Padina boergesenii-Mediated Copper Oxide Nanoparticles Synthesis, with Their Antibacterial and Anticancer Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seaweed Processing and Preparation
2.2. Biological Synthesis of CuONPs
2.3. Characterization of CuONPs
2.4. Antibacterial Study
2.5. Anticancer Study
2.6. Statistical Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, T.; Duan, X.; Hu, C.; Wu, C.; Chen, X.; Huang, J.; Liu, J.; Cui, S. Synthesis and characterization of gold nanoparticles from Abies spectabilis extract and its anticancer activity on bladder cancer T24 cells. Arti. Cells Nanomed. Biotechnol. 2019, 47, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Vemuri, S.K.; Banala, R.R.; Mukherjee, S.; Uppula, P.; Subbaiah, G.P.V.; Malarvilli, T. Novel biosynthesized gold nanoparticles as anti-cancer agents against breast cancer: Synthesis, biological evaluation, molecular modelling studies. Mater. Sci. Eng. C. 2019, 99, 417–429. [Google Scholar] [CrossRef]
- Kalyane, D.; Raval, N.; Maheshwari, R.; Tambe, V.; Kalia, K.; Tekade, R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 98, 1252–1276. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Advan. 2013, 31, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, V.S.; Pugazhendhi, A.; Prakash, N.K.; Ahila, G.; Vinoj, S.; Selvam, G.; Kumar, E.; Kannapiran, R. Babu Rajendran Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications. Biomed. Pharmacother. 2017, 92, 479–490. [Google Scholar] [CrossRef]
- Nithiyavathi, R.; Sundaram, S.J.; Anand, G.T.; Kumar, D.R.; Raj, A.D.; Al Farraj, D.A.; Aljowaie, R.M.; AbdelGawwad, M.R.; Samson, Y.; Kaviyarasu, K. Gum mediated synthesis and characterization of CuO nanoparticles towards infectious disease-causing antimicrobial resistance microbial pathogens. J. Infect. Public Health 2021, 14, 1893–1902. [Google Scholar] [CrossRef]
- Sadanand, V.; Rajini, N.; Rajulu, A.V.; Satyanarayana, B. Preparation of cellulose composites with in situ generated copper nanoparticles using leaf extract and their properties. Carbohydr. Poly. 2016, 150, 32–39. [Google Scholar] [CrossRef]
- Verma, N.; and Kumar, N. Synthesis and biomedical applications of copper oxide nanoparticles: An expanding horizon. ACS Biomater. Sci. Eng. 2019, 5, 1170–1188. [Google Scholar] [CrossRef]
- Alavi, M.; Rai, M. Recent advances in antibacterial applications of metal nanoparticles (MNPs) and metal nanocomposites (MNCs) against multidrug-resistant (MDR) bacteria. Expert Rev. Anti-Infect. Ther. 2019, 17, 419–428. [Google Scholar] [CrossRef]
- Araya-Castro, K.; Chao, T.C.; Durán-Vinet, B.; Cisternas, C.; Ciudad, G.; Rubilar, O. Green synthesis of copper oxide nanoparticles using protein fractions from an aqueous extract of Brown Algae Macrocystis pyrifera. Processes 2020, 9, 78. [Google Scholar] [CrossRef]
- Venkateswara Rao, A.; Ashok, B.; Uma Mahesh, M.; Venkata Subbareddy, G.; Chandra Sekhar, V.; Venkata Ramanamurthy, G.; Varada Rajulu, A. Antibacterial cotton fabrics with in situ generated silver and copper bimetallic nanoparticles using red sanders powder extract as reducing agent. Int. J. Polym. Anal. Char. 2019, 24, 346–354. [Google Scholar] [CrossRef]
- Mirzaei, S.Z.; Lashgarian, H.E.; Karkhane, M.; Shahzamani, K.; Alhameedawi, A.K.; Marzban, A. Bio-inspired silver selenide nano-chalcogens using aqueous extract of Melilotus officinalis with biological activities. Bioresour. Bioprocess. 2021, 8, 56. [Google Scholar] [CrossRef]
- Yaqub, A.; Malkani, N.; Shabbir, A.; Ditta, S.A.; Tanvir, F.; Ali, S.; Naz, M.; Kazmi, S.A.R.; Ullah, R. Novel biosynthesis of copper nanoparticles using Zingiber and Allium sp. with synergic effect of doxycycline for anticancer and bactericidal activity. Curr. Microbiol. 2020, 77, 2287–2299. [Google Scholar] [CrossRef] [PubMed]
- Khanna, P.; Kaur, A.; Goyal, D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. J. Microbiol. Method. 2019, 163, 105656. [Google Scholar] [CrossRef]
- AlNadhari, S.; Al-Enazi, N.M.; Alshehrei, F.; Ameen, F. A review on biogenic synthesis of metal nanoparticles using marine algae and its applications. Env. Res. 2021, 194, 110672. [Google Scholar] [CrossRef]
- Ponnuchamy, K.; Jacob, J.A. Metal nanoparticles from marine seaweeds—A review. Nanotechnol. Rev. 2016, 5, 589–600. [Google Scholar] [CrossRef]
- Harishchandra, B.D.; Pappuswamy, M.; Antony, P.U.; Shama, G.; Pragatheesh, A.; Arumugam, V.A.; Periyaswamy, T.; Sundaram, R. Copper nanoparticles: A review on synthesis, characterization and applications. Asian Pac. J. Cancer Biol. 2020, 5, 201–210. [Google Scholar] [CrossRef]
- Chandraker, S.K.; Lal, M.; Ghosh, M.K.; Tiwari, V.; Ghorai, T.K.; Shukla, R. Green synthesis of copper nanoparticles using leaf extract of Ageratum houstonianum Mill. and study of their photocatalytic and antibacterial activities. Nano Express 2020, 1, 010033. [Google Scholar] [CrossRef]
- Senthilkumar, P.; Sudha, S. Evaluation of antioxidant activity and total phenolic content of Padina boergesenii from Gulf of Mannar. Drug Invent. Today 2012, 4, 635–639. [Google Scholar]
- Senthilkumar, P.; Bhuvaneshwari, J.; Prakash, L.P.; Ranjith, S. Green synthesis and characterization of silver nanoparticles from aqueous extract brown seaweed of Padina boergesenii and its antifungal activity. World J. Pharm. Sci. 2015, 4, 1858–1870. [Google Scholar]
- Senthilkumar, P.; Priya, L.; Kumar, R.S.; Bhuvaneshwari, D.S. Potent α-glucosidase inhibitory activity of green synthesized gold nanoparticles from the brown seaweed Padina boergesenii. Int. J. Adv. Multidiscip. Res. 2015, 2, 0917–0923. [Google Scholar]
- Senthilkumar, P.; Prakash, S.; Sudha, S. Antidiabetic activity of aqueous extract of Padina boergesenii in streptozotocin-induced diabetic rats. Int. J. Pharm. Pharm. Sci. 2014, 6, 418–422. [Google Scholar]
- Vasanthi, H.R.; Jaswanth, A.; Saraswathy, G.; Rajamanickam, V. Control of urinary risk factors of stones by Padina boergesenii (Allender and Kraft), brown algae in experimental hyperoxaluria. J. Nat. Rem. 2003, 3, 189–194. [Google Scholar]
- Guillermo, D.; Villamil, L.; Almanza, V. Herbivory effects on the morphology of the brown alga Padina boergesenii (Phaeophyta). Phycologia 2007, 46, 131–136. [Google Scholar]
- Olivares-Banuelos, T.; Gutierrez-Rodriguez, A.G.; Mendez-Bellido, R.; Tovar-Miranda, R.; Arroyo-Helguera, O.; Juarez-Portilla, C.; Meza-Menchaca, T.; Aguilar-Rosas, L.E.; Hernandez-Kelly, L.C.R.; Ortega, A.; et al. Brown seaweed Egregia menziesii’s cytotoxic activity against brain cancer cell Lines. Molecules 2019, 24, 260. [Google Scholar] [CrossRef]
- Generalic Mekinic, I.; Simat, V.; Botic, V.; Crnjac, A.; Smoljo, M.; Soldo, B.; Ljubenkov, I.; Cagalj, M.; Skroza, D. Bioactive Phenolic Metabolites from Adriatic Brown algae Dictyota dichotoma and Padina pavonica (Dictyotaceae). Foods 2021, 10, 1187. [Google Scholar] [CrossRef]
- Mali, S.C.; Dhaka, A.; Githala, C.K.; Trivedi, R. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnol. Repor. 2020, 27, e00518. [Google Scholar] [CrossRef]
- Sodde, V.K.; Lobo, R.; Kumar, N.; Maheshwari, R.; Shreedhara, C.S. Cytotoxic activity of Macrosolen parasiticus (L.) Danser on the growth of breast cancer cell line (MCF-7). Pharmacogn. Mag. 2015, 11, S156–S160. [Google Scholar] [PubMed]
- Costa, G.B.; de Felix, M.R.; Simioni, C.; Ramlov, F.; Oliveira, E.R.; Pereira, D.T.; Maraschin, M.; Chow, F.; Horta, P.A.; Lalau, C.M.; et al. Effects of copper and lead exposure on the ecophysiology of the brown seaweed Sargassum cymosum. Protoplasma 2015, 253, 111–125. [Google Scholar] [CrossRef]
- Kamaraj, C.; Vimal, S.; Ragavendran, C.; Priyadharsan, A.; Marimuthu, K.; Malafaia, G. Traditionally Used Medicinal Plants Mediate the Biosynthesis of silver nano particles: Methodological, Larvicidal, and Eco-toxicological approach. Sci. Total Environ. 2023, 873, 162402. [Google Scholar] [CrossRef]
- Kamaraj, C.; Karthi, S.; Reegan, A.D.; Balasubramani, G.; Ramkumar, G.; Kalaivani, K.; Zahir, A.A.; Deepak, P.; Senthil-Nathan, S.; Rahman, M.M.; et al. Green synthesis of gold nanoparticles using Gracilaria crassa leaf extract and their ecotoxicological potential: Issues to be considered. Environ. Res. 2022, 213, 13711. [Google Scholar] [CrossRef]
- Makarov, V.; Love, A.; Sinitsyna, O.; Makarova, S.; Yaminsky, I.; Taliansky, M. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Naturae 2014, 6, 20–26. [Google Scholar] [CrossRef]
- Ovais, M.; Khalil, A.; Raza, A.; Khan, M.; Ahmad, I.; Islam, N. Green synthesis of silver nanoparticles via plant extracts: Beginning a new era in cancer theranostics. Nanomedicine 2016, 12, 3157–3177. [Google Scholar] [CrossRef]
- Kamaraj, C.; Ragavendran, C.; Manimaran, K.; Sarvesh, S.; Islam, A.R.; Malafaia, G. Green synthesis of silver nanoparticles from Cassia auriculata: Targeting antibacterial, antioxidant activity, and evaluation of their possible effects on saltwater microcrustacean, Artemia nauplii (non-target organism). Sci. Total Environ. 2023, 861, 160575. [Google Scholar] [CrossRef]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Korbekandi, H.; Iravani, S.; Abbasi, S. Production of nanoparticles using organisms. Crit. Rev. Biotechnol. 2009, 29, 279–306. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, R.; Palanisamy, S.; Chen, S.M.; Chelladurai, K.; Padmavathy, S.; Saravanan, M. Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms. Mat. Sci. Eng. C. 2015, 56, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Nasrollahzadeh, M.; Sajadi, S.; Rostami-Vartooni, A.; Alizadeh, M.; Bagherzadeh, M. Green synthesis of the Pd nanoparticles supported on reduced graphene oxide using barberry fruit extract and its application as a recyclable and heterogeneous catalyst for the reduction of nitroarenes. J. Coll. Inter. Sci. 2016, 466, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Singhal, G.; Bhavesh, R.; Kasariya, K.; Sharma, A.; Singh, R. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J. Nanopar. Res. 2011, 13, 2981–2988. [Google Scholar] [CrossRef]
- Kuppusamy, P.; Yusoff, M.; Maniam, G.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications-An updated report. Saudi Pharma. J. 2016, 24, 473–484. [Google Scholar] [CrossRef]
- Rai, M.; Yadav, A. Plants as potential synthesiser of precious metal nanoparticles: Progress and prospects. IET Nanobiotechnol. 2013, 7, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Shammout, M.W.; Awwad, A.M. A novel route for the synthesis of copper oxide nanoparticles using Bougainvillea plant flowers extract and antifungal activity evaluation. Chem. Intern. 2021, 7, 71–78. [Google Scholar]
- Chand Mali, S.; Raj, S.; Trivedi, R. Biosynthesis of copper oxide nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochem. Biophys. Rep. 2019, 20, 100699. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, C.; Chen, D.; Jiao, X. Fabrication and characterization of novel nanostructured copper oxide films via a facile solution route. Mat. Lett. 2010, 64, 249–251. [Google Scholar] [CrossRef]
- Rajeshkumar, S.; Nandhini, N.T.; Manjunath, K.; Sivaperumal, P.; Krishna Prasad, G.S.; Alotaibi, S.; Roopan, S.M. Environment friendly synthesis copper oxide nanoparticles and its antioxidant, antibacterial activities using Seaweed (Sargassum longifolium) extract. J. Mole. Struct. 2021, 1242, 130724. [Google Scholar] [CrossRef]
- Kiriyanthan, R.M.; Sharmili, S.A.; Balaji, R.; Jayashree, S.; Mahboob, S.; Al-Ghanim, K.A.; Al-Misned, F.; Ahmed, Z.; Govindarajan, M.; Vaseeharan, B. Photocatalytic, antiproliferative and antimicrobial properties of copper nanoparticles synthesized using Manilkara zapota leaf extract: A photodynamic approach. Photodiagnosis Photodyn. Ther. 2020, 32, 102058. [Google Scholar] [CrossRef]
- Murthy, H.C.; Desalegn, T.; Kassa, M.; Abebe, B.; Assefa, T. Synthesis of green copper nanoparticles using medicinal plant Hagenia abyssinica (Brace) JF. Gmel. leaf extract: Antimicrobial properties. J. Nanomater. 2020, 2020, 3924081. [Google Scholar] [CrossRef]
- Lowry, G.; Hil, R.; Harper, S.; Rawle, A.; Hendren, C.K.F.; Nobbmann, U.; Sayre, P.R.J. Guidance to improve the scientific value of zeta-potential measurements in nano EHS. Environ. Sci. Nano. 2016, 3, 953–965. [Google Scholar] [CrossRef]
- Valodkar, M.; Jadeja, R.N.; Thounaojam, M.C.; Devkar, R.V.; Thakore, S. Biocompatible synthesis of peptide capped copper nanoparticles and their biological effect on tumor cells, Mater. Chem. Phys. 2011, 128, 83–89. [Google Scholar]
- Dobrucka, R. Antioxidant and catalytic activity of biosynthesized CuO nanoparticles using extract of Galeopsidis herba. J. Inorg. Organometa. Poly. Mat. 2018, 28, 812–819. [Google Scholar] [CrossRef]
- Marzban, A.; Mirzaei, S.Z.; Karkhane, M.; Ghotekar, S.K.; Danesh, A. Biogenesis of copper nanoparticles assisted with seaweed polysaccharide with antibacterial and antibiofilm properties against methicillin-resistant Staphylococcus aureus. J. Drug Deli. Sci. Technol. 2022, 74, 103499. [Google Scholar] [CrossRef]
- Ramaswamy, S.V.; Narendhran, S.; Sivaraj, R. Potentiating effect of ecofriendly synthesis of copper oxide nanoparticles using brown alga: Antimicrobial and anticancer activities. Bull. Mat. Sci. 2016, 39, 361–364. [Google Scholar] [CrossRef]
- Bhacuni, D.S. Bioactive Marine Natural Products; Spinger/Anamaya Publishers: New Delhi, India, 2005. [Google Scholar]
- Pelesinuo, K.B.; Sattanathan, G.; Haque, N.; Al-Ghanim, K.A.; Nicoletti, M.; Sachivkina, N.; Govindarajan, M. Synthesis and Characterization of Mithun (Bos frontalis) Urine-Based Antibacterial Copper Oxide Nanoparticles. Biomedicines 2023, 11, 1690. [Google Scholar] [CrossRef]
- Ramasubbu, K.; Padmanabhan, S.; Al-Ghanim, K.A.; Nicoletti, M.; Govindarajan, M.; Sachivkina, N.; Rajeswari, V.D. Green Synthesis of Copper Oxide Nanoparticles Using Sesbania grandiflora Leaf Extract and Their Evaluation of Anti-Diabetic, Cytotoxic, Anti-Microbial, and Anti-Inflammatory Properties in an In-Vitro Approach. Fermentation 2023, 9, 332. [Google Scholar] [CrossRef]
- Mani, M.; Sundararaj, A.S.; Al-Ghanim, K.A.; John, S.P.; Elumalai, K.; Nicoletti, M.; Govindarajan, M. Rapid synthesis of copper nanoparticles using Nepeta cataria leaves: An eco-friendly management of disease-causing vectors and bacterial pathogens. Green Process. Syn. 2023, 12, 20230022. [Google Scholar] [CrossRef]
- Usman, M.S.; Zowalaty, M.E.; Shameli, K.; Zainuddin, N.; Salama, M.; Ibrahim, N.A. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int. J. Nanomed. 2013, 8, 4467–4479. [Google Scholar]
- Bogdanović, U.; Lazić, V.; Vodnik, V.; Budimir, M.; Marković, Z.; Dimitrijević, S. Copper nanoparticles with high antimicrobial activity. Mate. Lett. 2014, 128, 75–78. [Google Scholar] [CrossRef]
- El-Batal, A.I.; El-Sayyad, G.S.; El-Ghamery, A.; Gobara, M. Response surface methodology optimization of melanin production by Streptomyces cyaneus and synthesis of copper oxide nanoparticles using gamma radiation. J. Clust. Sci. 2017, 28, 1083–1112. [Google Scholar] [CrossRef]
- Abboud, Y.; Saffaj, T.; Chagraoui, A.; El Bouari, A.; Brouzi, K.; Tanane, O.; Ihssane, B. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CuNPs) produced using brown alga extract (Bifurcaria bifurcata). Appl. Nanosci. 2014, 4, 571–576. [Google Scholar] [CrossRef]
- Kumar, T.S.; Chandrasekar, M.; Senthilkumar, K.; Ilyas, R.A.; Sapuan, S.M.; Hariram, N.; Rajulu, A.V.; Rajini, N.; Siengchin, S. Characterization, thermal and antimicrobial properties of hybrid cellulose nanocomposite films with in-situ generated copper nanoparticles in Tamarindus indica Nut Powder. J. Polym. Environ. 2021, 29, 1134–1142. [Google Scholar] [CrossRef]
- Rai, M.; Ingle, A.P.; Pandit, R.; Paralikar, P.; Shende, S.; Gupta, I.; Biswas, J.K.; da Silva, S.S. Copper and copper nanoparticles: Role in management of insect-pests and pathogenic microbes. Nanotech. Revi. 2018, 7, 303–315. [Google Scholar] [CrossRef]
- Cao, Y.; Dhahad, H.A.; El-Shorbagy, M.A.; Alijani, H.Q.; Zakeri, M.; Heydari, A.; Bahonar, E.; Slouf, M.; Khatami, M.; Naderifar, M.; et al. Green synthesis of bimetallic ZnO–CuO nanoparticles and their cytotoxicity properties. Sci. Rep. 2021, 11, 23479. [Google Scholar] [CrossRef] [PubMed]
- Jamdade, D.A.; Rajpali, D.; Joshi, K.A.; Kitture, R.; Kulkarni, A.S.; Shinde, V.S.; Bellare, J.; Babiya, K.R.; Ghosh, S. Gnidia glauca and Plumbago zeylanica-mediated synthesis of novel copper nanoparticles as promising antidiabetic agents. Adv. Pharm. Sci. 2019, 2019, 9080279. [Google Scholar] [CrossRef] [PubMed]
Concentrations | Zone of Inhibition (mm) | ||
---|---|---|---|
E. coli | B. subtilis | P. aeruginosa | |
Control | 3.33 ± 0.57 | 4.66 ± 0.57 | 3.33 ± 0.57 |
50 µg | 3.33 ± 0.57 | 3.33 ± 0.57 | 4.66 ± 0.57 |
100 µg | 6.33 ± 0.57 | 7.33 ± 0.57 | 6.33 ± 0.57 |
200 µg | 12.33 ± 0.57 | 10.33 ± 0.57 | 12.33 ± 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balaji, T.; Manushankar, C.M.; Al-Ghanim, K.A.; Kamaraj, C.; Thirumurugan, D.; Thanigaivel, S.; Nicoletti, M.; Sachivkina, N.; Govindarajan, M. Padina boergesenii-Mediated Copper Oxide Nanoparticles Synthesis, with Their Antibacterial and Anticancer Potential. Biomedicines 2023, 11, 2285. https://doi.org/10.3390/biomedicines11082285
Balaji T, Manushankar CM, Al-Ghanim KA, Kamaraj C, Thirumurugan D, Thanigaivel S, Nicoletti M, Sachivkina N, Govindarajan M. Padina boergesenii-Mediated Copper Oxide Nanoparticles Synthesis, with Their Antibacterial and Anticancer Potential. Biomedicines. 2023; 11(8):2285. https://doi.org/10.3390/biomedicines11082285
Chicago/Turabian StyleBalaji, Thirupathi, Chethakkad Manikkan Manushankar, Khalid A. Al-Ghanim, Chinnaperumal Kamaraj, Durairaj Thirumurugan, Sundaram Thanigaivel, Marcello Nicoletti, Nadezhda Sachivkina, and Marimuthu Govindarajan. 2023. "Padina boergesenii-Mediated Copper Oxide Nanoparticles Synthesis, with Their Antibacterial and Anticancer Potential" Biomedicines 11, no. 8: 2285. https://doi.org/10.3390/biomedicines11082285
APA StyleBalaji, T., Manushankar, C. M., Al-Ghanim, K. A., Kamaraj, C., Thirumurugan, D., Thanigaivel, S., Nicoletti, M., Sachivkina, N., & Govindarajan, M. (2023). Padina boergesenii-Mediated Copper Oxide Nanoparticles Synthesis, with Their Antibacterial and Anticancer Potential. Biomedicines, 11(8), 2285. https://doi.org/10.3390/biomedicines11082285