Alpha-1 Antitrypsin Deficiency and Chronic Obstructive Pulmonary Disease. EBioMedicine 2022, 84, 104262. [Google Scholar] [CrossRef] [PubMed]
No COPD (n = 76) | COPD (n = 124) | |
---|---|---|
Age, years | 48 [40–59] | 57 [48–64] |
Sex, male | 26 (34.2) | 69 (55.6) |
Follow-up, years | 4.18 [2.80–7.53] | 5.47 [2.98–8.63] |
Smoking status Current Previous Never | 3 (3.9) 23 (30.3) 50 (65.8) | 5 (4.1) 92 (74.8) 26 (21.1) |
Genotype ZZ SZ Other | 56 (73.7) 18 (23.7) 2 (2.6) | 111 (89.5) 6 (4.8) 7 (5.6) |
GOLD COPD stage I II III IV | NA NA NA NA | 15 (12.1) 48 (38.7) 41 (33.1) 20 (16.1) |
FEV1, litres | 3.36 [2.80–3.94] | 1.60 [1.15–2.06] |
FEV1 % predicted | 104 [94–112] | 54 [36–69] |
FVC, litres | 4.19 [3.45–5.05] | 3.75 [3.04–4.73] |
FVC % predicted | 103 [94–112] | 97 [80–111] |
FEV1/FVC | 0.76 [0.75–0.84] | 0.44 [0.33–0.53] |
TLCO, mmol/min/kPa | 7.68 [6.69–9.81] | 4.86 [3.79–6.46] |
TLCO % predicted | 100 [90–114] | 64 [48–78] |
mMRC 0 1 2 3 4 | 32 (69.6) 10 (21.7) 4 (8.7) 0 (0) 0 (0) | 9 (12.9) 14 (20.0) 20 (28.6) 19 (27.1) 8 (11.4) |
FEV1 (n = 110) R2 = 0.09 | TLCO (n = 98) R2 = 0.24 | |||
---|---|---|---|---|
Beta1 (SE1) | P1 | Beta2 (SE2) | P2 | |
Age | −0.009 (0.007) | 0.243 | −0.082 (0.019) | <0.001 |
Male | 0.263 (0.146) | 0.075 | 1.197 (0.408) | 0.004 |
Previous smoker | −0.484 (0.174) | 0.007 | −0.124 (0.465) | 0.791 |
Current smoker | −0.765 (0.535) | 0.156 | −0.744 (1.381) | 0.592 |
CC16 | 0.004 (0.006) | 0.476 | 0.016 (0.015) | 0.302 |
CCL18 | −0.001 (0.001) | 0.207 | −0.002 (0.002) | 0.301 |
CRP | −0.033 (0.021) | 0.125 | −0.052 (0.056) | 0.347 |
IL6 | −0.038 (0.069) | 0.583 | −0.205 (0.182) | 0.262 |
IL8 | −0.030 (0.026) | 0.246 | 0.045 (0.067) | 0.505 |
TNF-alpha | 0.089 (0.071) | 0.216 | 0.172 (0.197) | 0.387 |
SP-D | <0.001 (<0.001) | 0.446 | <0.001 (<0.001) | 0.625 |
FEV1 change (n = 94) R2 = 0.14 | TLCO change (n = 84) R2 = 0.18 | |||
---|---|---|---|---|
Beta1 (SE1) | P1 | Beta2 (SE2) | P2 | |
Age | 3.624 (0.827) | <0.001 | 0.008 (0.002) | 0.002 |
Male | 3.159 (15.765) | 0.842 | −0.041 (0.049) | 0.407 |
Previous smoker | 45.004 (19.174) | 0.021 | 0.026 (0.057) | 0.644 |
Current smoker | 22.801 (72.797) | 0.755 | −0.016 (0.212) | 0.938 |
CC16 | −0.639 (0.576) | 0.270 | −0.004 (0.002) | 0.018 |
CCL18 | 0.082 (0.086) | 0.347 | <0.001 (<0.001) | 0.414 |
CRP | 0.003 (2.222) | 0.999 | −0.006 (0.007) | 0.401 |
IL6 | 2.531 (6.858) | 0.713 | −0.005 (0.020) | 0.811 |
IL8 | −2.361 (2.543) | 0.356 | 0.012 (0.008) | 0.127 |
TNF-alpha | 8.107 (7.730) | 0.297 | −0.005 (0.023) | 0.815 |
SP-D | 0.001 (0.001) | 0.604 | <0.001 (<0.001) | 0.367 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spittle, D.A.; Mansfield, A.; Pye, A.; Turner, A.M.; Newnham, M. Predicting Lung Function Using Biomarkers in Alpha-1 Antitrypsin Deficiency. Biomedicines 2023, 11, 2001. https://doi.org/10.3390/biomedicines11072001
Spittle DA, Mansfield A, Pye A, Turner AM, Newnham M. Predicting Lung Function Using Biomarkers in Alpha-1 Antitrypsin Deficiency. Biomedicines. 2023; 11(7):2001. https://doi.org/10.3390/biomedicines11072001
Chicago/Turabian StyleSpittle, Daniella A., Alison Mansfield, Anita Pye, Alice M. Turner, and Michael Newnham. 2023. "Predicting Lung Function Using Biomarkers in Alpha-1 Antitrypsin Deficiency" Biomedicines 11, no. 7: 2001. https://doi.org/10.3390/biomedicines11072001
APA StyleSpittle, D. A., Mansfield, A., Pye, A., Turner, A. M., & Newnham, M. (2023). Predicting Lung Function Using Biomarkers in Alpha-1 Antitrypsin Deficiency. Biomedicines, 11(7), 2001. https://doi.org/10.3390/biomedicines11072001