Deletion of Gtf2i via Systemic Administration of AAV-PHP.eB Virus Increases Social Behavior in a Mouse Model of a Neurodevelopmental Disorder
Abstract
:1. Introduction
2. Methods
2.1. Mice
2.2. Injection
2.3. DNA Extraction
2.4. Polymerase Chain Reaction (PCR)
2.5. Gel Electrophoresis
2.6. Behavioral Tests
2.7. Brain Tissue Extraction
2.8. RNA Isolation and qPCR
2.9. Immunofluorescent Staining
2.10. Western Blot
2.11. Statistical Analysis
3. Results
3.1. Mouse Brain Gtf2i and Tfii-i Expression Levels Are Significantly Reduced in Early Post-Natal Stages
3.2. Systemic Viral Administration Results in a High Brain-Wide Infection Rate
3.3. Systemic Post-Natal Viral Injection Effectively Reduces Gtf2i mRNA and Tfii-i Protein Levels
3.4. Post-Natal Deletion of Gtf2i from Excitatory Neurons Results in Increased Sociability and Altered Anxiety-like Behavior
3.5. Post-Natal Neuronal Gtf2i Deletion Does Not Affect Gross Anatomical Properties of the Brain or Cellular and Transcriptional Properties
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kozel, B.A.; Barak, B.; Kim, C.A.; Mervis, C.B.; Osborne, L.R.; Porter, M.; Pober, B.R. Williams syndrome. Nat. Rev. Dis. Primers 2021, 7, 42. [Google Scholar] [CrossRef] [PubMed]
- Barak, B.; Feng, G. Neurobiology of social behavior abnormalities in autism and Williams syndrome. Nat. Neurosci. 2016, 19, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Pober, B.R. Williams-Beuren syndrome. N. Engl. J. Med. 2010, 362, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Bellugi, U.; Chen, X.N.; Pulst-Korenberg, A.M.; Jarvinen-Pasley, A.; Tirosh-Wagner, T.; Eis, P.S.; Graham, J.; Mills, D.; Searcy, Y.; et al. Is it Williams syndrome? GTF2IRD1 implicated in visual-spatial construction and GTF2I in sociability revealed by high resolution arrays. Am. J. Med. Genet. Part A 2009, 149A, 302–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, C.A.; Mervis, C.B.; Hobart, H.H.; Gregg, R.G.; Bertrand, J.; Ensing, G.J.; Sommer, A.; Moore, C.A.; Hopkin, R.J.; Spallone, P.A.; et al. GTF2I hemizygosity implicated in mental retardation in Williams syndrome: Genotype-phenotype analysis of five families with deletions in the Williams syndrome region. Am. J. Med. Genet. Part A 2003, 123A, 45–59. [Google Scholar] [CrossRef]
- Martin, L.A.; Iceberg, E.; Allaf, G. Consistent hypersocial behavior in mice carrying a deletion of Gtf2i but no evidence of hyposocial behavior with Gtf2i duplication: Implications for Williams-Beuren syndrome and autism spectrum disorder. Brain Behav. 2018, 8, e00895. [Google Scholar] [CrossRef]
- Sakurai, T.; Dorr, N.P.; Takahashi, N.; McInnes, L.A.; Elder, G.A.; Buxbaum, J.D. Haploinsufficiency of Gtf2i, a gene deleted in Williams Syndrome, leads to increases in social interactions. Autism Res. 2011, 4, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Osborne, L.R. Animal models of Williams syndrome. Am. J. Med. Genet. Part C Semin. Med. Genet. 2010, 154C, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Barak, B.; Zhang, Z.; Liu, Y.; Nir, A.; Trangle, S.S.; Ennis, M.; Levandowski, K.M.; Wang, D.; Quast, K.; Boulting, G.L.; et al. Neuronal deletion of Gtf2i, associated with Williams syndrome, causes behavioral and myelin alterations rescuable by a remyelinating drug. Nat. Neurosci. 2019, 22, 700–708. [Google Scholar] [CrossRef]
- Enkhmandakh, B.; Makeyev, A.V.; Erdenechimeg, L.; Ruddle, F.H.; Chimge, N.O.; Tussie-Luna, M.I.; Roy, A.L.; Bayarsaihan, D. Essential functions of the Williams-Beuren syndrome-associated TFII-I genes in embryonic development. Proc. Natl. Acad. Sci. USA 2009, 106, 181–186. [Google Scholar] [CrossRef]
- Farran, E.K.; Karmiloff-Smith, A. Neurodevelopmental Disorders across the Lifespan: A Neuroconstructivist Approach; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Ewart, A.K.; Morris, C.A.; Atkinson, D.; Jin, W.S.; Sternes, K.; Spallone, P.; Stock, A.D.; Leppert, M.; Keating, M.T. Hemizygosity at the Elastin Locus in a Developmental Disorder, Williams-Syndrome. Nat. Genet. 1993, 5, 11–16. [Google Scholar] [CrossRef]
- Morris, C.A.; Mervis, C.B.; Paciorkowski, A.P.; Abdul-Rahman, O.; Dugan, S.L.; Rope, A.F.; Bader, P.; Hendon, L.G.; Velleman, S.L.; Klein-Tasman, B.P.; et al. 7q11.23 Duplication syndrome: Physical characteristics and natural history. Am. J. Med. Genet. Part A 2015, 167A, 2916–2935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mervis, C.B.; Klein-Tasman, B.P.; Huffman, M.J.; Velleman, S.L.; Pitts, C.H.; Henderson, D.R.; Woodruff-Borden, J.; Morris, C.A.; Osborne, L.R. Children with 7q11.23 duplication syndrome: Psychological characteristics. Am. J. Med. Genet. Part A 2015, 167, 1436–1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mervis, C.B.; Dida, J.; Lam, E.; Crawford-Zelli, N.A.; Young, E.J.; Henderson, D.R.; Onay, T.; Morris, C.A.; Woodruff-Borden, J.; Yeomans, J.; et al. Duplication of GTF2I results in separation anxiety in mice and humans. Am. J. Hum. Genet. 2012, 90, 1064–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborne, L.R.; Mervis, C.B. 7q11.23 deletion and duplication. Curr. Opin. Genet. Dev. 2021, 68, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Somerville, M.J.; Mervis, C.B.; Young, E.J.; Seo, E.J.; del Campo, M.; Bamforth, S.; Peregrine, E.; Loo, W.; Lilley, M.; Perez-Jurado, L.A.; et al. Severe expressive-language delay related to duplication of the Williams-Beuren locus. N. Engl. J. Med. 2005, 353, 1694–1701. [Google Scholar] [CrossRef] [Green Version]
- Pinelli, M.; Terrone, G.; Troglio, F.; Squeo, G.M.; Cappuccio, G.; Imperati, F.; Pignataro, P.; Genesio, R.; Nitch, L.; Del Giudice, E.; et al. A small 7q11.23 microduplication involving GTF2I in a family with intellectual disability. Clin. Genet. 2020, 97, 940–942. [Google Scholar] [CrossRef]
- Mendell, J.R.; Al-Zaidy, S.A.; Rodino-Klapac, L.R.; Goodspeed, K.; Gray, S.J.; Kay, C.N.; Boye, S.L.; Boye, S.E.; George, L.A.; Salabarria, S.; et al. Current Clinical Applications of In Vivo Gene Therapy with AAVs. Mol. Ther. 2021, 29, 464–488. [Google Scholar] [CrossRef]
- Pupo, A.; Fernandez, A.; Low, S.H.; Francois, A.; Suarez-Amaran, L.; Samulski, R.J. AAV vectors: The Rubik’s cube of human gene therapy. Mol. Ther. J. Am. Soc. Gene Ther. 2022, 30, 3515–3541. [Google Scholar] [CrossRef]
- Daya, S.; Berns, K.I. Gene therapy using adeno-associated virus vectors. Clin. Microbiol. Rev. 2008, 21, 583–593. [Google Scholar] [CrossRef] [Green Version]
- Borralleras, C.; Sahun, I.; Perez-Jurado, L.A.; Campuzano, V. Intracisternal Gtf2i Gene Therapy Ameliorates Deficits in Cognition and Synaptic Plasticity of a Mouse Model of Williams-Beuren Syndrome. Mol. Ther. 2015, 23, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- Enkhmandakh, B.; Stoddard, C.; Mack, K.; He, W.; Kaback, D.; Yee, S.P.; Bayarsaihan, D. Generation of a mouse model for a conditional inactivation of Gtf2i allele. Genesis 2016, 54, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Goebbels, S.; Bormuth, I.; Bode, U.; Hermanson, O.; Schwab, M.H.; Nave, K.A. Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 2006, 44, 611–621. [Google Scholar] [CrossRef]
- Gombash Lampe, S.E.; Kaspar, B.K.; Foust, K.D. Intravenous injections in neonatal mice. J. Vis. Exp. JoVE 2014, e52037. [Google Scholar] [CrossRef] [Green Version]
- Grad, M.; Nir, A.; Levy, G.; Trangle, S.S.; Shapira, G.; Shomron, N.; Assaf, Y.; Barak, B. Altered White Matter and microRNA Expression in a Murine Model Related to Williams Syndrome Suggests That miR-34b/c Affects Brain Development via Ptpru and Dcx Modulation. Cells 2022, 11, 158. [Google Scholar] [CrossRef]
- Nir, A.; Barak, B. White matter alterations in Williams syndrome related to behavioral and motor impairments. Glia 2021, 69, 5–19. [Google Scholar] [CrossRef]
- Tunster, S.J. Genetic sex determination of mice by simplex PCR. Biol. Sex Differ. 2017, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Chatterjee, D.; Marmion, D.J.; McBride, J.L.; Manfredsson, F.P.; Butler, D.; Messer, A.; Kordower, J.H. Enhanced CNS transduction from AAV.PHP.eB infusion into the cisterna magna of older adult rats compared to AAV9. Gene Ther. 2022, 29, 390–397. [Google Scholar] [CrossRef]
- Radhiyanti, P.T.; Konno, A.; Matsuzaki, Y.; Hirai, H. Comparative study of neuron-specific promoters in mouse brain transduced by intravenously administered AAV-PHP.eB. Neurosci. Lett. 2021, 756, 135956. [Google Scholar] [CrossRef]
- Burgin, K.E.; Waxham, M.N.; Rickling, S.; Westgate, S.A.; Mobley, W.C.; Kelly, P.T. In situ hybridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J. Neurosci. 1990, 10, 1788–1798. [Google Scholar] [CrossRef] [Green Version]
- Tsien, J.Z.; Chen, D.F.; Gerber, D.; Tom, C.; Mercer, E.H.; Anderson, D.J.; Mayford, M.; Kandel, E.R.; Tonegawa, S. Subregion- and cell type-restricted gene knockout in mouse brain. Cell 1996, 87, 1317–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moy, S.S.; Nadler, J.J.; Perez, A.; Barbaro, R.P.; Johns, J.M.; Magnuson, T.R.; Piven, J.; Crawley, J.N. Sociability and preference for social novelty in five inbred strains: An approach to assess autistic-like behavior in mice. Genes Brain Behav. 2004, 3, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Nadler, J.J.; Moy, S.S.; Dold, G.; Trang, D.; Simmons, N.; Perez, A.; Young, N.B.; Barbaro, R.P.; Piven, J.; Magnuson, T.R.; et al. Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav. 2004, 3, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Vanderschuren, L.J.; Niesink, R.J.; Van Ree, J.M. The neurobiology of social play behavior in rats. Neurosci. Biobehav. Rev. 1997, 21, 309–326. [Google Scholar] [CrossRef]
- Vanderschuren, L.J.; Achterberg, E.J.; Trezza, V. The neurobiology of social play and its rewarding value in rats. Neurosci. Biobehav. Rev. 2016, 70, 86–105. [Google Scholar] [CrossRef] [Green Version]
- Dykens, E.M. Anxiety, fears, and phobias in persons with Williams syndrome. Dev. Neuropsychol. 2003, 23, 291–316. [Google Scholar] [CrossRef]
- Green, T.; Avda, S.; Dotan, I.; Zarchi, O.; Basel-Vanagaite, L.; Zalsman, G.; Weizman, A.; Gothelf, D. Phenotypic psychiatric characterization of children with Williams syndrome and response of those with ADHD to methylphenidate treatment. American journal of medical genetics. Part B Neuropsychiatr. Genet. 2012, 159B, 13–20. [Google Scholar] [CrossRef]
- Zarchi, O.; Diamond, A.; Weinberger, R.; Abbott, D.; Carmel, M.; Frisch, A.; Michaelovsky, E.; Gruber, R.; Green, T.; Weizman, A.; et al. A comparative study of the neuropsychiatric and neurocognitive phenotype in two microdeletion syndromes: Velocardiofacial (22q11.2 deletion) and Williams (7q11.23 deletion) syndromes. Eur. Psychiatry 2014, 29, 203–210. [Google Scholar] [CrossRef]
- Russell, V.A. Overview of animal models of attention deficit hyperactivity disorder (ADHD). Curr. Protoc. Neurosci. 2011, 54, 9–35. [Google Scholar] [CrossRef]
- Preus, M. The Williams syndrome: Objective definition and diagnosis. Clin. Genet. 1984, 25, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Greer, M.K.; Brown, F.R., 3rd; Pai, G.S.; Choudry, S.H.; Klein, A.J. Cognitive, adaptive, and behavioral characteristics of Williams syndrome. Am. J. Med. Genet. 1997, 74, 521–525. [Google Scholar] [CrossRef]
- Stolt, C.C.; Rehberg, S.; Ader, M.; Lommes, P.; Riethmacher, D.; Schachner, M.; Bartsch, U.; Wegner, M. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev. 2002, 16, 165–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.E.; Nam, S.; Cho, E.A.; Seong, I.; Limb, J.K.; Lee, S.; Kim, J. Identification of direct regulatory targets of the transcription factor Sox10 based on function and conservation. BMC Genom. 2008, 9, 408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Sdrulla, A.; Johnson, J.E.; Yokota, Y.; Barres, B.A. A role for the helix-loop-helix protein Id2 in the control of oligodendrocyte development. Neuron 2001, 29, 603–614. [Google Scholar] [CrossRef] [Green Version]
- Samanta, J.; Kessler, J.A. Interactions between ID and OLIG proteins mediate the inhibitory effects of BMP4 on oligodendroglial differentiation. Development 2004, 131, 4131–4142. [Google Scholar] [CrossRef] [Green Version]
- Makeyev, A.V.; Bayarsaihan, D. Alternative splicing and promoter use in TFII-I genes. Gene 2009, 433, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.L. Biochemistry and biology of the inducible multifunctional transcription factor TFII-I: 10 years later. Gene 2012, 492, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Shirai, Y.; Li, W.; Suzuki, T. Role of Splice Variants of Gtf2i, a Transcription Factor Localizing at Postsynaptic Sites, and Its Relation to Neuropsychiatric Diseases. Int. J. Mol. Sci. 2017, 18, 411. [Google Scholar] [CrossRef] [Green Version]
- Hakre, S.; Tussie-Luna, M.I.; Ashworth, T.; Novina, C.D.; Settleman, J.; Sharp, P.A.; Roy, A.L. Opposing functions of TFII-I spliced isoforms in growth factor-induced gene expression. Mol. Cell 2006, 24, 301–308. [Google Scholar] [CrossRef]
- Fischer, I.; Shohat, S.; Levy, G.; Bar, E.; Trangle, S.S.; Efrati, S.; Barak, B. Hyperbaric Oxygen Therapy Alleviates Social Behavior Dysfunction and Neuroinflammation in a Mouse Model for Autism Spectrum Disorders. Int. J. Mol. Sci. 2022, 23, 11077. [Google Scholar] [CrossRef] [PubMed]
- Crespi, B.J.; Hurd, P.L. Cognitive-behavioral phenotypes of Williams syndrome are associated with genetic variation in the GTF2I gene, in a healthy population. BMC Neurosci. 2014, 15, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baroncelli, L.; Braschi, C.; Spolidoro, M.; Begenisic, T.; Maffei, L.; Sale, A. Brain plasticity and disease: A matter of inhibition. Neural Plast. 2011, 2011, 286073. [Google Scholar] [CrossRef] [PubMed]
- Gogolla, N.; Takesian, A.E.; Feng, G.; Fagiolini, M.; Hensch, T.K. Sensory integration in mouse insular cortex reflects GABA circuit maturation. Neuron 2014, 83, 894–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peca, J.; Feliciano, C.; Ting, J.T.; Wang, W.; Wells, M.F.; Venkatraman, T.N.; Lascola, C.D.; Fu, Z.; Feng, G. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 2011, 472, 437–442. [Google Scholar] [CrossRef] [Green Version]
- Yizhar, O.; Fenno, L.E.; Prigge, M.; Schneider, F.; Davidson, T.J.; O’Shea, D.J.; Sohal, V.S.; Goshen, I.; Finkelstein, J.; Paz, J.T.; et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 2011, 477, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Mamiya, P.C.; Arnett, A.B.; Stein, M.A. Precision Medicine Care in ADHD: The Case for Neural Excitation and Inhibition. Brain Sci. 2021, 11, 91. [Google Scholar] [CrossRef]
- Levy, G.; Barak, B. Postnatal therapeutic approaches in genetic neurodevelopmental disorders. Neural Regen. Res. 2021, 16, 414–422. [Google Scholar] [CrossRef]
Name of Primer | Sequence |
---|---|
Nex-Cre fwd | GAGTCCTGGAATCAGTCTTTTTC |
Nex-Cre rev | AGAATGTGGAGTAGGGTGAC |
Nex-Cre KO | CCGCATAACCAGTGAAACAG |
Rmb31x/y fwd | CACCTTAAGAACAAGCCAATACA |
Rmb31x/y rev | GGCTTGTCCTGAAAACATTTGG |
Gapdh fwd | GCCTTCCGTGTTCCTACC |
Gapdh rev | CCTCAGTGTAGCCCAAGATG |
Gtf2i fwd | GGTCACCTCAACTTCGGGG |
Gtf2i rev | AGGCCCTTCTGAAACTGATGG |
Iba1 fwd | TCTGCCGTCCAAACTTGAAG |
Iba1 rev | GTTTCTCCAGCATTCGCTTC |
Plp fwd | TTGTTTGGGAAAATGGCTAGGAC |
Plp rev | TGGTCCAGGTATTGAAGTAAATG |
Mbp fwd | CCAGAGTGAAAACCCAGTAGTCC |
Mbp rev | TGTCTCTTCCTCCCCAGCTAAA |
Mog fwd | AGCTGCTTCCTCTCCCTTCTC |
Mog rev | ACTAAAGCCCGGATGGGATAC |
Dcx fwd | CATCACAGAAGCGATCAAACTGGA |
Dcx rev | CAGGACCACAAGCAATGAACACA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ophir, O.; Levy, G.; Bar, E.; Kimchi Feldhorn, O.; Rokach, M.; Elad Sfadia, G.; Barak, B. Deletion of Gtf2i via Systemic Administration of AAV-PHP.eB Virus Increases Social Behavior in a Mouse Model of a Neurodevelopmental Disorder. Biomedicines 2023, 11, 2273. https://doi.org/10.3390/biomedicines11082273
Ophir O, Levy G, Bar E, Kimchi Feldhorn O, Rokach M, Elad Sfadia G, Barak B. Deletion of Gtf2i via Systemic Administration of AAV-PHP.eB Virus Increases Social Behavior in a Mouse Model of a Neurodevelopmental Disorder. Biomedicines. 2023; 11(8):2273. https://doi.org/10.3390/biomedicines11082273
Chicago/Turabian StyleOphir, Omer, Gilad Levy, Ela Bar, Omri Kimchi Feldhorn, May Rokach, Galit Elad Sfadia, and Boaz Barak. 2023. "Deletion of Gtf2i via Systemic Administration of AAV-PHP.eB Virus Increases Social Behavior in a Mouse Model of a Neurodevelopmental Disorder" Biomedicines 11, no. 8: 2273. https://doi.org/10.3390/biomedicines11082273
APA StyleOphir, O., Levy, G., Bar, E., Kimchi Feldhorn, O., Rokach, M., Elad Sfadia, G., & Barak, B. (2023). Deletion of Gtf2i via Systemic Administration of AAV-PHP.eB Virus Increases Social Behavior in a Mouse Model of a Neurodevelopmental Disorder. Biomedicines, 11(8), 2273. https://doi.org/10.3390/biomedicines11082273