The Superior Cerebellar Artery: Variability and Clinical Significance
Abstract
:1. Introduction
1.1. Background on the Superior Cerebellar Artery
1.2. Neurovascular Compression Syndromes
1.3. Importance of Understanding Anatomical Variations of the SCA
2. Anatomy of the Superior Cerebellar Artery
3. Neurovascular Compression Syndromes Related to the Superior Cerebellar Artery
3.1. Trigeminal Neuralgia
3.2. Oculomotor Compression Syndromes
3.2.1. Oculomotor Nerve Palsy
Anatomical Structure | Zorman & Wilson 1984 N = 118 [67] | Sindou et al., 1994 N = 322 [68] | Barker et al., 1996 N = 1204 [69] | Sindou et al., 2002 N = 579 [70] | Li et al., 2004 N = 62 [71] | Sekula et al., 2009 N = 14 [72] | Lorenzoni et al., 2012 N = 100 [4] |
---|---|---|---|---|---|---|---|
SCA | 83.3% | 90% | 75% | 88% | 58% | 57% | 71% |
AICA | 15.5% | 23.6% | 10% | 25.1% | 38.7% | 7% | 11% |
Others | PICA (1.1%) | BA (3.2%) | Small arteries (14%) Others ** | BA (3.5%) | PICA (12.9%) | Small arteries (14%) | BA (2%) VA (2%) |
3.2.2. Ocular Neuromyotonia
3.3. Hemifacial Spasm
4. Anatomical Variations of the Superior Cerebellar Artery
Type of the Variation | Percentage Calculated Based on the Total Number of Patients | Percentage Calculated Based on the Total Number of SCAs | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Blackburn (1907) N = 220 [85] | Stopford (1916) N = 150 [86] | Caruso et al., (1991) N = 100 [87] | Uchino et al., (2003) N = 136 [48] | Pai et al., (2007) N = 25 [88] | Garcia-Gonzalez et al., (2012) N = 20 [1] | Pekcevik et al., (2013) N = 341 [91] | Krzyżewski et al., (2014) * N = 200 [92] | Ogeng’o et al., (2015) * N = 173 [89] | Kalaiyarasi and Chitra (2018) * N = 80 [90] | |
Typical variant (SCA bilaterally originating as a single vessel from the BA) | N.D. | N.D. | N.D. | 82% | 80% | 35% | 70.7% | 89.43% | 72.1% | 75.6% |
SCA originating from the PCA as a single vessel | N.D. | N.D. | N.D. | N.D. | 4% | 15% | 4.7% | 4.64% | 2% | 1.88% |
SCA originating as a common trunk with PCA ** | N.D. | N.D. | 1% | 4.4% | N.D. | 40% | 5% | 5.93% | 2.5% | 3.13% |
SCA originating from the ICA | N.D. | N.D. | N.D. | 0.7% | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
Duplication of SCA originated from BA | 3.61% | 31% | N.D. | 9.6% | 16% | 15% | 20.5% | 3.09% | 21.3% | 17.5% |
SCA duplicated and originating from the PCA | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.3% | N.D. | 2% | N.D. |
Early bifurcation of the SCA | N.D. | N.D. | N.D. | 3% | N.D. | N.D. | 9.4% | N.D. | N.D. | N.D. |
Absence of the SCA | N.D. | 0.67% | N.D. | N.D. | N.D. | N.D. | N.D. | 4% | N.D. | N.D. |
Simultaneous duplication and common trunk of SCAs | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 1.8% | N.D. | N.D. | N.D. |
5. The Approach of Better Visualization of Anatomical Variations in Diagnosis and Surgical Treatment
5.1. Magnetic Resonance Imaging
Diffusion Tensor Imaging and Diffusion-Weighted Imaging
6. Future Directions and Conclusions
6.1. Importance of Further Studies in the Field
6.2. Conclusion and Clinical Points
6.2.1. Conclusion and Summary of Key Points
- Although SCA is a key vessel related to trigeminal neuralgia pathogenesis, the current state of knowledge about the link between SCA variability and NVC (especially TN) occurrence remains limited and required further investigation.
- Neuroimaging enables the proper differential diagnosis in NVC patients, i.e. ruling out brain tumors, aneurysms, arteriovenous malformations, and others.
- The success rate of MVD strongly depends on careful visualization of the nerve in its REZ at surgery not on radiological examination. Many NVCs, that can be observed intraoperatively are not seen in neuroimaging. Visualization of contact between nerve and vessel in the radiological examination without clinical symptoms does not suffice for the diagnosis of NVCs.
- Knowledge about possible anatomical variants of SCA may improve patients’ diagnosis, choosing an appropriate treatment strategy, and patients’ outcome surgical.
- A tortuous anterior pontomesencephalic segment of the SCA may lead to misdiagnosis as it may mimic arteriovenous malformation on imaging.
6.2.2. Clinical Points
- Typical pain in TN is characterized by sharp, electric shock-like paroxysmal lancinating pain, lasting a few seconds, typically triggered by sensory stimulation. In these cases, the neurologic exam remains normal, except for a mild sensory loss. A pain of another character situated in the trigeminal nerve innervation zone is known as atypical facial pain.
- Although the majority of the TN patients show a good response to carbamazepine, there are those (especially refractory cases) in whom microvascular decompression should be considered.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | apparent diffusion coefficient |
AICA | anterior inferior cerebellar artery |
BA | basilar artery |
DTI | diffusion tensor imaging |
FA | fractional anisotropy |
HFS | hemifacial spasm |
MRI | magnetic resonance imaging |
MVD | microvascular decompression |
N.D. | no data |
NMT | neuromyotonia |
NVC | neurovascular compression |
ONP | oculomotor nerve palsy |
PCA | posterior cerebral artery |
PICA | posterior inferior cerebellar artery |
REZ | root entry/exit zone |
SCA | superior cerebellar artery |
VA | vertebral artery |
References
- Garcia-Gonzalez, U.; Cavalcanti, D.D.; Agrawal, A.; Spetzler, R.F.; Preul, M.C. Anatomical Study on the “Perforator-Free Zone”: Reconsidering the Proximal Superior Cerebellar Artery and Basilar Artery Perforators. Neurosurgery 2012, 70, 764–773. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, H.Y.; Lee, Y.H.; Lee, J.H.; Yang, J.H.; Lee, M.K.; Yang, H.J. Blood Supply by the Superior Cerebellar Artery and Posterior Inferior Cerebellar Artery to the Motor and Nonmotor Domains of the Human Dentate Nucleus. World Neurosurg. 2019, 122, e606–e611. [Google Scholar] [CrossRef] [PubMed]
- Szmyd, B.; Sołek, J.; Błaszczyk, M.; Jankowski, J.; Liberski, P.P.; Jaskólski, D.J.; Wysiadecki, G.; Karuga, F.F.; Gabryelska, A.; Sochal, M.; et al. The Underlying Pathogenesis of Neurovascular Compression Syndromes: A Systematic Review. Front. Mol. Neurosci. 2022, 15, 325. [Google Scholar] [CrossRef]
- Lorenzoni, J.; David, P.; Levivier, M. Patterns of Neurovascular Compression in Patients with Classic Trigeminal Neuralgia: A High-Resolution MRI-Based Study. Eur. J. Radiol. 2012, 81, 1851–1857. [Google Scholar] [CrossRef] [PubMed]
- Kuroki, A.; Møller, A.R. Facial Nerve Demyelination and Vascular Compression Are Both Needed to Induce Facial Hyperactivity: A Study in Rats. Acta Neurochir. 1994, 126, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Møller, A.R.; Jannetta, P.J. Physiological Abnormalities in Hemifacial Spasm Studied during Microvascular Decompression Operations. Exp. Neurol. 1986, 93, 584–600. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.X.; Zhong, J.; Xia, L.; Dou, N.N.; Li, S.T. IL-6 Contributes to Nav1.3 up-Regulation in Trigeminal Nerve Following Chronic Constriction Injury. Neurol. Res. 2020, 42, 504–514. [Google Scholar] [CrossRef]
- Mazzucchi, E.; Brinzeu, A.; Sindou, M. Arachnoiditis as an Outcome Factor for Microvascular Decompression in Classical Trigeminal Neuralgia. Acta Neurochir. 2019, 161, 1589–1598. [Google Scholar] [CrossRef]
- Farajzadeh, A.; Bathaie, S.Z.; Arabkheradmand, J.; Ghodsi, S.M.; Faghihzadeh, S. Different Pain States of Trigeminal Neuralgia Make Significant Changes in the Plasma Proteome and Some Biochemical Parameters: A Preliminary Cohort Study. J. Mol. Neurosci. 2018, 66, 524–534. [Google Scholar] [CrossRef]
- Karki, P.; Yamagami, M.; Takasaki, K.; Bohara, M.; Hosoyama, H.; Hanada, T.; Yamasaki, F.; Hanaya, R.; Arita, K. Microvascular Decompression in Patients Aged 30 Years or Younger. Asian J. Neurosurg. 2019, 14, 111–117. [Google Scholar] [CrossRef]
- Rhoton, A.L. The Cerebellopontine Angle and Posterior Fossa Cranial Nerves by the Retrosigmoid Approach. Neurosurgery 2000, 47, S93–S129. [Google Scholar] [CrossRef] [PubMed]
- Bobeff, E.J.; Wisniewski, K.; Jaskolski, D.J. Rzadkie Przypadki Guzów Kąta Mostowo-Móżdżkowego. Vertigoprofil 2019, 11, 11–15. [Google Scholar]
- Rhoton, A.L. Rhoton’s Cranial Anatomy and Surgical Approaches, 1st ed.; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Rhoton, A.L. The Cerebellar Arteries. Neurosurgery 2000, 47, S29–S68. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Tee, W.W.H.; Franconi, C.; Prentice, D. Transient Oculomotor Nerve Palsy Due to Non-Aneurysmal Neurovascular Compression. J. Clin. Neurosci. 2017, 45, 136–137. [Google Scholar] [CrossRef]
- Suzuki, K.; Muroi, A.; Kujiraoka, Y.; Takano, S.; Matsumura, A. Oculomotor Palsy Treated by Microvascular Decompression. Surg. Neurol. 2008, 70, 210–212. [Google Scholar] [CrossRef] [Green Version]
- Raza, H.K.; Chen, H.; Chansysouphanthong, T.; Cui, G. The Aetiologies of the Unilateral Oculomotor Nerve Palsy: A Review of the Literature. Somatosens. Mot. Res. 2018, 35, 229–239. [Google Scholar] [CrossRef]
- Inoue, T.; Hirai, H.; Shimizu, T.; Tsuji, M.; Shima, A.; Suzuki, F.; Matsuda, M. Ocular Neuromyotonia Treated by Microvascular Decompression: Usefulness of Preoperative 3D Imaging: Case Report. J. Neurosurg. 2012, 117, 1166–1169. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Hideyama, T.; Yamagami, A.; Sasaki, T.; Maekawa, R.; Shiio, Y. A Case of Ocular Neuromyotonia Caused by Neurovascular Compression of the Oculomotor Nerve by the Elongated Superior Cerebellar Artery. J. Neurol. 2016, 263, 1236–1238. [Google Scholar] [CrossRef]
- Sindou, M.P. Microvascular Decompression for Primary Hemifacial Spasm. Importance of Intraoperative Neurophysiological Monitoring. Acta Neurochir. 2005, 147, 1019–1026. [Google Scholar] [CrossRef]
- Matsushima, T. Microsurgical Anatomy and Surgery of the Posterior Cranial Fossa. Surgical Approaches and Procedures Based on Anatomical Study; Springer: Berlin, Germany, 2015. [Google Scholar]
- Padmavathi, G. Study of the Variations of Superior Cerebellar Artery in Human Cadavers. Int. J. Res. Med. Sci. 2014, 2, 699. [Google Scholar] [CrossRef] [Green Version]
- Porzionato, A.; Macchi, V.; Massaro, L.; Morra, A.; Sarasin, G.; Rambaldo, A.; De Caro, R. Double Origin of the Superior Cerebellar Artery Associated with Homolateral Haemorrhagic Infarction of Cerebellum. Folia Neuropathol. 2016, 54, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Erdemoglu, A.K.; Duman, T. Superior Cerebellar Artery Territory Stroke. Acta Neurol. Scand. 1998, 98, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Terao, S.I.; Sobue, G.; Izumi, M.; Miura, N.; Takeda, A.; Mitsuma, T. Infarction of Superior Cerebellar Artery Presenting as Cerebellar Symptoms. Stroke 1996, 27, 1679–1681. [Google Scholar] [CrossRef] [PubMed]
- Peluso, J.P.P.; Jan Van Rooij, W.; Sluzewski, M.; Beute, G.N. Superior Cerebellar Artery Aneurysms: Incidence, Clinical Presentation and Midterm Outcome of Endovascular Treatment. Neuroradiology 2007, 49, 747–751. [Google Scholar] [CrossRef] [PubMed]
- December, P. Trifurcation of Basilar Artery. Int. J. Anat. Var. 2013, 6, 199–200. [Google Scholar]
- Adam, B. Anatomia Człowieka; Państwowy Zakład Wydawnictw Lekarskich (PZWL): Warsaw, Poland, 2022. [Google Scholar]
- Tubbs, R.S.; Shoja, M.M.; Loukas, M. Bergman’s Comprehensive Encyclopedia of Human Anatomic Variation; Wiley-Blackwell: Hoboken, NJ, USA, 2016; ISBN 978-1-118-43035-4. [Google Scholar]
- Hardy, D.G.; Peace, D.A.; Rhoton, A.L. Microsurgical Anatomy of the Superior Cerebellar Artery. Neurosurgery 1980, 6, 10–28. [Google Scholar] [CrossRef]
- Ascanio, L.C.; Ogilvy, C.S.; Thomas, A.J.; Kicielinski, K.; Gupta, R.; Alturki, A.Y. Distal Parent Vessel Occlusion of 2 Superior Cerebellar Artery Fusiform Aneurysms: Report of 2 Cases and Literature Review. World Neurosurg. X 2019, 3, 100026. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, A.; Rhoton, A.L.; Lawton, M.T. Segmental Anatomy of Cerebellar Arteries: A Proposed Nomenclature: Laboratory Investigation. J. Neurosurg. 2011, 115, 387–397. [Google Scholar] [CrossRef]
- Maarbjerg, S.; Gozalov, A.; Olesen, J.; Bendtsen, L. Trigeminal Neuralgia--a Prospective Systematic Study of Clinical Characteristics in 158 Patients. Headache 2014, 54, 1574–1582. [Google Scholar] [CrossRef]
- Mačianskytė, D.; Janužis, G.; Kubilius, R.; Adomaitienė, V.; Ščiupokas, A. Associations between Chronic Pain and Depressive Symptoms in Patients with Trigeminal Neuralgia. Medicina 2011, 47, 386–392. [Google Scholar] [CrossRef]
- Obermann, M.; Yoon, M.S.; Sensen, K.; Maschke, M.; Diener, H.C.; Katsarava, Z. Efficacy of Pregabalin in the Treatment of Trigeminal Neuralgia. Cephalalgia 2008, 28, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Araya, E.I.; Claudino, R.F.; Piovesan, E.J.; Chichorro, J.G. Trigeminal Neuralgia: Basic and Clinical Aspects. Curr. Neuropharmacol. 2020, 18, 109–119. [Google Scholar] [CrossRef]
- Wu, T.H.; Hu, L.Y.; Lu, T.; Chen, P.M.; Chen, H.J.; Shen, C.C.; Wen, C.H. Risk of Psychiatric Disorders Following Trigeminal Neuralgia: A Nationwide Population-Based Retrospective Cohort Study. J. Headache Pain 2015, 16, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zakrzewska, J.M.; Wu, J.; Mon-Williams, M.; Phillips, N.; Pavitt, S.H. Evaluating the Impact of Trigeminal Neuralgia. Pain 2017, 158, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Melek, L.; Smith, J.; Karamat, A.; Renton, T. Comparison of the Neuropathic Pain Symptoms and Psychosocial Impacts of Trigeminal Neuralgia and Painful Posttraumatic Trigeminal Neuropathy. J. Oral Facial Pain Headache 2019, 33, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Chang, B.; Zhu, W.; Li, S. Effects of Depression and Anxiety on Microvascular Decompression Outcome for Trigeminal Neuralgia Patients. World Neurosurg. 2019, 128, e556–e561. [Google Scholar] [CrossRef]
- Katusic, S.; Beard, C.M.; Bergstralth, E.; Kurland, L.T. Incidence and Clinical Features of Trigeminal Neuralgia, Rochester, Minnesota, 1945–1984. Ann. Neurol. 1990, 27, 89–95. [Google Scholar] [CrossRef]
- Yoshimasu, F.; Kurland, L.T.; Elveback, L.R. Tic Douloureux in Rochester, Minnesota, 1945–1969. Neurology 1972, 22, 952–956. [Google Scholar] [CrossRef]
- Rozen, T.D. Trigeminal Neuralgia and Glossopharyngeal Neuralgia. Neurol. Clin. 2004, 22, 185–206. [Google Scholar] [CrossRef]
- De Toledo, I.P.; Conti Réus, J.; Fernandes, M.; Porporatti, A.L.; Peres, M.A.; Takaschima, A.; Linhares, M.N.; Guerra, E.; De Luca Canto, G. Prevalence of Trigeminal Neuralgia: A Systematic Review. J. Am. Dent. Assoc. 2016, 147, 570–576.e2. [Google Scholar] [CrossRef]
- Love, S.; Coakham, H.B. Trigeminal Neuralgia: Pathology and Pathogenesis. Brain 2001, 124, 2347–2360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eboli, P.; Stone, J.L.; Aydin, S.; Slavin, K.V. Historical Characterization of Trigeminal Neuralgia. Neurosurgery 2009, 64, 1183–1186. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Feng, B.; Hong, W.; Zhang, W.; Yang, M.; Tang, Y.; Zhong, J.; Hua, X.; Li, S. Management of Intraneural Vessels during Microvascular Decompression Surgery for Trigeminal Neuralgia. World Neurosurg. 2012, 77, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Uchino, A.; Sawada, A.; Takase, Y.; Kudo, S. Variations of the Superior Cerebellar Artery: MR Angiographic Demonstration. Radiat. Med. 2003, 21, 235–238. [Google Scholar] [CrossRef]
- Wu, M.; Fu, X.; Ji, Y.; Ding, W.; Deng, D.; Wang, Y.; Jiang, X.; Niu, C. Microvascular Decompression for Classical Trigeminal Neuralgia Caused by Venous Compression: Novel Anatomic Classifications and Surgical Strategy. World Neurosurg. 2018, 113, e707–e713. [Google Scholar] [CrossRef]
- Tashiro, H.; Kondo, A.; Aoyama, I.; Nin, K.; Shimotake, K.; Nishioka, T.; Ikai, Y.; Takahashi, J. Trigeminal Neuralgia Caused by Compression from Arteries Transfixing the Nerve. J. Neurosurg. 1991, 75, 783–786. [Google Scholar] [CrossRef]
- Vanaclocha, V.; Herrera, J.M.; Martínez-Gómez, D.; Rivera-Paz, M.; Calabuig-Bayo, C.; Vanaclocha, L. Is There a Safe and Effective Way to Treat Trigeminal Neuralgia Associated with Vertebrobasilar Dolichoectasia? Presentation of 8 Cases and Literature Review. World Neurosurg. 2016, 96, 516–529. [Google Scholar] [CrossRef]
- Wróbel-Wiśniewska, G.; Jaskolski, D.J.; Zawirski, M. Neuralgia Nerwu Trójdzielnego Po Embolizacji Wewnatrz-Czaszkowego Oponowego Zniekształcenia Tetniczo-Zylnego. Opis Przypadku [Trigeminal Neuralgia Due to Lengthy AVM Treatment. A Case Report]. Neurol. Neurochir. Pol. 2003, 37, 259–263. [Google Scholar] [CrossRef]
- Li, Z.Y.; Liang, J.T.; Zhang, H.Q.; Bao, Y.H.; Ling, F. Trigeminal Neuralgia Caused by a Dilated Superior Cerebellar Artery and a Draining Vein of Cerebellar Arteriovenous Malformations: A Case Report and Review of the Literature. Acta Neurochir. 2017, 159, 689–694. [Google Scholar] [CrossRef]
- Athanasiou, T.C.; Nair, S.; Coakham, H.B.; Lewis, T.T. Arteriovenous Malformation Presenting with Trigeminal Neuralgia and Treated with Endovascular Coiling. Neurol. India 2005, 53, 247–248. [Google Scholar] [CrossRef] [Green Version]
- Ge, H.; Lv, X.; Jin, H.; He, H.; Li, Y. Role of Endovascular Embolization for Trigeminal Neuralgia Related to Cerebral Vascular Malformation. Interv. Neuroradiol. 2016, 22, 600–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mineura, K.; Sasajima, H.; Itoh, Y.; Kowada, M.; Tomura, N.; Goto, K. Development of a Huge Varix Following Endovascular Embolization for Cerebellar Arteriovenous Malformation. A Case Report. Acta Radiol. 1998, 39, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Molina-Gil, J.; González-Fernández, L.; García-Cabo, C. Trigeminal Neuralgia as the Sole Neurological Manifestation of COVID-19: A Case Report. Headache 2021, 61, 560–562. [Google Scholar] [CrossRef]
- Li, G.W.; Lan, Q.; Zhang, W.C. Clinical Characteristics and Treatment of Trigeminal Neuralgia Following Herpes Zoster. J. Craniofac. Surg. 2015, 26, e448–e451. [Google Scholar] [CrossRef]
- Di Stefano, G.; Maarbjerg, S.; Truini, A. Trigeminal Neuralgia Secondary to Multiple Sclerosis: From the Clinical Picture to the Treatment Options. J. Headache Pain 2019, 20, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wróbel-Wiśniewska, G.; Kasprzak, P.; Zawirski, M. Połowiczy Skurcz Twarzy Jako Poczatkowy Objaw Oponiaka Tylnej Jamy Czaszki [Hemifacial Spasm as an Early Symptom of Posterior Fossa Meningioma]. Neurol. Neurochir. Pol. 2003, 37, 459–463. [Google Scholar]
- Cruccu, G.; Finnerup, N.B.; Jensen, T.S.; Scholz, J.; Sindou, M.; Svensson, P.; Treede, R.D.; Zakrzewska, J.M.; Nurmikko, T. Trigeminal Neuralgia: New Classification and Diagnostic Grading for Practice and Research. Neurology 2016, 87, 220–228. [Google Scholar] [CrossRef]
- Marinković, S.; Gibo, H. The Neurovascular Relationships and the Blood Supply of the Oculomotor Nerve: The Microsurgical Anatomy of Its Cisternal Segment. Surg. Neurol. 1994, 42, 505–516. [Google Scholar] [CrossRef]
- Esmer, A.F.; Sen, T.; Comert, A.; Tuccar, E.; Karahan, S.T. The Neurovascular Relationships of the Oculomotor Nerve. Clin. Anat. 2011, 24, 583–589. [Google Scholar] [CrossRef]
- Hashimoto, M.; Ohtsuka, K.; Akiba, H.; Harada, K. Vascular Compression of the Oculomotor Nerve Disclosed by Thin-Slice Magnetic Resonance Imaging. Am. J. Ophthalmol. 1998, 125, 881–882. [Google Scholar] [CrossRef]
- Nakagawa, H.; Nakajima, S.; Nakajima, Y.; Furuta, Y.; Nishi, O.; Nishi, K. Bilateral Oculomotor Nerve Palsies Due to Posterior Cerebral Arterial Compression Relieved by Microvascular Decompression–Case Report. Neurol. Med. Chir. 1991, 31, 45–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albayram, S.; Ozer, H.; Sarici, A.; Murphy, K.; Miller, N. Unilateral Mydriasis without Ophthalmoplegia—A Sign of Neurovascular Compression? Case Report. Neurosurgery 2006, 58, E582–E583. [Google Scholar] [CrossRef] [PubMed]
- Zorman, G.; Wilson, C.B. Outcome Following Microsurgical Vascular Decompression or Partial Sensory Rhizotomy in 125 Cases of Trigeminal Neuralgia. Neurology 1984, 34, 1362–1365. [Google Scholar] [CrossRef] [PubMed]
- Sindou, M.P.; Chiha, M.; Mertens, P. Anatomical Findings Observed during Microsurgical Approaches of the Cerebellopontine Angle for Vascular Decompression in Trigeminal Neuralgia (350 Cases). Stereotact. Funct. Neurosurg. 1994, 63, 203–207. [Google Scholar] [CrossRef]
- Barker, F.G.; Jannetta, P.J.; Bissonette, D.J.; Larkins, M.V.; Jho, H.D. The Long-Term Outcome of Microvascular Decompression for Trigeminal Neuralgia. N. Engl. J. Med. 1996, 334, 1077–1084. [Google Scholar] [CrossRef]
- Sindou, M.; Howeidy, T.; Acevedo, G. Anatomical Observations during Microvascular Decompression for Idiopathic Trigeminal Neuralgia (with Correlations between Topography of Pain and Site of the Neurovascular Conflict). Prospective Study in a Series of 579 Patients. Acta Neurochir. 2002, 144, 1–13. [Google Scholar] [CrossRef]
- Li, S.T.; Pan, Q.; Liu, N.; Shen, F.; Liu, Z.; Guan, Y.; Sindou, M.; Burchiel, K.J. Trigeminal Neuralgia: What Are the Important Factors for Good Operative Outcomes with Microvascular Decompression. Surg. Neurol. 2004, 62, 400–404. [Google Scholar] [CrossRef]
- Sekula, R.F.; Frederickson, A.M.; Jannetta, P.J.; Bhatia, S.; Quigley, M.R.; Abdel Aziz, K.M. Microvascular Decompression in Patients with Isolated Maxillary Division Trigeminal Neuralgia, with Particular Attention to Venous Pathology. Neurosurg. Focus 2009, 27, E10. [Google Scholar] [CrossRef] [Green Version]
- Soares-Dos-Reis, R.; Martins, A.I.; Brás, A.; Matos, A.; Bento, C.; Lemos, J. Ocular Neuromyotonia. Pract. Neurol. 2018, 18, 389–390. [Google Scholar] [CrossRef]
- Tanrikulu, L.; Scholz, T.; Nikoubashman, O.; Wiesmann, M.; Clusmann, H. Preoperative MRI in Neurovascular Compression Syndromes and Its Role for Microsurgical Considerations. Clin. Neurol. Neurosurg. 2015, 129, 17–20. [Google Scholar] [CrossRef]
- Colosimo, C.; Bologna, M.; Lamberti, S.; Avanzino, L.; Marinelli, L.; Fabbrini, G.; Abbruzzese, G.; Defazio, G.; Berardelli, A. A Comparative Study of Primary and Secondary Hemifacial Spasm. Arch. Neurol. 2006, 63, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, N.; Srivastava, A.; Joshi, L. Hemifacial Spasm: The Past, Present and Future. J. Neurol. Sci. 2015, 356, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Abbruzzese, G.; Berardelli, A.; Defazio, G. Hemifacial Spasm. Handb. Clin. Neurol. 2011, 100, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Auger, R.G.; Whisnant, J.P. Hemifacial Spasm in Rochester and Olmsted County, Minnesota, 1960 to 1984. Arch. Neurol. 1990, 47, 1233–1234. [Google Scholar] [CrossRef]
- Nilsen, B.; Le, K.D.; Dietrichs, E. Prevalence of Hemifacial Spasm in Oslo, Norway. Neurology 2004, 63, 1532–1533. [Google Scholar] [CrossRef]
- Yan, X.; Gu, J.; Quan, J.; Zhang, X.; Zhou, X.; Qu, J.; Zhou, L. Anatomical Deviations of Vertebral Artery in Hemifacial Spasm: A Quantitative Study. Surg. Radiol. Anat. 2021, 43, 291–299. [Google Scholar] [CrossRef]
- Guan, H.X.; Zhu, J.; Zhong, J. Correlation between Idiopathic Hemifacial Spasm and the MRI Characteristics of the Vertebral Artery. J. Clin. Neurosci. 2011, 18, 528–530. [Google Scholar] [CrossRef]
- Greenberg, M. Functional Neurosurgery and Stereotactic Neurosurgery. In Handbook of Neurosurgery; Stuttgart: New York, NY, USA; New Delhi, India; Thieme: Rio de Janeiro, Brazil, 2020. [Google Scholar]
- Tambasco, N.; Filidei, M.; Nigro, P.; Parnetti, L.; Simoni, S. Botulinum Toxin for the Treatment of Hemifacial Spasm: An Update on Clinical Studies. Toxins 2021, 13, 881. [Google Scholar] [CrossRef]
- Vanaparthy, R.; Malayala, S.V.; Balla, M. COVID-19-Induced Vestibular Neuritis, Hemi-Facial Spasms and Raynaud’s Phenomenon: A Case Report. Cureus 2020, 12, e11752. [Google Scholar] [CrossRef]
- Blackburn, I.W. Anomalies of the Encephalic Arteries among the Insane. A Study of the Arteries at the Base of the Encephallon in Two Hundred and Twenty Consecutive Cases of Mental Disease, with Special Reference to Anomalies of the Circle of Willis. J. Comp. Neurol. Psychol. 1907, 17, 493–517. [Google Scholar] [CrossRef] [Green Version]
- Stopford, J.S. The Arteries of the Pons and Medulla Oblongata. J. Anat. Physiol. 1916, 50, 131–164. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.; Vincentelli, F.; Rabehanta, P.; Giudicelli, G.; Grisoli, F. Anomalies of the P1 Segment of the Posterior Cerebral Artery: Early Bifurcation or Duplication, Fenestration, Common Trunk with the Superior Cerebellar Artery. Acta Neurochir. 1991, 109, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Pai, B.; Varma, R.; Kulkarni, R.; Nirmala, S.; Manjunath, L.; Rakshith, S. Microsurgical Anatomy of the Posterior Circulation. Neurol. India 2007, 55, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Ogeng’o, J.; Elbusaidy, H.; Sinkeet, S.; Olabu, B.; Mwachaka, P.; Inyimili, M. Variant Origin of the Superior Cerebellar Artery in a Black Kenyan Population. Eur. J. Anat. 2023, 19, 287–290. [Google Scholar]
- Kalaiyarasi, S.; Chitra, P.S. A Study of Variations in the Origin of Superior Cerebellar Artery and the Dimensions of Its Proximal Segment. Int. J. Anat. Res. 2018, 6, 4849–4853. [Google Scholar] [CrossRef] [Green Version]
- Pekcevik, Y.; Pekcevik, R. Variations of the Cerebellar Arteries at CT Angiography. Surg. Radiol. Anat. 2014, 36, 455–461. [Google Scholar] [CrossRef]
- Krzyzewski, R.M.; Stachura, M.K.; Stachura, A.M.; Rybus, J.; Tomaszewski, K.A.; Klimek-Piotrowska, W.; Brzegowy, P.; Urbanik, A.; Walocha, J.A. Variations and Morphometric Analysis of the Proximal Segment of the Superior Cerebellar Artery. Neurol. Neurochir. Pol. 2014, 48, 229–235. [Google Scholar] [CrossRef]
- Greenberg, M.S. Handbook of Neurosurgery: 98.6 Neurovascular Compression Syndromes. Thieme: Stuttgart, Germany, 2023. [Google Scholar]
- Meaney, J.F.M.; Eldridge, P.R.; Dunn, L.T.; Nixon, T.E.; Whitehouse, G.H.; Miles, J.B. Demonstration of Neurovascular Compression in Trigeminal Neuralgia with Magnetic Resonance Imaging. Comparison with Surgical Findings in 52 Consecutive Operative Cases. J. Neurosurg. 1995, 83, 799–805. [Google Scholar] [CrossRef]
- Naraghi, R.; Hastreiter, P.; Tomandl, B.; Bonk, A.; Huk, W.; Fahlbusch, R. Three-Dimensional Visualization of Neurovascular Relationships in the Posterior Fossa: Technique and Clinical Application. J. Neurosurg. 2004, 100, 1025–1035. [Google Scholar] [CrossRef] [Green Version]
- Haller, S.; Etienne, L.; Kövari, E.; Varoquaux, A.D.; Urbach, H.; Becker, M. Imaging of Neurovascular Compression Syndromes: Trigeminal Neuralgia, Hemifacial Spasm, Vestibular Paroxysmia, and Glossopharyngeal Neuralgia. AJNR. Am. J. Neuroradiol. 2016, 37, 1384–1392. [Google Scholar] [CrossRef] [Green Version]
- Maurya, V.; Sreedhar, C.M.; Khera, A.; Bhatia, M.; Sharma, V. Trigeminal Neuralgia: When Does Neurovascular Contact Turn into a Conflict? Med. J. Armed Forces India 2019, 75, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Lope-Piedrafita, S. Diffusion Tensor Imaging (DTI). Methods Mol. Biol. 2018, 1718, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Herweh, C.; Kress, B.; Rasche, D.; Tronnier, V.; Tröger, J.; Sartor, K.; Stippich, C. Loss of Anisotropy in Trigeminal Neuralgia Revealed by Diffusion Tensor Imaging. Neurology 2007, 68, 776–778. [Google Scholar] [CrossRef] [PubMed]
- Basser, P.J.; Pierpaoli, C. Microstructural and Physiological Features of Tissues Elucidated by Quantitative-Diffusion-Tensor MRI. 1996. J. Magn. Reson. 2011, 213, 560–570. [Google Scholar] [CrossRef]
- Lummel, N.; Mehrkens, J.H.; Linn, J.; Buchholz, G.; Stahl, R.; Bochmann, K.; Brückmann, H.; Lutz, J. Diffusion Tensor Imaging of the Trigeminal Nerve in Patients with Trigeminal Neuralgia Due to Multiple Sclerosis. Neuroradiology 2015, 57, 259–267. [Google Scholar] [CrossRef]
- Desouza, D.D.; Hodaie, M.; Davis, K.D. Abnormal Trigeminal Nerve Microstructure and Brain White Matter in Idiopathic Trigeminal Neuralgia. Pain 2014, 155, 37–44. [Google Scholar] [CrossRef]
- Lutz, J.; Thon, N.; Stahl, R.; Lummel, N.; Tonn, J.C.; Linn, J.; Mehrkens, J.H. Microstructural Alterations in Trigeminal Neuralgia Determined by Diffusion Tensor Imaging Are Independent of Symptom Duration, Severity, and Type of Neurovascular Conflict. J. Neurosurg. 2016, 124, 823–830. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, S.; Sasaki, M.; Wada, T.; Kudo, K.; Hirooka, R.; Ishigaki, D.; Nishikawa, Y.; Ono, A.; Yamaguchi, M.; Ogasawara, K. High-Resolution Diffusion Tensor Imaging for the Detection of Diffusion Abnormalities in the Trigeminal Nerves of Patients with Trigeminal Neuralgia Caused by Neurovascular Compression. J. Neuroimaging 2011, 21, e102–e108. [Google Scholar] [CrossRef]
- Willsey, M.S.; Collins, K.L.; Conrad, E.C.; Chubb, H.A.; Patil, P.G. Diffusion Tensor Imaging Reveals Microstructural Differences between Subtypes of Trigeminal Neuralgia. J. Neurosurg. 2019, 133, 573–579. [Google Scholar] [CrossRef]
- Chen, J.; Guo, Z.Y.; Liang, Q.Z.; Liao, H.Y.; Su, W.R.; Chen, C.X.; Fu, S.X.; Han, X.J. Structural Abnormalities of Trigeminal Root with Neurovascular Compression Revealed by High Resolution Diffusion Tensor Imaging. Asian Pac. J. Trop. Med. 2012, 5, 749–752. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malicki, M.; Szmyd, B.M.; Bobeff, E.J.; Karuga, F.F.; Piotrowski, M.M.; Kościołek, D.; Wanibuchi, S.; Radek, M.; Jaskólski, D.J. The Superior Cerebellar Artery: Variability and Clinical Significance. Biomedicines 2023, 11, 2009. https://doi.org/10.3390/biomedicines11072009
Malicki M, Szmyd BM, Bobeff EJ, Karuga FF, Piotrowski MM, Kościołek D, Wanibuchi S, Radek M, Jaskólski DJ. The Superior Cerebellar Artery: Variability and Clinical Significance. Biomedicines. 2023; 11(7):2009. https://doi.org/10.3390/biomedicines11072009
Chicago/Turabian StyleMalicki, Mikołaj, Bartosz M. Szmyd, Ernest J. Bobeff, Filip F. Karuga, Michał M. Piotrowski, Dawid Kościołek, Sora Wanibuchi, Maciej Radek, and Dariusz J. Jaskólski. 2023. "The Superior Cerebellar Artery: Variability and Clinical Significance" Biomedicines 11, no. 7: 2009. https://doi.org/10.3390/biomedicines11072009
APA StyleMalicki, M., Szmyd, B. M., Bobeff, E. J., Karuga, F. F., Piotrowski, M. M., Kościołek, D., Wanibuchi, S., Radek, M., & Jaskólski, D. J. (2023). The Superior Cerebellar Artery: Variability and Clinical Significance. Biomedicines, 11(7), 2009. https://doi.org/10.3390/biomedicines11072009