Trigeminal Stimulation and Visuospatial Performance: The Struggle between Chewing and Trigeminal Asymmetries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Design
- (a)
- Bilateral recording of pupil size at rest;
- (b)
- Performance assessment in a cognitive visual search task, based on the Spinnler–Tognoni numeric matrices test [19], in the resting mandible position.
- Baseline (T0) measurements (a, b);
- Unilateral chewing on the right side (1 min);
- T1 measurements (a, b);
- T2 measurements (a, b).
2.3. Evaluated Parameters
2.4. Numerical Matrices Test
2.5. Electrical Trigeminal Nerve Stimulation for Bite Splint Manufacturing
2.6. Pupil Size Recordings
2.7. Pellet for Chewing
2.8. EMG Data
2.9. Statistical Analysis
3. Results
3.1. Baseline Values of EMG and Pupil Size Asymmetries
3.2. Time Course of Chewing Effects on Pupil and Performance Parameters
3.3. Comparison of Changes in PI and Pupil Size Elicited under Different Conditions
3.4. Bilateral Chewing: “Experimental” and “Predicted” Effects on Cognitive Visuospatial Performance
3.5. PI Changes as a Function of EMG Asymmetry
3.6. Changes in Pupil Size Parameters as a Function of EMG Asymmetry
3.7. Differences in Performance Index Changes Elicited by the Different Chewing Patterns and Baseline EMG Asymmetry
4. Discussion
4.1. General Considerations
4.2. Chewing-Induced Stimulation of Visuospatial Performance
4.3. Chewing-Induced Stimulation of Visuospatial Performance and Trigeminal Asymmetries
4.4. Chewing-Induced Pupil Size Changes
4.5. Neurophysiological Mechanisms
4.6. Conclusions
4.7. Translational Applications
4.8. Limitations of the Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adair, D.; Truong, D.; Esmaeilpour, Z.; Gebodh, N.; Borges, H.; Ho, L.; Bremner, J.D.; Badran, B.W.; Napadow, V.; Clark, V.P.; et al. Electrical Stimulation of Cranial Nerves in Cognition and Disease. Brain Stimul. 2020, 13, 717–750. [Google Scholar] [CrossRef] [PubMed]
- Mercante, B.; Enrico, P.; Floris, G.; Quartu, M.; Boi, M.; Serra, M.P.; Follesa, P.; Deriu, F. Trigeminal Nerve Stimulation Induces Fos Immunoreactivity in Selected Brain Regions, Increases Hippocampal Cell Proliferation and Reduces Seizure Severity in Rats. Neuroscience 2017, 361, 69–80. [Google Scholar] [CrossRef]
- Aston-Jones, G.; Cohen, J.D. An Integrative Theory of Locus Coeruleus-Norepinephrine Function: Adaptive Gain and Optimal Performance. Annu. Rev. Neurosci. 2005, 28, 403–450. [Google Scholar] [CrossRef] [PubMed]
- Aston-Jones, G.; Cohen, J.D. Adaptive Gain and the Role of the Locus Coeruleus-Norepinephrine System in Optimal Performance. J. Comp. Neurol. 2005, 493, 99–110. [Google Scholar] [CrossRef]
- Murphy, P.R.; O’Connell, R.G.; O’Sullivan, M.; Robertson, I.H.; Balsters, J.H. Pupil Diameter Covaries with BOLD Activity in Human Locus Coeruleus. Hum. Brain Mapp. 2014, 35, 4140–4154. [Google Scholar] [CrossRef] [PubMed]
- Tramonti Fantozzi, M.P.; Artoni, F.; Di Galante, M.; Briscese, L.; De Cicco, V.; Bruschini, L.; d’Ascanio, P.; Manzoni, D.; Faraguna, U.; Carboncini, M.C. Effect of the Trigeminal Nerve Stimulation on Auditory Event-Related Potentials. Cereb. Cortex Commun. 2021, 2, tgab012. [Google Scholar] [CrossRef]
- Mercante, B.; Enrico, P.; Ginatempo, F.; Loi, N.; Deriu, F. Short-Term Transcutaneous Trigeminal Nerve Stimulation Does Not Affect Visual Oddball Task and Paired-Click Paradigm ERP Responses in Healthy Volunteers. Exp. Brain Res. 2023, 241, 327–339. [Google Scholar] [CrossRef]
- Hirano, Y.; Obata, T.; Takahashi, H.; Tachibana, A.; Kuroiwa, D.; Takahashi, T.; Ikehira, H.; Onozuka, M. Effects of Chewing on Cognitive Processing Speed. Brain Cogn. 2013, 81, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.R.; Bezance, J.B.; Zellaby, E.; Aggleton, J.P. Chewing Gum Can Produce Context-Dependent Effects upon Memory. Appetite 2004, 43, 207–210. [Google Scholar] [CrossRef]
- Hirano, Y.; Obata, T.; Kashikura, K.; Nonaka, H.; Tachibana, A.; Ikehira, H.; Onozuka, M. Effects of Chewing in Working Memory Processing. Neurosci. Lett. 2008, 436, 189–192. [Google Scholar] [CrossRef]
- Wilkinson, L.; Scholey, A.; Wesnes, K. Chewing Gum Selectively Improves Aspects of Memory in Healthy Volunteers. Appetite 2002, 38, 235–236. [Google Scholar] [CrossRef] [PubMed]
- Allen, K.L.; Norman, R.G.; Katz, R.V. The Effect of Chewing Gum on Learning as Measured by Test Performance. Nutr. Bull. 2008, 33, 102–107. [Google Scholar] [CrossRef]
- Smith, A. Effects of Chewing Gum on Mood, Learning, Memory and Performance of an Intelligence Test. Nutr. Neurosci. 2009, 12, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Nakata, H.; Kakigi, R. The Effect of Mastication on Human Cognitive Processing: A Study Using Event-Related Potentials. Clin. Neurophysiol. 2009, 120, 41–50. [Google Scholar] [CrossRef]
- Allen, A.P.; Smith, A.P. Effects of Chewing Gum and Time-on-Task on Alertness and Attention. Nutr. Neurosci. 2012, 15, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.J.; Miles, C.; Haddrell, B.; Harrison, E.; Osborne, L.; Wilson, N.; Jenks, R. The Effect of Chewing Gum on Physiological and Self-Rated Measures of Alertness and Daytime Sleepiness. Physiol. Behav. 2012, 105, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Tucha, O.; Mecklinger, L.; Maier, K.; Hammerl, M.; Lange, K.W. Chewing Gum Differentially Affects Aspects of Attention in Healthy Subjects. Appetite 2004, 42, 327–329. [Google Scholar] [CrossRef]
- De Cicco, V.; Tramonti Fantozzi, M.P.; Cataldo, E.; Barresi, M.; Bruschini, L.; Faraguna, U.; Manzoni, D. Trigeminal, Visceral and Vestibular Inputs May Improve Cognitive Functions by Acting through the Locus Coeruleus and the Ascending Reticular Activating System: A New Hypothesis. Front. Neuroanat. 2018, 11, 130. [Google Scholar] [CrossRef]
- Tramonti Fantozzi, M.P.; De Cicco, V.; Barresi, M.; Cataldo, E.; Faraguna, U.; Bruschini, L.; Manzoni, D. Short-Term Effects of Chewing on Task Performance and Task-Induced Mydriasis: Trigeminal Influence on the Arousal Systems. Front. Neuroanat. 2017, 11, 68. [Google Scholar] [CrossRef]
- Berridge, C.W. Noradrenergic Modulation of Arousal. Brain Res. Rev. 2008, 58, 1–17. [Google Scholar] [CrossRef]
- Berridge, C.W.; Schmeichel, B.E.; España, R.A. Noradrenergic Modulation of Wakefulness/Arousal. Sleep. Med. Rev. 2012, 16, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Italian standardization and classification of Neuropsychological tests. The Italian Group on the Neuropsychological Study of Aging. Ital. J. Neurol. Sci. 1987, (Suppl. S8), 1–120.
- Joshi, S.; Li, Y.; Kalwani, R.M.; Gold, J.I. Relationships between Pupil Diameter and Neuronal Activity in the Locus Coeruleus, Colliculi, and Cingulate Cortex. Neuron 2016, 89, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Rajkowski, J.; Kubiak, P.; Aston-Jones, G. Locus Coeruleus Activity in Monkey: Phasic and Tonic Changes Are Associated with Altered Vigilance. Brain Res. Bull. 1994, 35, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Alnæs, D.; Sneve, M.H.; Espeseth, T.; Endestad, T.; van de Pavert, S.H.P.; Laeng, B. Pupil Size Signals Mental Effort Deployed during Multiple Object Tracking and Predicts Brain Activity in the Dorsal Attention Network and the Locus Coeruleus. J. Vis. 2014, 14, 1. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Gold, J.I. Pupil Size as a Window on Neural Substrates of Cognition. Trends Cogn. Sci. 2020, 24, 466–480. [Google Scholar] [CrossRef]
- Mathôt, S. Pupillometry: Psychology, Physiology, and Function. J. Cogn. 2018, 1, 16. [Google Scholar] [CrossRef] [PubMed]
- De Cicco, V.; Cataldo, E.; Barresi, M.; Parisi, V.; Manzoni, D. Sensorimotor Trigeminal Unbalance Modulates Pupil Size. Arch. Ital. Biol. 2014, 152, 1–12. [Google Scholar] [CrossRef]
- Tramonti Fantozzi, M.P.; Lazzarini, G.; De Cicco, V.; Briganti, A.; Argento, S.; De Cicco, D.; Barresi, M.; Cataldo, E.; Bruschini, L.; d’Ascanio, P.; et al. The Path from Trigeminal Asymmetry to Cognitive Impairment: A Behavioral and Molecular Study. Sci. Rep. 2021, 11, 4744. [Google Scholar] [CrossRef]
- Tramonti Fantozzi, M.P.; De Cicco, V.; Argento, S.; De Cicco, D.; Barresi, M.; Cataldo, E.; Bruschini, L.; d’Ascanio, P.; Faraguna, U.; Manzoni, D. Trigeminal Input, Pupil Size and Cognitive Performance: From Oral to Brain Matter. Brain Res. 2021, 1751, 147194. [Google Scholar] [CrossRef]
- Tramonti Fantozzi, M.P.; Marconi, O.; Simoni, F.; De Cicco, V.; De Cicco, D.; Cataldo, E.; Barresi, M.; Bruschini, L.; d’Ascanio, P.; Faraguna, U.; et al. Coupling between Trigeminal-Induced Asymmetries in Locus Coeruleus Activity and Cognitive Performance. Symmetry 2021, 13, 1676. [Google Scholar] [CrossRef]
- Tramonti Fantozzi, M.P.; Diciotti, S.; Tessa, C.; Castagna, B.; Chiesa, D.; Barresi, M.; Ravenna, G.; Faraguna, U.; Vignali, C.; De Cicco, V.; et al. Unbalanced Occlusion Modifies the Pattern of Brain Activity During Execution of a Finger to Thumb Motor Task. Front. Neurosci. 2019, 13, 499. [Google Scholar] [CrossRef]
- Leite-Almeida, H.; d’Ascanio, P.; Faraguna, U.; Manzoni, D. Editorial: Asymmetry in the Central Nervous System: Functional Implications. Front. Syst. Neurosci. 2022, 16, 1002965. [Google Scholar] [CrossRef] [PubMed]
- Tramonti Fantozzi, M.P.; De Cicco, V.; De Cicco, D.; d’Ascanio, P.; Cataldo, E.; Bruschini, L.; Faraguna, U.; Manzoni, D. Chewing and Cognitive Improvement: The Side Matters. Front. Syst. Neurosci. 2021, 15, 749444. [Google Scholar] [CrossRef]
- Ohlendorf, D.; Riegel, M.; Lin Chung, T.; Kopp, S. The Significance of Lower Jaw Position in Relation to Postural Stability. Comparison of a Premanufactured Occlusal Splint with the Dental Power Splint. Minerva Stomatol. 2013, 62, 409–417. [Google Scholar] [PubMed]
- Jankelson, B. Neuromuscular Aspects of Occlusion. Effects of Occlusal Position on the Physiology and Dysfunction of the Mandibular Musculature. Dent. Clin. N. Am. 1979, 23, 157–168. [Google Scholar] [CrossRef]
- Maurer, C.; Stief, F.; Jonas, A.; Kovac, A.; Groneberg, D.A.; Meurer, A.; Ohlendorf, D. Influence of the Lower Jaw Position on the Running Pattern. PLoS ONE 2015, 10, e0135712. [Google Scholar] [CrossRef]
- Sójka, A.; Huber, J.; Hędzelek, W.; Wiertel-Krawczuk, A.; Szymankiewicz-Szukała, A.; Seraszek-Jaros, A.; Kulczyk, A.; Wincek, A.; Sobieska, M. Relations between the Results of Complex Clinical and Neurophysiological Examinations in Patients with Temporomandibular Disorders Symptoms. Cranio 2018, 36, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.; Cohen, P. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences; Routledge: London, UK, 2013. [Google Scholar]
- Lenhard, W.; Lenhard, A. Testing the Significance of Correlations; Psychometrika: Bibergau, Germany, 2014. [Google Scholar]
- Steiger, J.H. Tests for Comparing Elements of a Correlation Matrix. Psychol. Bull. 1980, 87, 245–251. [Google Scholar] [CrossRef]
- Yamasaki, Y.; Kuwatsuru, R.; Tsukiyama, Y.; Oki, K.; Koyano, K. Objective Assessment of Mastication Predominance in Healthy Dentate Subjects and Patients with Unilateral Posterior Missing Teeth. J. Oral. Rehabil. 2016, 43, 575–582. [Google Scholar] [CrossRef]
- Jones, B.E.; Yang, T.Z. The Efferent Projections from the Reticular Formation and the Locus Coeruleus Studied by Anterograde and Retrograde Axonal Transport in the Rat. J. Comp. Neurol. 1985, 242, 56–92. [Google Scholar] [CrossRef] [PubMed]
- Cedarbaum, J.M.; Aghajanian, G.K. Afferent Projections to the Rat Locus Coeruleus as Determined by a Retrograde Tracing Technique. J. Comp. Neurol. 1978, 178, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Cedarbaum, J.M.; Aghajanian, G.K. Catecholamine Receptors on Locus Coeruleus Neurons: Pharmacological Characterization. Eur. J. Pharmacol. 1977, 44, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.-T.; Zhang, H.-C.; Zuo, Z.-F.; Liu, Y.-X. Heterogeneous Organization of Locus Coeruleus: An Intrinsic Mechanism for Functional Complexity. Physiol. Behav. 2023, 268, 114231. [Google Scholar] [CrossRef] [PubMed]
- Fanselow, E.E.; Reid, A.P.; Nicolelis, M.A. Reduction of Pentylenetetrazole-Induced Seizure Activity in Awake Rats by Seizure-Triggered Trigeminal Nerve Stimulation. J. Neurosci. 2000, 20, 8160–8168. [Google Scholar] [CrossRef] [PubMed]
- Roger, A.; Rossi, G.F.; Zirondoli, A. Le Rôle Des Afférences Des Nerfs Crâniens Dans Le Maintien de l’état Vigile de La Préparation “Encéphale Isolé”. Electroencephalogr. Clin. Neurophysiol. 1956, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Raphan, T. Vestibular, Locomotor, and Vestibulo-Autonomic Research: 50 Years of Collaboration with Bernard Cohen. J. Neurophysiol. 2020, 123, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Rühl, M.; Kimmel, R.; Ertl, M.; Conrad, J.; Zu Eulenburg, P. In Vivo Localization of the Human Velocity Storage Mechanism and Its Core Cerebellar Networks by Means of Galvanic-Vestibular Afternystagmus and FMRI. Cerebellum 2022, 22, 194–205. [Google Scholar] [CrossRef]
- Yokota, J.; Reisine, H.; Cohen, B. Stimulation and Single-Unit Studies of Velocity Storage in the Vestibular and Prepositus Hypoglossi Nuclei of the Monkey. Ann. N. Y. Acad. Sci. 1992, 656, 966–968. [Google Scholar] [CrossRef]
- Park, H.W.; Yoon, H.-K.; Han, S.B.; Lee, B.S.; Sung, I.Y.; Kim, K.S.; Kim, E.A. Brain MRI Measurements at a Term-Equivalent Age and Their Relationship to Neurodevelopmental Outcomes. AJNR Am. J. Neuroradiol. 2014, 35, 599–603. [Google Scholar] [CrossRef]
- Arnsten, A.F.T. Stress Signalling Pathways That Impair Prefrontal Cortex Structure and Function. Nat. Rev. Neurosci. 2009, 10, 410–422. [Google Scholar] [CrossRef]
- McEwen, B.S.; Morrison, J.H. The Brain on Stress: Vulnerability and Plasticity of the Prefrontal Cortex over the Life Course. Neuron 2013, 79, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Mika, A.; Mazur, G.J.; Hoffman, A.N.; Talboom, J.S.; Bimonte-Nelson, H.A.; Sanabria, F.; Conrad, C.D. Chronic Stress Impairs Prefrontal Cortex-Dependent Response Inhibition and Spatial Working Memory. Behav. Neurosci. 2012, 126, 605–619. [Google Scholar] [CrossRef]
- Tang, X.; Li, J.; Jiang, T.; Han, S.-H.; Yao, D.-Y. Experimental Occlusal Disharmony—A Promoting Factor for Anxiety in Rats under Chronic Psychological Stress. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 75, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-C.; Hsieh, J.-C.; Tsai, H.-C.; Kuo, Y.-S.; Yau, H.-J.; Chen, C.-C.; Chen, R.-F.; Yang, H.-W.; Min, M.-Y. Inhibitory Interneurons Regulate Phasic Activity of Noradrenergic Neurons in the Mouse Locus Coeruleus and Functional Implications. J. Physiol. 2020, 598, 4003–4029. [Google Scholar] [CrossRef]
- Weinshenker, D. Long Road to Ruin: Noradrenergic Dysfunction in Neurodegenerative Disease. Trends Neurosci. 2018, 41, 211–223. [Google Scholar] [CrossRef]
- Lomber, S.G.; Payne, B.R. Removal of Two Halves Restores the Whole: Reversal of Visual Hemineglect during Bilateral Cortical or Collicular Inactivation in the Cat. Vis. Neurosci. 1996, 13, 1143–1156. [Google Scholar] [CrossRef]
- Kubo, K.; Iinuma, M.; Chen, H. Mastication as a Stress-Coping Behavior. Biomed. Res. Int. 2015, 2015, 876409. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.P. Chewing Gum and Stress Reduction. J. Clin. Transl. Res. 2016, 2, 52–54. [Google Scholar] [CrossRef]
- Hoang, Q.V.; Bajic, D.; Yanagisawa, M.; Nakajima, S.; Nakajima, Y. Effects of Orexin (Hypocretin) on GIRK Channels. J. Neurophysiol. 2003, 90, 693–702. [Google Scholar] [CrossRef]
- Illes, P.; Nörenberg, W. Blockade of Alpha 2-Adrenoceptors Increases Opioid Mu-Receptor-Mediated Inhibition of the Firing Rate of Rat Locus Coeruleus Neurones. Naunyn Schmiedebergs Arch. Pharmacol. 1990, 342, 490–496. [Google Scholar] [CrossRef]
- Matschke, L.A.; Rinné, S.; Snutch, T.P.; Oertel, W.H.; Dolga, A.M.; Decher, N. Calcium-Activated SK Potassium Channels Are Key Modulators of the Pacemaker Frequency in Locus Coeruleus Neurons. Mol. Cell Neurosci. 2018, 88, 330–341. [Google Scholar] [CrossRef]
- Simson, P.E. Blockade of Alpha2-Adrenergic Receptors Markedly Potentiates Glutamate-Evoked Activity of Locus Coeruleus Neurons. Int. J. Neurosci. 2001, 106, 95–99. [Google Scholar] [CrossRef]
- Simson, P.E.; Weiss, J.M. Blockade of Alpha 2-Adrenergic Receptors, but Not Blockade of Gamma-Aminobutyric AcidA, Serotonin, or Opiate Receptors, Augments Responsiveness of Locus Coeruleus Neurons to Excitatory Stimulation. Neuropharmacology 1989, 28, 651–660. [Google Scholar] [CrossRef]
- Asano, H.; Arima, Y.; Yokota, S.; Fujitani, M. New Nociceptive Circuits to the Hypothalamic Perifornical Area from the Spinal Cord and Spinal Trigeminal Nucleus via the Parabrachial Nucleus. Biochem. Biophys. Res. Commun. 2019, 512, 705–711. [Google Scholar] [CrossRef]
- Peyron, C.; Tighe, D.K.; van den Pol, A.N.; de Lecea, L.; Heller, H.C.; Sutcliffe, J.G.; Kilduff, T.S. Neurons Containing Hypocretin (Orexin) Project to Multiple Neuronal Systems. J. Neurosci. 1998, 18, 9996–10015. [Google Scholar] [CrossRef]
- Yokoyama, S.; Kinoshita, K.-I.; Muroi, Y.; Ishii, T. The Effects of Bilateral Lesions of the Mesencephalic Trigeminal Sensory Nucleus on Nocturnal Feeding and Related Behaviors in Mice. Life Sci. 2013, 93, 681–686. [Google Scholar] [CrossRef]
- Yoshida, A.; Inoue, M.; Sato, F.; Morita, Y.; Tsutsumi, Y.; Furuta, T.; Uchino, K.; Akhter, F.; Bae, Y.C.; Tachibana, Y.; et al. Efferent and Afferent Connections of Supratrigeminal Neurons Conveying Orofacial Muscle Proprioception in Rats. Brain Struct. Funct. 2022, 227, 111–129. [Google Scholar] [CrossRef]
- van den Pol, A.N.; Ghosh, P.K.; Liu, R.-J.; Li, Y.; Aghajanian, G.K.; Gao, X.-B. Hypocretin (Orexin) Enhances Neuron Activity and Cell Synchrony in Developing Mouse GFP-Expressing Locus Coeruleus. J. Physiol. 2002, 541, 169–185. [Google Scholar] [CrossRef] [PubMed]
- Van Bockstaele, E.J.; Garcia-Hernandez, F.; Fox, K.; Alvarez, V.A.; Williams, J.T. Expression of Connexins during Development and Following Manipulation of Afferent Input in the Rat Locus Coeruleus. Neurochem. Int. 2004, 45, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Mercan, D.; Heneka, M.T. The Contribution of the Locus Coeruleus-Noradrenaline System Degeneration during the Progression of Alzheimer’s Disease. Biology 2022, 11, 1822. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, F.S.; Biagioni, F.; Galgani, A.; Pavese, N.; Lazzeri, G.; Fornai, F. Locus Coeruleus Modulates Neuroinflammation in Parkinsonism and Dementia. Int. J. Mol. Sci. 2020, 21, 8630. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Zou, K.; Shibuya, Y.; Michikawa, M. Oral Dysfunctions and Cognitive Impairment/Dementia. J. Neurosci. Res. 2021, 99, 518–528. [Google Scholar] [CrossRef]
- De Cicco, V.; De Cicco, D.; Tramonti Fantozzi, M.P.; Barresi, M.; d’Ascanio, P.; Faraguna, U.; Manzoni, D.; Cataldo, E. From Trigeminal Signals to Locus Coeruleus Activity: A Long Road to Neurodegeneration? The Lancet Summit: Presymptomatic Prevention and Treatment of Neurodegenerative Diseases. 14–16 December 2021. Available online: https://www.youtube.com/watch?v=WmuXpxBkan4 (accessed on 7 July 2023).
Time Points and Post Hoc Comparisons | ||||||||
---|---|---|---|---|---|---|---|---|
Condition | Parameter | T0 | T1 vs. T0 | T1 | T1 vs. T2 | T2 | T2 vs. T0 | ANOVA |
A. Bilateral Chewing | Performance Index (PI, Nos./s) | 1.78 ± 0.49 | p < 0.0005 | 2.40 ± 0.59 | p = 0.001 | 2.25 ± 0.54 | p < 0.0005 | F(2,58) = 128.49 p < 0.0005 η2 = 0.816 |
Pupil Size, Hypertonic side (mm) | 3.99 ± 0.81 | p = 0.009 | 3.86 ± 0.77 | NS | 3.88 ± 0.67 | NS | F(2,58) = 5.512 p = 0.006 η2 = 0.160 | |
Pupil Size, Hypotonic side (mm) | 3.67 ± 0.81 | p = 0.002 | 3.81 ± 0.71 | NS | 3.77 ± 0.71 | NS | F(2,58) = 6.81 p = 0.001 η2 = 0.190 | |
Anisocoria (mm) | 0.32 ± 0.32 | p < 0.0005 | 0.06 ± 0.22 | NS | 0.12 ± 0.19 | p = 0.001 | F(2,58) = 17.22 p < 0.0005 η2 = 0.373 | |
B. Chewing on the Hypertonic side | Performance Index (PI, Nos./s) | 1.71 ± 0.48 | p < 0.0005 | 1.78 ± 0.48 | p = 0.037 | 1.73 ± 0.48 | p = 0.004 | F(2,58) = 14.24 p < 0.0005 η2 = 0.331 |
Pupil Size, Hypertonic side (mm) | 4.04 ± 0.79 | p < 0.0005 | 4.23 ± 0.74 | p < 0.0005 | 4.12 ± 0.80 | p < 0.0005 | F(2,58) = 63.60 p < 0.0005 η2 = 0.687 | |
Pupil Size, Hypotonic side (mm) | 3.68 ± 0.71 | p < 0.0005 | 3.74 ± 0.72 | p = 0.006 | 3.70 ± 0.73 | p = 0.013 | F(2,58) = 17.84 p < 0.0005 η2 = 0.381 | |
Anisocoria (mm) | 0.37 ± 0.31 | p < 0.0005 | 0.49 ± 0.29 | p = 0.010 | 0.42 ± 0.34 | p = 0.004 | F(2,58) = 18.08 p < 0.0005 η2 = 0.384 | |
C. Chewing on the Hypotonic side | Performance Index (PI, Nos./s) | 1.73 ± 0.47 | p < 0.0005 | 1.95 ± 0.49 | p < 0.0005 | 1.77 ± 0.44 | p = 0.013 | F(2,58) = 63.67 p < 0.0005 η2 = 0.687 |
Pupil Size, Hypertonic side (mm) | 4.04 ± 0.79 | p < 0.0005 | 4.09 ± 0.79 | NS | 4.08 ± 0.79 | p = 0.003 | F(2,58) = 13.25 p < 0.0005 η2 = 0.314 | |
Pupil Size, Hypotonic side (mm) | 3.71 ± 0.70 | p < 0.0005 | 3.99 ± 0.73 | p < 0.0005 | 3.76 ± 0.71 | NS | F(2,58) = 91.31 p < 0.0005 η2 = 0.759 | |
Anisocoria (mm) | 0.33 ± 0.33 | p < 0.0005 | 0.10 ± 0.28 | p < 0.0005 | 0.33 ± 0.34 | NS | F(2,58) = 57.53 p < 0.0005 η2 = 0.665 | |
D. Rest | Performance Index (PI, Nos./s) | 1.71 ± 0.52 | NS | 1.76 ± 0.54 | NS | 1.76 ± 0.74 | NS | F(2,58) = 2.77 NS η2 = 0.087 |
Pupil Size, Hypertonic side (mm) | 4.01 ± 0.81 | NS | 4.05 ± 0.81 | NS | 4.03 ± 0.80 | NS | F(2,58) = 1.08 NS η2 = 0.036 | |
Pupil Size, Hypotonic side (mm) | 3.74 ± 0.72 | NS | 3.71 ± 0.73 | NS | 3.77 ± 0.75 | NS | F(2,58) = 2.34 NS η2 = 0.072 | |
Anisocoria (mm) | 0.27 ± 0.27 | p = 0.016 | 0.34 ± 0.31 | NS | 0.26 ± 0.31 | NS | F(2,58) = 3.711 NS η2 = 0.113 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tramonti Fantozzi, M.P.; De Cicco, V.; d’Ascanio, P.; Cataldo, E.; De Cicco, D.; Bruschini, L.; Barresi, M.; Faraguna, U.; Manzoni, D. Trigeminal Stimulation and Visuospatial Performance: The Struggle between Chewing and Trigeminal Asymmetries. Biomedicines 2023, 11, 2307. https://doi.org/10.3390/biomedicines11082307
Tramonti Fantozzi MP, De Cicco V, d’Ascanio P, Cataldo E, De Cicco D, Bruschini L, Barresi M, Faraguna U, Manzoni D. Trigeminal Stimulation and Visuospatial Performance: The Struggle between Chewing and Trigeminal Asymmetries. Biomedicines. 2023; 11(8):2307. https://doi.org/10.3390/biomedicines11082307
Chicago/Turabian StyleTramonti Fantozzi, Maria Paola, Vincenzo De Cicco, Paola d’Ascanio, Enrico Cataldo, Davide De Cicco, Luca Bruschini, Massimo Barresi, Ugo Faraguna, and Diego Manzoni. 2023. "Trigeminal Stimulation and Visuospatial Performance: The Struggle between Chewing and Trigeminal Asymmetries" Biomedicines 11, no. 8: 2307. https://doi.org/10.3390/biomedicines11082307
APA StyleTramonti Fantozzi, M. P., De Cicco, V., d’Ascanio, P., Cataldo, E., De Cicco, D., Bruschini, L., Barresi, M., Faraguna, U., & Manzoni, D. (2023). Trigeminal Stimulation and Visuospatial Performance: The Struggle between Chewing and Trigeminal Asymmetries. Biomedicines, 11(8), 2307. https://doi.org/10.3390/biomedicines11082307