Modulation of D3R Splicing, Signaling, and Expression by D1R through PKA→PTB Phosphorylation
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Silico Analysis
2.2. Animals
2.3. SCH23390 Treatment
2.4. Whole Striatum Homogenates and Brain Slice Preparation
2.5. Cellular Fractionation Procedures
2.6. PTB Phosphorylation Assay
2.7. mRNA Immunoprecipitation (RIP)
2.8. Western Blot
2.9. qRT-PCR Determinations
2.10. cAMP Accumulation
2.11. Drugs
2.12. Data Analysis
3. Results
3.1. In Silico Motifs for Splicing in the mRNA of D3R and Co-Immunoprecipitation with PTB
3.2. D1R Activation Phosphorylates PTB
3.3. D1R Blockade Decreases D3nf mRNA, Protein Expression, and Cytoplasmic Location
3.4. D1R Blockade Did Not Modify D3R mRNA but Increased Its Membrane Location
3.5. D1R Blockade Increased PTB Expression in the Nucleus
3.6. Blockade of D1R Produces D3R Typical Signaling and Masks the Atypical One
4. Discussion
4.1. PTB Modulates D3R mRNA Alternative Splicing and Produces D3nf Expression
4.2. D1R Modulation of PTB Phosphorylation, Function, and Cellular Location
4.3. D1R Regulation of D3R Splicing Modifies Its Function
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ridray, S.; Griffon, N.; Mignon, V.; Souil, E.; Carboni, S.; Diaz, J.; Schwartz, J.C.; Sokoloff, P. Coexpression of dopamine D1 and D3 receptors in islands of Calleja and shell of nucleus accumbens of the rat: Opposite and synergistic functional interactions. Eur. J. Neurosci. 1998, 10, 1676–1686. [Google Scholar] [CrossRef]
- Schwartz, J.C.; Ridray, S.; Bordet, R.; Diaz, J.; Sokoloff, P. D1/D3 receptor relationships in brain coexpression, coactivation, and coregulation. Adv. Pharmacol. 1998, 42, 408–411. [Google Scholar] [PubMed]
- Schwartz, J.C.; Diaz, J.; Bordet, R.; Griffon, N.; Perachon, S.; Pilon, C.; Ridray, S.; Sokoloff, P. Functional implications of multiple dopamine receptor subtypes: The D1/D3 receptor coexistence. Brain Res. Brain Res. Rev. 1998, 26, 236–242. [Google Scholar] [CrossRef]
- Liu, X.Y.; Mao, L.M.; Zhang, G.C.; Papasian, C.J.; Fibuch, E.E.; Lan, H.X.; Zhou, H.F.; Xu, M.; Wang, J.Q. Activity-dependent modulation of limbic dopamine D3 receptors by CaMKII. Neuron 2009, 61, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Barik, S.; De Beaurepaire, R. Hypothermic effects of dopamine D3 receptor agonists in the island of Calleja Magna. Potentiation by D1 activation. Pharmacol. Biochem. Behav. 1998, 60, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, C.; Busi, C.; Gorruso, E.; Gotti, C.; Spano, P.; Missale, C. Reciprocal regulation of dopamine D1 and D3 receptor function and trafficking by heterodimerization. Mol. Pharmacol. 2008, 74, 59–69. [Google Scholar] [CrossRef]
- Marcellino, D.; Ferre, S.; Casado, V.; Cortes, A.; Le Foll, B.; Mazzola, C.; Drago, F.; Saur, O.; Stark, H.; Soriano, A.; et al. Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J. Biol. Chem. 2008, 283, 26016–26025. [Google Scholar] [CrossRef]
- Avalos-Fuentes, A.; Loya-López, S.; Flores-Pérez, A.; Recillas-Morales, S.; Cortés, H.; Paz-Bermúdez, F.; Aceves, J.; Erlij, D.; Florán, B. Presynaptic CaMKIIα modulates dopamine D3 receptor activation in striatonigral terminals of the rat brain in a Ca2+ dependent manner. Neuropharmacology 2013, 71, 273–281. [Google Scholar] [CrossRef]
- Cruz-Trujillo, R.; Avalos-Fuentes, A.; Rangel-Barajas, C.; Paz-Bermudez, F.; Sierra, A.; Escartin-Perez, E.; Aceves, J.; Erlij, D.; Floran, B. D3 dopamine receptors interact with dopamine D1 but not D4 receptors in the GABAergic terminals of the SNr of the rat. Neuropharmacology 2013, 67, 370–378. [Google Scholar] [CrossRef]
- Campos Campos, B.; Ávalos-Fuentes, A.; Pina Leyva, C.; Sánchez-Zavaleta, R.; Loya-López, S.; Rangel-Barajas, C.; Leyva-Gómez, G.; Cortés, H.; Erlij, D.; Florán, B. Coexistence of D3R typical and atypical signaling in striatonigral neurons during dopaminergic denervation. Correlation with D3nf expression changes. Synapse 2020, 74, e22152. [Google Scholar] [CrossRef]
- Liu, K.; Bergson, C.; Levenson, R.; Schmauss, C. On the origin of mRNA encoding the truncated dopamine D3-type receptor D3nf and detection of D3nf-like immunoreactivity in human brain. J. Biol. Chem. 1994, 269, 29220–29226. [Google Scholar] [CrossRef] [PubMed]
- Elmhurst, J.L.; Xie, Z.; O’Dowd, B.F.; George, S.R. The splice variant D3nf reduces ligand binding to the D3 dopamine receptor: Evidence for heterooligomerization. Brain Res. Mol. Brain Res. 2000, 80, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Karpa, K.D.; Lin, R.; Kabbani, N.; Levenson, R. The dopamine D3 receptor interacts with itself and the truncated D3 splice variant d3nf: D3-D3nf interaction causes mislocalization of D3 receptors. Mol. Pharmacol. 2000, 58, 677–683. [Google Scholar] [CrossRef]
- Richtand, N.M. Behavioral sensitization, alternative splicing, and d3 dopamine receptor-mediated inhibitory function. Neuropsychopharmacology 2006, 31, 2368–2375. [Google Scholar] [CrossRef] [PubMed]
- Prieto, G.A.; Perez-Burgos, A.; Palomero-Rivero, M.; Galarraga, E.; Drucker-Colin, R.; Bargas, J. Upregulation of D2-class signaling in dopamine-denervated striatum is in part mediated by D3 receptors acting on Ca V 2.1 channels via PIP2 depletion. J. Neurophysiol. 2011, 105, 2260–2274. [Google Scholar] [CrossRef]
- Oberstrass, F.C.; Auweter, S.D.; Erat, M.; Hargous, Y.; Henning, A.; Wenter, P.; Reymond, L.; Amir-Ahmady, B.; Pitsch, S.; Black, D.L. Structure of PTB bound to RNA: Specific binding and implications for splicing regulation. Science 2005, 309, 2054–2057. [Google Scholar] [CrossRef] [PubMed]
- Sasabe, T.; Futai, E.; Ishiura, S. Polypyrimidine tract-binding protein 1 regulates the alternative splicing of dopamine receptor D2. J. Neurochem. 2011, 116, 76–81. [Google Scholar] [CrossRef]
- Ma, S.; Liu, G.; Sun, Y.; Xie, J. Relocalization of the polypyrimidine tract-binding protein during PKA-induced neurite growth. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2007, 1773, 912–923. [Google Scholar] [CrossRef]
- Pritchard, L.M.; Logue, A.D.; Taylor, B.C.; Ahlbrand, R.; Welge, J.A.; Tang, Y.; Sharp, F.R.; Richtand, N.M. Relative expression of D3 dopamine receptor and alternative splice variant D3nf mRNA in high and low responders to novelty. Brain Res. Bull. 2006, 70, 296–303. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. The Rat Brain in Stereotaxic Coordinates: Hard Cover Edition; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Heydorn, W.E.; Creed, G.J.; Patel, J.; Jacobowitz, D.M. Distribution of proteins in different subcellular fractions of rat brain studied by two-dimensional gel electrophoresis. Neurochem. Int. 1986, 9, 357–370. [Google Scholar] [CrossRef]
- Guillemin, I.; Becker, M.; Ociepka, K.; Friauf, E.; Nothwang, H.G. A subcellular prefractionation protocol for minute amounts of mammalian cell cultures and tissue. Proteomics 2005, 5, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, M.; Matarazzo, M.R. Rip: Rna Immunoprecipitation. In Polycomb Group Proteins: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2016; pp. 73–86. [Google Scholar]
- Heim, M.; Blot, L.; Besse, F. An RNA-immunoprecipitation protocol to identify RNAs associated with RNA-binding proteins in cytoplasmic and nuclear Drosophila head fractions. STAR Protoc. 2022, 3, 101415. [Google Scholar] [CrossRef]
- Loya-López, S.; Sandoval, A.; González-Ramírez, R.; Calderón-Rivera, A.; Ávalos-Fuentes, A.; Rodríguez-Sánchez, M.; Caballero, R.; Tovar-Soto, D.; Felix, R.; Florán, B. Cdk5 phosphorylates CaV1. 3 channels and regulates GABAA-mediated miniature inhibitory post-synaptic currents in striato-nigral terminals. Biochem. Biophys. Res. Commun. 2020, 524, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Rangel-Barajas, C.; Silva, I.; Lopéz-Santiago, L.M.; Aceves, J.; Erlij, D.; Florán, B. L-DOPA-induced dyskinesia in hemiparkinsonian rats is associated with up-regulation of adenylyl cyclase type V/VI and increased GABA release in the substantia nigra reticulata. Neurobiol. Dis. 2011, 41, 51–61. [Google Scholar] [CrossRef]
- Dubois, A.; Savasta, M.; Curet, O.; Scatton, B. Autoradiographic distribution of the D1 agonist [3H] SKF 38393, in the rat brain and spinal cord. Comparison with the distribution of D2 dopamine receptors. Neuroscience 1986, 19, 125–137. [Google Scholar] [CrossRef]
- Bourne, J.A. SCH 23390: The first selective dopamine D1-like receptor antagonist. CNS Drug Rev. 2001, 7, 399–414. [Google Scholar] [CrossRef] [PubMed]
- Chijiwa, T.; Mishima, A.; Hagiwara, M.; Sano, M.; Hayashi, K.; Inoue, T.; Naito, K.; Toshioka, T.; Hidaka, H. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J. Biol. Chem. 1990, 265, 5267–5272. [Google Scholar]
- Nimchinsky, E.A.; Hof, P.R.; Janssen, W.G.; Morrison, J.H.; Schmauss, C. Expression of dopamine D3 receptor dimers and tetramers in brain and in transfected cells. J. Biol. Chem. 1997, 272, 29229–29237. [Google Scholar] [CrossRef]
- Ikeda, E.; Matsunaga, N.; Kakimoto, K.; Hamamura, K.; Hayashi, A.; Koyanagi, S.; Ohdo, S. Molecular mechanism regulating 24-hour rhythm of dopamine D3 receptor expression in mouse ventral striatum. Mol. Pharmacol. 2013, 83, 959–967. [Google Scholar] [CrossRef]
- Pugsley, T.A.; Davis, M.D.; Akunne, H.C.; MacKenzie, R.G.; Shih, Y.H.; Damsma, G.; Wikstrom, H.; Whetzel, S.Z.; Georgic, L.M.; Cooke, L.W.; et al. Neurochemical and functional characterization of the preferentially selective dopamine D3 agonist PD 128907. J. Pharmacol. Exp. Ther. 1995, 275, 1355–1366. [Google Scholar] [PubMed]
- Shapiro, M.S.; Wollmuth, L.P.; Hille, B. Modulation of Ca2+ channels by PTX-sensitive G-proteins is blocked by N-ethylmaleimide in rat sympathetic neurons. J. Neurosci. 1994, 14, 7109–7116. [Google Scholar] [CrossRef] [PubMed]
- Prieto, G.A. Abnormalities of Dopamine D3 Receptor Signaling in the Diseased Brain. J. Cent. Nerv. Syst. Dis. 2017, 9, 1179573517726335. [Google Scholar] [CrossRef] [PubMed]
- Schmauss, C.; Haroutunian, V.; Davis, K.L.; Davidson, M. Selective loss of dopamine D3-type receptor mRNA expression in parietal and motor cortices of patients with chronic schizophrenia. Proc. Natl. Acad. Sci. USA 1993, 90, 8942–8946. [Google Scholar] [CrossRef]
- Schmauss, C. Enhanced cleavage of an atypical intron of dopamine D3-receptor pre-mRNA in chronic schizophrenia. J. Neurosci. 1996, 16, 7902–7909. [Google Scholar] [CrossRef] [PubMed]
- Burset, M.; Seledtsov, I.A.; Solovyev, V.V. Analysis of canonical and non-canonical splice sites in mammalian genomes. Nucleic Acids Res. 2000, 28, 4364–4375. [Google Scholar] [CrossRef]
- Sironi, M.; Menozzi, G.; Riva, L.; Cagliani, R.; Comi, G.P.; Bresolin, N.; Giorda, R.; Pozzoli, U. Silencer elements as possible inhibitors of pseudoexon splicing. Nucleic Acids Res. 2004, 32, 1783–1791. [Google Scholar] [CrossRef]
- van Bergeijk, P.; Seneviratne, U.; Aparicio-Prat, E.; Stanton, R.; Hasson, S.A. SRSF1 and PTBP1 are trans-acting factors that suppress the formation of a CD33 splicing isoform linked to Alzheimer’s disease risk. Mol. Cell. Biol. 2019, 39, e00568–18. [Google Scholar] [CrossRef]
- Xue, Y.; Zhou, Y.; Wu, T.; Zhu, T.; Ji, X.; Kwon, Y.-S.; Zhang, C.; Yeo, G.; Black, D.L.; Sun, H. Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping. Mol. Cell 2009, 36, 996–1006. [Google Scholar] [CrossRef]
- Singh, R.; Valcarcel, J.; Green, M.R. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 1995, 268, 1173–1176. [Google Scholar] [CrossRef]
- Corioni, M.; Antih, N.; Tanackovic, G.; Zavolan, M.; Krämer, A. Analysis of in situ pre-mRNA targets of human splicing factor SF1 reveals a function in alternative splicing. Nucleic Acids Res. 2011, 39, 1868–1879. [Google Scholar] [CrossRef]
- Spellman, R.; Smith, C.W. Novel modes of splicing repression by PTB. Trends Biochem. Sci. 2006, 31, 73–76. [Google Scholar] [CrossRef]
- Xie, J.; Lee, J.-A.; Kress, T.L.; Mowry, K.L.; Black, D.L. Protein kinase A phosphorylation modulates transport of the polypyrimidine tract-binding protein. Proc. Natl. Acad. Sci. USA 2003, 100, 8776–8781. [Google Scholar] [CrossRef] [PubMed]
- Undieh, A.S. Pharmacology of signaling induced by dopamine D1-like receptor activation. Pharmacol. Ther. 2010, 128, 37–60. [Google Scholar] [CrossRef] [PubMed]
- Sawicka, K.; Bushell, M.; Spriggs, K.A.; Willis, A.E. Polypyrimidine-tract-binding protein: A multifunctional RNA-binding protein. Biochem. Soc. Trans. 2008, 36, 641–647. [Google Scholar] [CrossRef]
- Schulz, D.W.; Staples, L.; Mailman, R.B. SCH23390 causes persistent antidopaminergic effects in vivo: Evidence for longterm occupation of receptors. Life Sci. 1985, 36, 1941–1948. [Google Scholar] [CrossRef]
- Ma, L.; Day-Cooney, J.; Benavides, O.J.; Muniak, M.A.; Qin, M.; Ding, J.B.; Mao, T.; Zhong, H. Locomotion activates PKA through dopamine and adenosine in striatal neurons. Nature 2022, 611, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, K.; Ito, K.; Kotaki, H.; Sawada, Y.; Iga, T. Prediction of drug-induced catalepsy based on dopamine D1, D2, and muscarinic acetylcholine receptor occupancies. Drug Metab. Dispos. 1997, 25, 675–684. [Google Scholar]
- Porceddu, M.L.; Ongini, E.; Biggio, G. [3H] SCH 23390 binding sites increase after chronic blockade of D-1 dopamine receptors. Eur. J. Pharmacol. 1985, 118, 367–370. [Google Scholar] [CrossRef]
- Mitchell, S.A.; Spriggs, K.A.; Bushell, M.; Evans, J.R.; Stoneley, M.; Le Quesne, J.P.; Spriggs, R.V.; Willis, A.E. Identification of a motif that mediates polypyrimidine tract-binding protein-dependent internal ribosome entry. Genes. Dev. 2005, 19, 1556–1571. [Google Scholar] [CrossRef]
- Yap, K.; Lim, Z.Q.; Khandelia, P.; Friedman, B.; Makeyev, E.V. Coordinated regulation of neuronal mRNA steady-state levels through developmentally controlled intron retention. Genes. Dev. 2012, 26, 1209–1223. [Google Scholar] [CrossRef] [PubMed]
- Avalos-Fuentes, A.; Albarran-Bravo, S.; Loya-Lopez, S.; Cortes, H.; Recillas-Morales, S.; Magana, J.J.; Paz-Bermudez, F.; Rangel-Barajas, C.; Aceves, J.; Erlij, D.; et al. Dopaminergic denervation switches dopamine D3 receptor signaling and disrupts its Ca(2+) dependent modulation by CaMKII and calmodulin in striatonigral projections of the rat. Neurobiol. Dis. 2015, 74, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Richtand, N.M.; Liu, Y.; Ahlbrand, R.; Sullivan, J.R.; Newman, A.H.; McNamara, R.K. Dopaminergic regulation of dopamine D3 and D3nf receptor mRNA expression. Synapse 2010, 64, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Lanza, K.; Centner, A.; Coyle, M.; Del Priore, I.; Manfredsson, F.P.; Bishop, C. Genetic suppression of the dopamine D3 receptor in striatal D1 cells reduces the development of L-DOPA-induced dyskinesia. Exp. Neurol. 2021, 336, 113534. [Google Scholar] [CrossRef]
- Solís, O.; Garcia-Montes, J.R.; González-Granillo, A.; Xu, M.; Moratalla, R. Dopamine D3 receptor modulates l-DOPA-induced dyskinesia by targeting D1 receptor-mediated striatal signaling. Cereb. Cortex 2017, 27, 435–446. [Google Scholar] [CrossRef]
- Moreno, E.; Casajuana-Martin, N.; Coyle, M.; Campos, B.C.; Galaj, E.; del Torrent, C.L.; Seyedian, A.; Rea, W.; Cai, N.-S.; Bonifazi, A. Pharmacological targeting of G protein-coupled receptor heteromers. Pharmacol. Res. 2022, 185, 106476. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casados-Delgado, O.; Avalos-Fuentes, J.A.; Lara-Lozano, M.; Tovar-Medina, G.; Florán-Hernández, C.D.; Martínez-Nolasco, K.G.; Cortes, H.; Felix, R.; Segovia, J.; Florán, B. Modulation of D3R Splicing, Signaling, and Expression by D1R through PKA→PTB Phosphorylation. Biomedicines 2024, 12, 206. https://doi.org/10.3390/biomedicines12010206
Casados-Delgado O, Avalos-Fuentes JA, Lara-Lozano M, Tovar-Medina G, Florán-Hernández CD, Martínez-Nolasco KG, Cortes H, Felix R, Segovia J, Florán B. Modulation of D3R Splicing, Signaling, and Expression by D1R through PKA→PTB Phosphorylation. Biomedicines. 2024; 12(1):206. https://doi.org/10.3390/biomedicines12010206
Chicago/Turabian StyleCasados-Delgado, Orlando, José Arturo Avalos-Fuentes, Manuel Lara-Lozano, Gisela Tovar-Medina, Carla Daniela Florán-Hernández, Karla Gisela Martínez-Nolasco, Hernán Cortes, Ricardo Felix, José Segovia, and Benjamín Florán. 2024. "Modulation of D3R Splicing, Signaling, and Expression by D1R through PKA→PTB Phosphorylation" Biomedicines 12, no. 1: 206. https://doi.org/10.3390/biomedicines12010206
APA StyleCasados-Delgado, O., Avalos-Fuentes, J. A., Lara-Lozano, M., Tovar-Medina, G., Florán-Hernández, C. D., Martínez-Nolasco, K. G., Cortes, H., Felix, R., Segovia, J., & Florán, B. (2024). Modulation of D3R Splicing, Signaling, and Expression by D1R through PKA→PTB Phosphorylation. Biomedicines, 12(1), 206. https://doi.org/10.3390/biomedicines12010206