Mutual Effect Modification between Insulin Resistance and Endothelial Dysfunction in Predicting Incident Heart Failure in Hypertensives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood Pressure Measurements
2.2. Laboratory Evaluations
2.3. Insulin-Resistance
2.4. Vascular Function Evaluation
2.5. Follow-Up and Incident Heart Failure
2.6. Statistical Analysis
3. Results
3.1. Vascular Function
3.2. Follow-Up and Incident Heart Failure
3.3. Cox Regression Analyses
3.4. Mutual Effect Modification by ACh-Stimulated FBF and HOMA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krum, H.; Abraham, W.T. Heart failure. Lancet 2009, 373, 941–955. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar]
- Seferovic, P.M.; Ponikowski, P.; Anker, S.D.; Bauersachs, J.; Chioncel, O.; Cleland, J.G.; de Boer, R.A.; Drexel, H.; Ben Gal, T.; Hill, L.; et al. Clinical practice update on heart failure 2019: Pharmacotherapy, procedures, devices and patient management. An expert consensus meeting report of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail 2019, 21, 1169–1186. [Google Scholar] [CrossRef]
- Taqueti, V.R.; Solomon, S.D.; Shah, A.M.; Desai, A.S.; Groarke, J.D.; Osborne, M.T.; Hainer, J.; Bibbo, C.F.; Dorbala, S.; Blankstein, R.; et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur. Heart J. 2018, 39, 840–849. [Google Scholar] [CrossRef]
- Kasznicki, J.; Drzewoski, J. Heart failure in the diabetic population—Pathophysiology, diagnosis and management. Arch. Med. Sci. 2014, 10, 546–556. [Google Scholar] [CrossRef]
- Quyyumi, A.A. Endothelial function in health and disease: New insights into the genesis of cardiovascular disease. Am. J. Med. 1998, 105, 32S–39S. [Google Scholar] [CrossRef]
- Bonetti, P.O.; Lerman, L.O.; Lerman, A. Endothelial dysfunction—A marker of atherosclerotic risk. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 168–175. [Google Scholar] [CrossRef]
- Ross, R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999, 340, 115–126. [Google Scholar] [CrossRef]
- Perticone, F.; Ceravolo, R.; Pujia, A.; Ventura, G.; Iacopino, S.; Scozzafava, A.; Ferraro, A.; Chello, M.; Mastroroberto, P.; Verdecchia, P.; et al. Prognostic significance of endothelial dysfunction in hypertensive patients. Circulation 2001, 104, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Lerman, A.; Zeiher, A.M. Endothelial function: Cardiac events. Circulation 2005, 111, 363–368. [Google Scholar] [CrossRef]
- Perticone, F.; Maio, R.; Sciacqua, A.; Andreozzi, F.; Iemma, G.; Perticone, M.; Zoccali, C.; Sesti, G. Endothelial dysfunction and C-reactive protein are risk factors for diabetes in essential hypertension. Diabetes 2008, 57, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Maio, R.; Perticone, M.; Suraci, E.; Sciacqua, A.; Sesti, G.; Perticone, F. Endothelial dysfunction and C-recative protein predict the incidence of heart failure in hypertensive patients. ESC Heart Fail. 2021, 8, 399–407. [Google Scholar] [CrossRef]
- Colombo, P.C.; Banchs, J.E.; Celaj, S.; Talreja, A.; Lachmann, J.; Malla, S.; DuBois, N.B.; Ashton, A.W.; Latif, F.; Jorde, U.P.; et al. Endothelial cell activation in patients with decompensated heart failure. Circulation 2005, 111, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Giannitsi, S.; Bougiakli, M.; Bechlioulis, A.; Naka, K. Endothelial dysfunction and heart failure: A review of the existing bibliography with emphasis on flow mediated dilation. JRSM Cardiovasc. Dis. 2019, 8, 1–7. [Google Scholar] [CrossRef]
- Zuchi, C.; Tritto, I.; Carluccio, E.; Mattei, C.; Cattadori, G.; Ambrosio, G. Role of endothelial, dysfunction in heart failure. Heart Fail. Rev. 2020, 25, 21–30. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentration in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panza, J.A.; Quyyumi, A.A.; Brush, J.E.; Epstein, S.E. Abnormal endothelium dependent vascular relaxation in patients with essential hypertension. N. Engl. J. Med. 1990, 323, 22–27. [Google Scholar] [CrossRef]
- Ceravolo, R.; Maio, R.; Pujia, A.; Sciacqua, A.; Ventura, G.; Costa, M.C.; Sesti, G.; Perticone, F. Pulse pressure and endothelial dysfunction in never-treated hypertensive patients. J. Am. Coll. Cardiol. 2003, 41, 753–758. [Google Scholar] [CrossRef] [Green Version]
- Reaven, G.M.; Lithell, H.; Landsberg, L. Hypertension and associated metabolic abnormalities: The role of insulin resistance and the sympathoadrenal system. N. Engl. J. Med. 1996, 334, 374–381. [Google Scholar] [CrossRef]
- Ceravolo, R.; Maio, R.; Cuda, G.; Scozzafava, A.; Sciacqua, A.; Vatrano, M.; Bellieni, G.; D’Angelo, G.; Schipani, F.A.; Sesti, G.; et al. Relation of fasting insulin related to insertion/deletion polymorphism of angiotensin-converting enzyme-gene and cardiac mass in never-treated patients with systemic hypertension. Am. J. Cardiol. 2003, 92, 1234–1237. [Google Scholar] [CrossRef]
- Sesti, G.; Sciacqua, A.; Scozzafava, A.; Vatrano, M.; Angotti, E.; Ruberto, C.; Santillo, E.; Parlato, G.; Perticone, F. Effects of growth hormone and insulin-like growth factor-1 on cardiac hypertrophy of hypertensive patients. J. Hypertens. 2007, 25, 471–477. [Google Scholar] [CrossRef]
- Zaharia, O.P.; Schön, M.; Löffler, L.; Strassburger, K.; Möser, C.; Yurchenko, I.; Bódis, K.; Antoniou, S.; Karusheva, Y.; Szendroedi, J.; et al. Metabolic factors predict changes in endothelial function during the early course of type 1 and type 2 diabetes. J. Clin. Endocrinol. Metab. 2022, 107, e4167–e4176. [Google Scholar] [CrossRef] [PubMed]
- Succurro, E.; Pedace, E.; Andreozzi, F.; Papa, A.; Vizza, P.; Fiorentino, T.V.; Perticone, F.; Veltri, P.; Cascini, G.L.; Sesti, G. Reduction in global myocardial glucose metabolism in subjects with 1-h postload hyperglycemia and impaired glucose tolerance. Diabetes Care 2020, 43, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Succurro, E.; Miceli, S.; Fiorentino, T.V.; Sciacqua, A.; Perticone, M.; Andreozzi, F.; Sesti, G. Sex-specific differences in left ventricular mass and myocardial energetic efficiency in non-diabetic, pre-diabetic and newly diagnosed type 2 diabetic subjects. Cardiovasc. Diabetol. 2021, 20, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Khattar, R.S.; Acharya, D.U.; Kinsey, C.; Senior, R.; Lahiri, A. Longitudinal association of ambulatory pulse pressure with left ventricular mass and vascular hypertrophy in essential hypertension. J. Hypertens. 1997, 15, 737–743. [Google Scholar] [CrossRef]
- The CAFE Investigators; Williams, B.; Lacy, P.S.; Thom, S.M.; Cruickshank, K.; Stanton, A.; Collier, D.; Hughes, A.D.; Thurston, H.; O’rourke, M.; et al. CAFE Investigators; Anglo-Scandinavian Cardiac Outcomes Trial Investigators; CAFE Steering Committee and Writing Committee. Differential impact of blood pressure -lowering drugs on central aortic pressure and clinical outcomes: Principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 2006, 113, 1213–1225. [Google Scholar] [CrossRef] [Green Version]
- Perticone, F.; Maio, R.; Perticone, M.; Sciacqua, A.; Shehaj, E.; Naccarato, P.; Sesti, G. Endothelial dysfunction and subsequent decline in glomerular filtration rate in hypertensive patients. Circulation 2010, 122, 379–384. [Google Scholar] [CrossRef] [Green Version]
All (n = 705) | Progressors (n = 223) | Non-Progressors (n = 482) | p | |
---|---|---|---|---|
Gender, female (%) | 347 (49.2) | 141 (63.2) | 206 (42.7) | 0.0001 |
Age, years | 48.4 ± 10.6 | 49.8 ± 11.0 | 47.8 ± 10.3 | 0.019 |
BMI, Kg/m2 | 27.5 ± 3.6 | 27.8 ± 4.1 | 27.3 ± 3.4 | 0.089 |
Current smokers, n (%) | 110 (15.6) | 38 (17.0) | 72 (14.9) | 0.237 |
Systolic BP, mmHg | 149.2 ± 16.9 | 150.3 ± 16.1 | 148.7 ± 17.3 | 0.243 |
Diastolic BP, mmHg | 91.0 ± 11.6 | 90.9 ± 11.0 | 91.0 ± 11.8 | 0.914 |
Heart rate, bpm | 72.6 ± 9.6 | 70.8 ± 9.2 | 73.4 ± 9.7 | 0.437 |
Fasting glucose, mg/dL | 95.2 ± 10.6 | 96.8 ± 11.1 | 94.4 ± 10.2 | 0.004 |
Fasting insulin, U/L | 14.9 ± 6.9 | 16.6 ± 7.1 | 13.4 ± 6.1 | 0.0001 |
HOMA | 3.4 ± 1.7 | 4.0 ± 1.9 | 3.1 ± 1.5 | 0.0001 |
Total cholesterol, mg/dL | 204.7 ± 31.6 | 203.7 ± 32.3 | 205.2 ± 31.5 | 0.559 |
LDL cholesterol | 129.3 ± 31.5 | 128.9 ± 32.4 | 129.4 ± 31.1 | 0.844 |
HDL cholesterol | 51.8 ± 12.4 | 50.8 ± 12.8 | 52.2 ± 12.2 | 0.163 |
Triglyceride, mg/dL | 115.9 ± 39.2 | 117.1 ± 40.4 | 115.5 ± 38.7 | 0.614 |
Creatinine, mg/dL | 0.96 ± 0.19 | 1.08 ± 0.19 | 0.90 ± 0.16 | 0.0001 |
e-GFR, mL/min/1.7 m2 | 84.6 ± 20.2 | 70.1 ± 17.6 | 91.2 ± 17.7 | 0.0001 |
hs-CRP, mg/dL | 3.75 ± 1.68 | 4.45 ± 1.39 | 3.43 ± 1.71 | 0.0001 |
Forearm blood flow | ||||
Basal, mL × 100 mL tissue−1 × min−1 | 3.36 ± 0.66 | 3.29 ± 0.61 | 3.37 ± 0.67 | 0.130 |
Acetylcholine, % increase | 294 ± 179 | 221 ± 128 | 328 ± 189 | 0.0001 |
Sodium nitroprusside, % increase | 316 ± 112 | 312 ± 114 | 318 ± 111 | 0.584 |
Antihypertensive drugs | ||||
ACE-i/ARBs, n (%) | 558 (79.1) | 175 (78.5) | 383 (79.5) | 0.382 |
Calcium antagonists, n (%) | 248 (35.2) | 78 (34.9) | 170 (35.3) | 0.469 |
β-Blockers, n (%) | 57 (8.1) | 19 (8.5) | 38 (7.9) | 0.386 |
α-Blockers, n (%) | 15 (2.1) | 5 (2.2) | 10 (2.1) | 0.443 |
Diuretics, n (%) | 126 (17.9) | 40 (17.9) | 86 (17.8) | 0.487 |
Associations, n (%) | 408 (57.8) | 128 (57.4) | 280 (58.1) | 0.431 |
Univariate Analysis | Hazard Ratio | 95% CI | p |
---|---|---|---|
Gender, female | 2.303 | 1.661–3.193 | 0.0000 |
hs-CRP, mg/dL | 1.451 | 1.309–1.608 | 0.0000 |
HOMA | 1.334 | 1.213–1.468 | 0.0000 |
Age, 10 years | 1.193 | 1.030–1.381 | 0.017 |
Forearm blood flow, 100% increase | 0.660 | 0.585–0.744 | 0.0000 |
e-GFR, 10 mL/min/1.7 m2 | 0.538 | 0.484–0.599 | 0.0000 |
Systolic BP, 10 mmHg | 1.054 | 0.961–1.156 | 0.260 |
BMI, Kg/m2 | 1.037 | 0.993–1.083 | 0.099 |
Smoking | 1.169 | 0.761–1.797 | 0.474 |
Total cholesterol, 10 mg/dL | 0.977 | 0.929–1.027 | 0.368 |
Multivariate analysis | |||
hs-CRP, 1 mg/dL | 1.362 | 1.208–1.536 | 0.00001 |
HOMA | 1.293 | 1.142–1.465 | 0.0001 |
Forearm blood flow, 100% increase | 0.807 | 0.697–0.934 | 0.004 |
e-GFR, 10 mL/min/1.7 m2 | 0.552 | 0.483–0.630 | 0.00001 |
Model 1 | Model 2 * | |
---|---|---|
HOMA < 3.11 | HR = 3.52, 95% CI: 2.20–5.63; p < 0.001 (FBF ≤ 252% versus FBF > 252%) | HR = 3.95, 95% CI: 2.46–6.34; p < 0.001 (FBF ≤ 252% versus FBF > 252%) |
HOMA ≥ 3.1 | HR 1.60, 95% CI: 1.11–2.33; p = 0.012 (FBF ≤ 252% versus FBF > 252%) | HR = 1.72, 95% CI: 1.18–2.50; p = 0.004 (FBF ≤ 252% versus FBF > 252%) |
Effect modification by HOMA p = 0.01 | Effect modification by HOMA p = 0.007 | |
FBF ≥ 252% | HR = 2.57, 95% CI: 1.56–4.22; p < 0.001 (HOMA > 3.1 versus HOMA ≤ 3.1) | HR = 2.68, 95% CI: 1.61–4.45; p < 0.001 (HOMA > 3.1 versus HOMA ≤ 3.1) |
FBF < 252% | HR = 1.17, 95% CI: 0.84–1.64; p = 0.35 (HOMA > 3.1 versus HOMA ≤ 3.1) | HR = 1.17, 95% CI: 0.83–1.65; p = 0.38 (HOMA > 3.1 versus HOMA ≤ 3.1): |
Effect modification by FBF, p = 0.007 | Effect modification by FBF, p = 0.007 |
HR | CI 95% | p | |
---|---|---|---|
0 | 1 | ||
1 | 3.625 | 2.076–6.331 | 0.0001 |
2 | 5.938 | 3.459–10.193 | 0.0001 |
3 | 6.548 | 4.034–10.629 | 0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perticone, M.; Maio, R.; Gigliotti, S.; Shehaj, E.; Toscani, A.F.; Capomolla, A.; Fabiani, G.; Sciacqua, A.; Perticone, F. Mutual Effect Modification between Insulin Resistance and Endothelial Dysfunction in Predicting Incident Heart Failure in Hypertensives. Biomedicines 2023, 11, 2188. https://doi.org/10.3390/biomedicines11082188
Perticone M, Maio R, Gigliotti S, Shehaj E, Toscani AF, Capomolla A, Fabiani G, Sciacqua A, Perticone F. Mutual Effect Modification between Insulin Resistance and Endothelial Dysfunction in Predicting Incident Heart Failure in Hypertensives. Biomedicines. 2023; 11(8):2188. https://doi.org/10.3390/biomedicines11082188
Chicago/Turabian StylePerticone, Maria, Raffaele Maio, Simona Gigliotti, Ermal Shehaj, Alfredo Francesco Toscani, Antonella Capomolla, Ginevra Fabiani, Angela Sciacqua, and Francesco Perticone. 2023. "Mutual Effect Modification between Insulin Resistance and Endothelial Dysfunction in Predicting Incident Heart Failure in Hypertensives" Biomedicines 11, no. 8: 2188. https://doi.org/10.3390/biomedicines11082188
APA StylePerticone, M., Maio, R., Gigliotti, S., Shehaj, E., Toscani, A. F., Capomolla, A., Fabiani, G., Sciacqua, A., & Perticone, F. (2023). Mutual Effect Modification between Insulin Resistance and Endothelial Dysfunction in Predicting Incident Heart Failure in Hypertensives. Biomedicines, 11(8), 2188. https://doi.org/10.3390/biomedicines11082188