The Value of Neutrophil Gelatinase-Associated Lipocalin Receptor as a Novel Partner of CD38 in Chronic Lymphocytic Leukemia: From an Adverse Prognostic Factor to a Potential Pharmacological Target?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. CLL Cell Separation and Flow Cytometry
2.3. Statistics
2.4. Ethics Statement
3. Results
3.1. Prognostic Relevance of NGAL-R and CD38 Co-Expression
3.2. Correlation of NGAL-R/CD38 Co-Expression with Remission Rate and Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pleyer, L.; Egle, A.; Hartmann, T.N.; Greil, R. Molecular and cellular mechanisms of CLL: Novel therapeutic approaches. Nat. Rev. Clin. Oncol. 2009, 6, 405–418. [Google Scholar] [CrossRef]
- Tannoury, M.; Garnier, D.; Susin, S.A.; Bauvois, B. Current Status of Novel Agents for the Treatment of B Cell Malignancies: What’s Coming Next? Cancers 2022, 14, 6026. [Google Scholar] [CrossRef]
- Svanberg, R.; Janum, S.; Patten, P.E.M.; Ramsay, A.G.; Niemann, C.U. Targeting the tumor microenvironment in chronic lymphocytic leukemia. Haematologica 2021, 106, 2312–2324. [Google Scholar] [CrossRef]
- Wright, S.C.E.; Vasilevski, N.; Serra, V.; Rodon, J.; Eichhorn, P.J.A. Mechanisms of Resistance to PI3K Inhibitors in Cancer: Adaptive Responses, Drug Tolerance and Cellular Plasticity. Cancers 2021, 13, 1538. [Google Scholar] [CrossRef]
- Diepstraten, S.T.; Anderson, M.A.; Czabotar, P.E.; Lessene, G.; Strasser, A.; Kelly, G.L. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat. Rev. Cancer 2022, 22, 45–64. [Google Scholar] [CrossRef]
- Lew, T.E.; Seymour, J.F. Clinical experiences with venetoclax and other pro-apoptotic agents in lymphoid malignancies: Lessons from monotherapy and chemotherapy combination. J. Hematol. Oncol. 2022, 15, 75. [Google Scholar] [CrossRef]
- Ran, F.; Liu, Y.; Wang, C.; Xu, Z.; Zhang, Y.; Liu, Y.; Zhao, G.; Ling, Y. Review of the development of BTK inhibitors in overcoming the clinical limitations of ibrutinib. Eur. J. Med. Chem. 2022, 229, 114009. [Google Scholar] [CrossRef]
- Skånland, S.S.; Brown, J.R. PI3K inhibitors in chronic lymphocytic leukemia: Where do we go from here? Haematologica 2023, 108, 9–21. [Google Scholar] [CrossRef]
- Dürig, J.; Naschar, M.; Schmücker, U.; Renzing-Köhler, K.; Hölter, T.; Hüttmann, A.; Dührsen, U. CD38 expression is an important prognostic marker in chronic lymphocytic leukaemia. Leukemia 2002, 16, 30–35. [Google Scholar] [CrossRef]
- Burgler, S. Role of CD38 Expression in Diagnosis and Pathogenesis of Chronic Lymphocytic Leukemia and Its Potential as Therapeutic Target. Crit. Rev. Immunol. 2015, 35, 417–432. [Google Scholar] [CrossRef]
- Benkisser-Petersen, M.; Buchner, M.; Dörffel, A.; Dühren-von-Minden, M.; Claus, R.; Kläsener, K.; Leberecht, K.; Burger, M.; Dierks, C.; Jumaa, H.; et al. Spleen Tyrosine Kinase Is Involved in the CD38 Signal Transduction Pathway in Chronic Lymphocytic Leukemia. PLoS ONE 2016, 11, e0169159. [Google Scholar] [CrossRef] [PubMed]
- Manna, A.; Aulakh, S.; Jani, P.; Ahmed, S.; Akhtar, S.; Coignet, M.; Heckman, M.; Meghji, Z.; Bhatia, K.; Sharma, A.; et al. Targeting CD38 Enhances the Antileukemic Activity of Ibrutinib in Chronic Lymphocytic Leukemia. Clin. Cancer Res. 2019, 25, 3974–3985. [Google Scholar] [CrossRef] [PubMed]
- Szlasa, W.; Czarny, J.; Sauer, N.; Rakoczy, K.; Szymańska, N.; Stecko, J.; Kołodziej, M.; Kaźmierczak, M.; Barg, E. Targeting CD38 in Neoplasms and Non-Cancer Diseases. Cancers 2022, 14, 4169. [Google Scholar] [CrossRef] [PubMed]
- Aurran-Schleinitz, T.; Tomowiak, C.; Roos-Weil, D.; Ferrant, E.; Mahé, B.; Molina, L.; Ysebaert, L.; Fornecker, L.M.; Michallet, A.S.; Levy, V.; et al. Combined Treatment with Ibrutinib and Anti-CD38 Monoclonal Antibody Daratumumab in Relapsed/Refractory Chronic Lymphocytic Leukemia with TP53 Aberrations: Results of the Filo Phase II Study IDA53. Blood 2022, 140, 7030–7031. [Google Scholar] [CrossRef]
- Morandi, F.; Airoldi, I.; Marimpietri, D.; Bracci, C.; Faini, A.C.; Gramignoli, R. CD38, a Receptor with Multifunctional Activities: From Modulatory Functions on Regulatory Cell Subsets and Extracellular Vesicles, to a Target for Therapeutic Strategies. Cells 2019, 8, 1527. [Google Scholar] [CrossRef] [PubMed]
- Labrijn, A.F.; Janmaat, M.L.; Reichert, J.M.; Parren, P. Bispecific antibodies: A mechanistic review of the pipeline. Nat. Rev. Drug Discov. 2019, 18, 585–608. [Google Scholar] [CrossRef] [PubMed]
- Cabedo Martinez, A.I.; Weinhaupl, K.; Lee, W.K.; Wolff, N.A.; Storch, B.; Zerko, S.; Konrat, R.; Kozminski, W.; Breuker, K.; Thevenod, F.; et al. Biochemical and Structural Characterization of the Interaction between the Siderocalin NGAL/LCN2 (Neutrophil Gelatinase-associated Lipocalin/Lipocalin 2) and the N-terminal Domain of Its Endocytic Receptor SLC22A17. J. Biol. Chem. 2016, 291, 2917–2930. [Google Scholar] [CrossRef]
- Bauvois, B.; Pramil, E.; Jondreville, L.; Chapiro, E.; Quiney, C.; Maloum, K.; Susin, S.A.; Nguyen-Khac, F. Relation of Neutrophil Gelatinase-Associated Lipocalin Overexpression to the Resistance to Apoptosis of Tumor B Cells in Chronic Lymphocytic Leukemia. Cancers 2020, 12, 2124. [Google Scholar] [CrossRef]
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Dohner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef]
- El-Kinawy, N.S.; Sharaf, H.M.; Abd El-Hammid, M. Prognostic significance of del 17p, ZAP70 and CD38 as independent indicators for B-CLL: Correlation to response to treatment and disease outcome. Egypt. J. Med. Hum. Genet. 2012, 13, 173–181. [Google Scholar] [CrossRef]
- Chevallier, P.; Penther, D.; Avet-Loiseau, H.; Robillard, N.; Ifrah, N.; Mahé, B.; Hamidou, M.; Maisonneuve, H.; Moreau, P.; Jardel, H.; et al. CD38 expression and secondary 17p deletion are important prognostic factors in chronic lymphocytic leukaemia. Br. J. Haematol. 2002, 116, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Riches, J.C.; O’Donovan, C.J.; Kingdon, S.J.; McClanahan, F.; Clear, A.J.; Neuberg, D.S.; Werner, L.; Croce, C.M.; Ramsay, A.G.; Rassenti, L.Z.; et al. Trisomy 12 chronic lymphocytic leukemia cells exhibit upregulation of integrin signaling that is modulated by NOTCH1 mutations. Blood 2014, 123, 4101–4110. [Google Scholar] [CrossRef] [PubMed]
- Choudhry, P.; Mariano, M.C.; Geng, H.; Martin, T.G., 3rd; Wolf, J.L.; Wong, S.W.; Shah, N.; Wiita, A.P. DNA methyltransferase inhibitors upregulate CD38 protein expression and enhance daratumumab efficacy in multiple myeloma. Leukemia 2020, 34, 938–941. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Xu, L.Y.; Shen, Z.Y.; Tao, Q.; Gao, S.Y.; Lv, Z.; Du, Z.P.; Fang, W.K.; Li, E.M. NGALR is overexpressed and regulated by hypomethylation in esophageal squamous cell carcinoma. Clin. Cancer Res. 2008, 14, 7674–7681. [Google Scholar] [CrossRef]
- Rahmatpanah, F.B.; Carstens, S.; Hooshmand, S.I.; Welsh, E.C.; Sjahputera, O.; Taylor, K.H.; Bennett, L.B.; Shi, H.; Davis, J.W.; Arthur, G.L.; et al. Large-scale analysis of DNA methylation in chronic lymphocytic leukemia. Epigenomics 2009, 1, 39–61. [Google Scholar] [CrossRef]
- Oakes, C.C.; Seifert, M.; Assenov, Y.; Gu, L.; Przekopowitz, M.; Ruppert, A.S.; Wang, Q.; Imbusch, C.D.; Serva, A.; Koser, S.D.; et al. DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nat. Genet. 2016, 48, 253–264. [Google Scholar] [CrossRef]
- Deshpande, D.A.; Guedes, A.G.P.; Graeff, R.; Dogan, S.; Subramanian, S.; Walseth, T.F.; Kannan, M.S. CD38/cADPR Signaling Pathway in Airway Disease: Regulatory Mechanisms. Mediat. Inflamm. 2018, 2018, 8942042. [Google Scholar] [CrossRef]
- Zuo, W.; Liu, N.; Zeng, Y.; Liu, Y.; Li, B.; Wu, K.; Xiao, Y.; Liu, Q. CD38: A Potential Therapeutic Target in Cardiovascular Disease. Cardiovasc. Drugs Ther. 2021, 35, 815–828. [Google Scholar] [CrossRef]
- Sheng, Z.; Wang, S.Z.; Green, M.R. Transcription and signalling pathways involved in BCR-ABL-mediated misregulation of 24p3 and 24p3R. Embo J. 2009, 28, 866–876. [Google Scholar] [CrossRef]
- Sun, C.C.; Li, S.J.; Chen, Z.L.; Li, G.; Zhang, Q.; Li, D.J. Expression and Prognosis Analyses of Runt-Related Transcription Factor Family in Human Leukemia. Mol. Ther. Oncolytics 2019, 12, 103–111. [Google Scholar] [CrossRef]
- Tsagiopoulou, M.; Papakonstantinou, N.; Moysiadis, T.; Mansouri, L.; Ljungström, V.; Duran-Ferrer, M.; Malousi, A.; Queirós, A.C.; Plevova, K.; Bhoi, S.; et al. DNA methylation profiles in chronic lymphocytic leukemia patients treated with chemoimmunotherapy. Clin. Epigenetics 2019, 11, 177. [Google Scholar] [CrossRef] [PubMed]
- Packham, G.; Stevenson, F.K. Bodyguards and assassins: Bcl-2 family proteins and apoptosis control in chronic lymphocytic leukaemia. Immunology 2005, 114, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Qin, Y.; Yu, X.; Xu, X.; Yu, W. Lipid raft involvement in signal transduction in cancer cell survival, cell death and metastasis. Cell Prolif. 2022, 55, e13167. [Google Scholar] [CrossRef]
- Deaglio, S.; Capobianco, A.; Bergui, L.; Dürig, J.; Morabito, F.; Dührsen, U.; Malavasi, F. CD38 is a signaling molecule in B-cell chronic lymphocytic leukemia cells. Blood 2003, 102, 2146–2155. [Google Scholar] [CrossRef] [PubMed]
- Camponeschi, A.; Kläsener, K.; Sundell, T.; Lundqvist, C.; Manna, P.T.; Ayoubzadeh, N.; Sundqvist, M.; Thorarinsdottir, K.; Gatto, M.; Visentini, M.; et al. Human CD38 regulates B cell antigen receptor dynamic organization in normal and malignant B cells. J. Exp. Med. 2022, 219, e20220201. [Google Scholar] [CrossRef]
- Srimaroeng, C.; Cecile, J.P.; Walden, R.; Pritchard, J.B. Regulation of renal organic anion transporter 3 (SLC22A8) expression and function by the integrity of lipid raft domains and their associated cytoskeleton. Cell Physiol. Biochem. 2013, 31, 565–578. [Google Scholar] [CrossRef]
- Engelhart, D.C.; Granados, J.C.; Shi, D.; Saier, M.H., Jr.; Baker, M.E.; Abagyan, R.; Nigam, S.K. Systems Biology Analysis Reveals Eight SLC22 Transporter Subgroups, Including OATs, OCTs, and OCTNs. Int. J. Mol. Sci. 2020, 21, 1791. [Google Scholar] [CrossRef]
- Matas-Céspedes, A.; Vidal-Crespo, A.; Rodriguez, V.; Villamor, N.; Delgado, J.; Giné, E.; Roca-Ho, H.; Menéndez, P.; Campo, E.; López-Guillermo, A.; et al. The Human CD38 Monoclonal Antibody Daratumumab Shows Antitumor Activity and Hampers Leukemia-Microenvironment Interactions in Chronic Lymphocytic Leukemia. Clin. Cancer Res. 2017, 23, 1493–1505. [Google Scholar] [CrossRef]
- Gao, L.; Du, X.; Li, J.; Qin, F.X. Evolving roles of CD38 metabolism in solid tumour microenvironment. Br. J. Cancer 2023, 128, 492–504. [Google Scholar] [CrossRef]
- Chakraborty, S.; Kaur, S.; Guha, S.; Batra, S.K. The multifaceted roles of neutrophil gelatinase associated lipocalin (NGAL) in inflammation and cancer. Biochim. Biophys. Acta 2012, 1826, 129–169. [Google Scholar] [CrossRef]
- Martinez-Outschoorn, U.E.; Peiris-Pagés, M.; Pestell, R.G.; Sotgia, F.; Lisanti, M.P. Cancer metabolism: A therapeutic perspective. Nat. Rev. Clin. Oncol. 2017, 14, 113. [Google Scholar] [CrossRef] [PubMed]
- Vaisitti, T.; Audrito, V.; Serra, S.; Buonincontri, R.; Sociali, G.; Mannino, E.; Pagnani, A.; Zucchetto, A.; Tissino, E.; Vitale, C.; et al. The enzymatic activities of CD38 enhance CLL growth and trafficking: Implications for therapeutic targeting. Leukemia 2015, 29, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.Y.; Mina, E.; Roetto, A.; Porporato, P.E. Iron: An Essential Element of Cancer Metabolism. Cells 2020, 9, 2591. [Google Scholar] [CrossRef] [PubMed]
- Laubach, K.; Zhang, J.; Chen, X. The p53 Family: A Role in Lipid and Iron Metabolism. Front. Cell Dev. Biol. 2021, 9, 715974. [Google Scholar] [CrossRef] [PubMed]
- Bauvois, B.; Susin, S.A. Revisiting Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Cancer: Saint or Sinner? Cancers 2018, 10, 336. [Google Scholar] [CrossRef]
- Chaudhary, N.; Choudhary, B.S.; Shah, S.G.; Khapare, N.; Dwivedi, N.; Gaikwad, A.; Joshi, N.; Raichanna, J.; Basu, S.; Gurjar, M.; et al. Lipocalin 2 expression promotes tumor progression and therapy resistance by inhibiting ferroptosis in colorectal cancer. Int. J. Cancer 2021, 149, 1495–1511. [Google Scholar] [CrossRef]
- Herrmann, H.; Sadovnik, I.; Eisenwort, G.; Rülicke, T.; Blatt, K.; Herndlhofer, S.; Willmann, M.; Stefanzl, G.; Baumgartner, S.; Greiner, G.; et al. Delineation of target expression profiles in CD34+/CD38- and CD34+/CD38+ stem and progenitor cells in AML and CML. Blood Adv. 2020, 4, 5118–5132. [Google Scholar] [CrossRef]
- Naik, J.; Themeli, M.; de Jong-Korlaar, R.; Ruiter, R.W.J.; Poddighe, P.J.; Yuan, H.; de Bruijn, J.D.; Ossenkoppele, G.J.; Zweegman, S.; Smit, L.; et al. CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Haematologica 2019, 104, e100–e103. [Google Scholar] [CrossRef]
- Nadarajan, V.S.; Ang, C.H.; Bee, P.C. Lipocalin-2 is associated with modulation of disease phenotype in a patient with concurrent JAK2-V617F and BCR-ABL mutation. Eur. J. Haematol. 2012, 88, 175–178. [Google Scholar] [CrossRef]
- Bauvois, B. Overexpression of Neutrophil Gelatinase-Associated Lipocalin Receptor in Human Acute Myeloid Leukemias. INSERM UMRS1138, Paris, France. 2023; Unpublished Work. [Google Scholar]
- Konen, J.M.; Fradette, J.J.; Gibbons, D.L. The Good, the Bad and the Unknown of CD38 in the Metabolic Microenvironment and Immune Cell Functionality of Solid Tumors. Cells 2019, 9, 52. [Google Scholar] [CrossRef]
- Dwivedi, S.; Rendón-Huerta, E.P.; Ortiz-Navarrete, V.; Montaño, L.F. CD38 and Regulation of the Immune Response Cells in Cancer. J. Oncol. 2021, 2021, 6630295. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, Y.; Mei, Z. NGAL and NGALR overexpression in human hepatocellular carcinoma toward a molecular prognostic classification. Cancer Epidemiol. 2012, 36, e294–e299. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, N.; Yang, W.; Wang, R.; Yu, J.; Wang, X. The expression analysis of NGAL and NGALR in clear cell renal cell carcinoma. Gene 2018, 676, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, T.; Asaka, R.; Suzuki, A.; Takatsu, A.; Kashima, H.; Shiozawa, T. Immunohistochemical detection of a specific receptor for lipocalin2 (solute carrier family 22 member 17, SLC22A17) and its prognostic significance in endometrial carcinoma. Exp. Mol. Pathol. 2011, 91, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.F.; Jin, T.; Shen, J.H.; Shen, Z.Y.; Zheng, Z.C.; Zhang, Z.L.; Xu, L.Y.; Li, E.M.; Xu, H.X. NGAL and NGALR are frequently overexpressed in human gliomas and are associated with clinical prognosis. J. Neurooncol. 2011, 104, 119–127. [Google Scholar] [CrossRef]
- Cui, Q.; Liang, P.; Dai, H.; Cui, W.; Cai, M.; Ding, Z.; Ma, Q.; Yin, J.; Li, Z.; Liu, S.; et al. Case report: CD38-directed CAR-T cell therapy: A novel immunotherapy targeting CD38- positive blasts overcomes TKI and chemotherapy resistance of chronic myeloid leukemia in blastic phase. Front. Immunol. 2022, 13, 1012981. [Google Scholar] [CrossRef]
- Zhong, X.; Ma, H. Targeting CD38 for acute leukemia. Front. Oncol. 2022, 12, 1007783. [Google Scholar] [CrossRef]
CLL | Sex/ Age | Stage at Diagnosis | Lymphocyte Count G/L at Analysis Time | IGHV | FISH | Karyotype at Diagnosis | Therapy (Analysis Time Point after the Start of Treatment) |
---|---|---|---|---|---|---|---|
1 | M/71 | A | 12.4 | M | Tri 12 | 1 abnormality | None |
2 | M/63 | A | 5.51 | nd | 13q- | Complex | None |
3 | M/90 | A | 16.02 | M | nd | nd | None |
4 | M/76 | A | 48.91 | nd | 13q- | Normal | None |
5 | M/87 | C | 21.89 | UM | 17p-, 13q- | Normal | None |
6 | M/66 | B | 37.22 | M | 13q- | 2 abnormalities | None |
7 | F/74 | A | 78 | UM | 13q- | Normal | None |
8 | F/78 | A | 26.84 | M | 13q- | Normal | None |
9 | F/68 | A | 16.15 | nd | 13q- | 1 abnormality | None |
10 | F/62 | B | 179.86 | UM | 13q- | Normal | None |
11 | F/83 | A | 64 | nd | Normal | Normal | None |
12 | M/82 | A | 4.69 | nd | 11q-, 13q- | Normal | None |
13 | F/77 | A | 34.93 | UM | 13q- | Failure | None |
14 | M/74 | A | 30.08 | nd | 13q- | 2 abnormalities | None |
15 | F/64 | A | 5.77 | M | 13q- | Normal | None |
16 | M/70 | A | 9.04 | nd | 13q- | Normal | None |
17 | M/75 | A | 13.36 | M | 13q- | Normal | None |
18 | F/67 | A | 20.08 | nd | 13q- | Normal | None |
19 | F/70 | A | 9 | nd | 13q- | Normal | None |
20 | F/79 | A | 10.12 | nd | 13q- | Normal | None |
21 | F/54 | B | 41.02 | nd | Tri 12 | 1 abnormality | None |
22 | M/76 | A | 5.99 | M | 13q- | Normal | None |
23 | M/68 | B | 70.97 | nd | 11q- | Complex | None |
24 | F/84 | A | 20.44 | nd | Normal | Normal | None |
25 | M/75 | B | 184.01 | UM | Tri 12 | 1 abnormality | None |
26 | F/82 | A | 8.8 | nd | 13q- | Normal | None |
27 | F/85 | A | 71,98 | nd | Normal | 2 abnormalities | None |
28 | F/74 | A | 3.44 | nd | 13q- | 1 abnormality | None |
29 | M/76 | A | 14.46 | nd | 13q- | Normal | None |
30 | F/85 | A | 19.51 | M | 13q- | Normal | None |
31 | F/52 | A | 11.9 | nd | 13q- | Normal | None |
32 | F/68 | B | 70.14 | nd | 11q-, 13q- | Complex | None |
33 | F/57 | A | 10.49 | nd | 13q- | Normal | None |
34 | F/80 | B | 35.01 | nd | 11q- | 1 abnormality | None |
35 | M/62 | A | 11.42 | nd | Normal | Normal | None |
36 | M/61 | B | 78 | nd | 13q-, Tri 12 | Complex | None |
37 | F/53 | A | 15.58 | UM | 13q- | 2 abnormalities | None |
38 | F/80 | B | 30.97 | nd | 11q- | 1 abnormality | BR/relapse (month 12) |
39 | F/78 | A | 10.38 | M | 13q- | 1 abnormality | RCb/relapse (month 48) |
40 | M/76 | B | 68.25 | nd | 17p-, 13q- | 2 abnormalities | Ibrutinib/relapse (month 12) |
41 | M/80 | B | 11.06 | UM | 17p-, 13q- | Complex | Ibrutinib/relapse (month 24) |
42 | M/74 | B | 7.5 | nd | nd | nd | FCR/relapse (month 96) |
43 | M/81 | C | 7.02 | M | 11q-, 13q- | nd | Alemtuzumab/relapse (month 72) |
44 | M/82 | C | 6.42 | UM | 11q-, 13q- | Complex | BR/relapse (month 24) |
45 | M/88 | C | 0.87 | UM | 17p-, 13q- | Normal | RCb/remission (month 8) |
46 | M/79 | B | 1.3 | UM | Normal | Normal | BR/remission (month 8) |
47 | M/64 | A | 1.15 | UM | Tri 12 | 1 abnormality | FCR/remission (month 54) |
48 | F/75 | B | 1.39 | M | 13q-, Tri 12 | 1 abnormality | FCR/remission (month 36) |
49 | F/64 | B | 0.26 | UM | 13q- | Normal | FCR/remission (month 10) |
50 | M/48 | C | 43.64 | UM | 17p- | Complex | Ibrutinib/remission (month 2) |
51 | F/72 | B | 20.2 | UM | 17p-, Tri 12 | Complex | Ibrutinib/remission (month17) |
52 | M/66 | C | 7.64 | UM | 13q-, Tri 12 | Complex | Ibrutinib/remission (month 2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauvois, B.; Chapiro, E.; Quiney, C.; Maloum, K.; Susin, S.A.; Nguyen-Khac, F. The Value of Neutrophil Gelatinase-Associated Lipocalin Receptor as a Novel Partner of CD38 in Chronic Lymphocytic Leukemia: From an Adverse Prognostic Factor to a Potential Pharmacological Target? Biomedicines 2023, 11, 2335. https://doi.org/10.3390/biomedicines11092335
Bauvois B, Chapiro E, Quiney C, Maloum K, Susin SA, Nguyen-Khac F. The Value of Neutrophil Gelatinase-Associated Lipocalin Receptor as a Novel Partner of CD38 in Chronic Lymphocytic Leukemia: From an Adverse Prognostic Factor to a Potential Pharmacological Target? Biomedicines. 2023; 11(9):2335. https://doi.org/10.3390/biomedicines11092335
Chicago/Turabian StyleBauvois, Brigitte, Elise Chapiro, Claire Quiney, Karim Maloum, Santos A. Susin, and Florence Nguyen-Khac. 2023. "The Value of Neutrophil Gelatinase-Associated Lipocalin Receptor as a Novel Partner of CD38 in Chronic Lymphocytic Leukemia: From an Adverse Prognostic Factor to a Potential Pharmacological Target?" Biomedicines 11, no. 9: 2335. https://doi.org/10.3390/biomedicines11092335
APA StyleBauvois, B., Chapiro, E., Quiney, C., Maloum, K., Susin, S. A., & Nguyen-Khac, F. (2023). The Value of Neutrophil Gelatinase-Associated Lipocalin Receptor as a Novel Partner of CD38 in Chronic Lymphocytic Leukemia: From an Adverse Prognostic Factor to a Potential Pharmacological Target? Biomedicines, 11(9), 2335. https://doi.org/10.3390/biomedicines11092335