The Influence of Metabolic Syndrome on Potential Aging Biomarkers in Participants with Metabolic Syndrome Compared to Healthy Controls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Metabolic Syndrome Diagnostics
- Waist circumference ≥ 102 cm for men and ≥88 cm for women;
- Fasting glucose levels ≥ 5.6 mmol/L or known treatment for diabetes;
- Triglyceride level (TAG) ≥ 1.7 mmol/L;
- High-density lipoproteins levels (HDL cholesterol) < 1.03 mmol/L for men and <1.30 mmol/L for women;
- Blood pressure ≥ 130 mmHg/≥85 mmHg.
2.2. Biochemical Parameters
2.3. Blood Sampling
2.4. Biomarker Detection
- Levels of NLPR3 were evaluated using Human NALP/NLRP3 ELISA Kit (LifeSpan BioSciences, Inc., Seattle, WA, USA); samples were not diluted. The sensitivity was 0.313–40 ng/mL.
- Levels of Klotho were analyzed using Human Klotho ELISA Kit (Cusabio, Cloud-Clone Corp, Katy, TX, USA); samples were not diluted. The detection range was 0.156–10 ng/mL.
- Levels of telomerase were measured with Human Telomerase (TE) ELISA Kit ELISA Kit (Cusabio, Houston, TX, USA); samples were two-fold diluted. The detection range was 0.31–40 ng/mL.
- Levels of AGEs were determined with Human Advanced Glycation End Products (Agens) ELISA Kit (Cusabio, Houston, TX, USA); samples were not diluted. The detection range was 0.78–50 µg/mL.
- DNA/RNA damage was determined using DNA/RNA Oxidative Damage EIA Kit (Cayman Chemical Company, Ann Arbor, MI, USA); samples were 100-fold diluted. The detection range was 10–30,000 pg/mL 8-hydroxy 2-deoxy guanosine.
- Levels of GDF11 were detected by Human GDF11/GDF11 ELISA Kit (LifeSpan BioSciences, Inc., Seattle, WA, USA); samples were not diluted. The detection range of the kit was 7.8–1000 pg/mL.
- Levels of GDF15 were evaluated using Quantikine ELISA Human GDF15 Kit (R&D Systems, Minneapolis, MN, USA); samples were four-fold diluted. The detection range was 93.6–6000 pg/mL.
- Levels of NAD were measured with Enzyme-linked Immunosorbent Assay Kit for Nicotinamide Dinucleotide (NAD) (Cloud-Clone Corp. (Katy, TX, USA)); samples were 20-fold diluted. The detection range was 2400–200,000 ng/mL.
- Levels of Sirtuin-1 were determined using Human SIRT 1/Sirtuin 1 ELISA Kit (LifeSpan BioSciences, Inc., Seattle, WA, USA); samples were 50-fold diluted. The detection range was 3.9–250 ng/mL. Results were converted from pg/mL to ng/mL due to smaller numbers.
- Levels of Follistatin were evaluated using Quantikine ELISA Human Follistatin Kit (R&D Systems, MN, USA); samples were not diluted. The detection range was 125–16,000 pg/mL.
- Levels of Vitamin D were analyzed using 25-OH Vitamin D ELISA Kit (EUROIMMUN, Lubeck, Germany); samples were 26-fold diluted. The detection range was 4–120 ng/mL.
2.5. Statistical Analysis
3. Results
3.1. Demographic Data
3.2. Values of Biomarkers of Aging in Non-MetS and MetS Participants
3.3. Correlations among Selected Parameters
4. Discussion
5. Conclusions
6. Study Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging. Cell 2013, 153, 1194. [Google Scholar] [CrossRef] [PubMed]
- Harvanek, Z.M.; Fogelman, N.; Xu, K.; Sinha, R. Psychological and Biological Resilience Modulates the Effects of Stress on Epigenetic Aging. Transl. Psychiatry 2021, 11, 601. [Google Scholar] [CrossRef] [PubMed]
- Pyrkov, T.V.; Avchaciov, K.; Tarkhov, A.E.; Menshikov, L.I.; Gudkov, A.V.; Fedichev, P.O. Longitudinal Analysis of Blood Markers Reveals Progressive Loss of Resilience and Predicts Human Lifespan Limit. Nat. Commun. 2021, 12, 2765. [Google Scholar] [CrossRef] [PubMed]
- Vaiserman, A.; Krasnienkov, D. Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. Front. Genet. 2021, 11, 1816. [Google Scholar] [CrossRef]
- van der Rijt, S.; Molenaars, M.; McIntyre, R.L.; Janssens, G.E.; Houtkooper, R.H. Integrating the Hallmarks of Aging Throughout the Tree of Life: A Focus on Mitochondrial Dysfunction. Front. Cell Dev. Biol. 2020, 8, 1422. [Google Scholar] [CrossRef]
- Liu, J.; Ding, Y.; Liu, Z.; Liang, X. Senescence in Mesenchymal Stem Cells: Functional Alterations, Molecular Mechanisms, and Rejuvenation Strategies. Front. Cell Dev. Biol. 2020, 8, 258. [Google Scholar] [CrossRef]
- Mendrick, D.L.; Diehl, A.M.; Topor, L.S.; Dietert, R.R.; Will, Y.; La Merrill, M.A.; Bouret, S.; Varma, V.; Hastings, K.L.; Schug, T.T.; et al. Metabolic Syndrome and Associated Diseases: From the Bench to the Clinic. Toxicol. Sci. 2018, 162, 36–42. [Google Scholar] [CrossRef]
- Medina, G.; Vera-Lastra, O.; Peralta-Amaro, A.L.; Jiménez-Arellano, M.P.; Saavedra, M.A.; Cruz-Domínguez, M.P.; Jara, L.J. Metabolic Syndrome, Autoimmunity and Rheumatic Diseases. Pharmacol. Res. 2018, 133, 277–288. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Barbagallo, M. The Biology of the Metabolic Syndrome and Aging. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 5–11. [Google Scholar] [CrossRef]
- Janssen, J.A.M.J.L.; Street, E. Hyperinsulinemia and Its Pivotal Role in Aging, Obesity, Type 2 Diabetes, Cardiovascular Disease and Cancer. Int. J. Mol. Sci. 2021, 22, 7797. [Google Scholar] [CrossRef]
- Shekhidem, H.A.; Sharvit, L.; Leman, E.; Manov, I.; Roichman, A.; Holtze, S.; Huffman, D.M.; Cohen, H.Y.; Hildebrandt, T.B.; Shams, I.; et al. Telomeres and Longevity: A Cause or an Effect? Int. J. Mol. Sci. 2019, 20, 3233. [Google Scholar] [CrossRef]
- Romaniuk, A.; Paszel-Jaworska, A.; Totoń, E.; Lisiak, N.; Hołysz, H.; Królak, A.; Grodecka-Gazdecka, S.; Rubiś, B. The Non-Canonical Functions of Telomerase: To Turn off or Not to Turn Off. Mol. Biol. Rep. 2019, 46, 1401–1411. [Google Scholar] [CrossRef] [PubMed]
- Shay, J.W. Role of Telomeres and Telomerase in Aging and Cancer. Cancer Discov. 2016, 6, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Alves-Fernandes, D.K.; Jasiulionis, M.G. The Role of SIRT1 on DNA Damage Response and Epigenetic Alterations in Cancer. Int. J. Mol. Sci. 2019, 20, 3153. [Google Scholar] [CrossRef] [PubMed]
- Mourits, V.P.; Helder, L.S.; Matzaraki, V.; Koeken, V.A.C.M.; Groh, L.; de Bree, L.C.J.; Moorlag, S.J.C.F.M.; van der Heijden, C.D.C.C.; Keating, S.T.; van Puffelen, J.H.; et al. The Role of Sirtuin 1 on the Induction of Trained Immunity. Cell. Immunol. 2021, 366, 104393. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Lee, J.H.; Lee, H.Y.; Min, K.J. Sirtuin Signaling in Cellular Senescence and Aging. BMB Rep. 2019, 52, 24. [Google Scholar] [CrossRef]
- Kane, A.E.; Sinclair, D.A. Sirtuins and NAD+ in the Development and Treatment of Metabolic and Cardiovascular Diseases. Circ. Res. 2018, 123, 868–885. [Google Scholar] [CrossRef]
- Covarrubias, A.J.; Perrone, R.; Grozio, A.; Verdin, E. NAD+ Metabolism and Its Roles in Cellular Processes during Ageing. Nat. Rev. Mol. Cell Biol. 2020, 22, 119–141. [Google Scholar] [CrossRef]
- Sharma, C.; Kaur, A.; Thind, S.S.; Singh, B.; Raina, S. Advanced Glycation End-Products (AGEs): An Emerging Concern for Processed Food Industries. J. Food Sci. Technol. 2015, 52, 7561–7576. [Google Scholar] [CrossRef]
- Akhter, F.; Chen, D.; Akhter, A.; Yan, S.F.; Yan, S.S. Du Age-Dependent Accumulation of Dicarbonyls and Advanced Glycation Endproducts (AGEs) Associates with Mitochondrial Stress. Free Radic. Biol. Med. 2021, 164, 429–438. [Google Scholar] [CrossRef]
- Gonzalez-Hunt, C.P.; Wadhwa, M.; Sanders, L.H. DNA Damage by Oxidative Stress: Measurement Strategies for Two Genomes. Curr. Opin. Toxicol. 2018, 7, 87–94. [Google Scholar] [CrossRef]
- Luo, J.; Mills, K.; le Cessie, S.; Noordam, R.; van Heemst, D. Ageing, Age-Related Diseases and Oxidative Stress: What to Do Next? Ageing Res. Rev. 2020, 57, 100982. [Google Scholar] [CrossRef] [PubMed]
- Blevins, H.M.; Xu, Y.; Biby, S.; Zhang, S. The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Front. Aging Neurosci. 2022, 14, 879021. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zhou, L.; Novák, P.; Shi, X.; Lin, C.B.; Zhu, X.; Yin, K. Metabolic Dysfunction in the Regulation of the NLRP3 Inflammasome Activation: A Potential Target for Diabetic Nephropathy. J. Diabetes Res. 2022, 2022, 2193768. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Lei, W.; Hou, Y.; Zhang, Y.; Tang, R.; Yang, Z.; Tian, Y.; Zhu, Y.; Wang, C.; et al. The NLRP3 Inflammasome in Fibrosis and Aging: The Known Unknowns. Ageing Res. Rev. 2022, 79, 101638. [Google Scholar] [CrossRef]
- Assadi, A.; Zahabi, A.; Hart, R.A. GDF15, an Update of the Physiological and Pathological Roles It Plays: A Review. Pflugers Arch. 2020, 472, 1535–1546. [Google Scholar] [CrossRef]
- Frohlich, J.; Vinciguerra, M. Candidate Rejuvenating Factor GDF11 and Tissue Fibrosis: Friend or Foe? Geroscience 2020, 42, 1475–1498. [Google Scholar] [CrossRef]
- Song, L.; Wu, F.; Li, C.; Zhang, S. Dietary Intake of GDF11 Delays the Onset of Several Biomarkers of Aging in Male Mice through Anti-Oxidant System via Smad2/3 Pathway. Biogerontology 2022, 23, 341–362. [Google Scholar] [CrossRef]
- Wang, D.; Day, E.A.; Townsend, L.K.; Djordjevic, D.; Jørgensen, S.B.; Steinberg, G.R. GDF15: Emerging Biology and Therapeutic Applications for Obesity and Cardiometabolic Disease. Nat. Rev. Endocrinol. 2021, 17, 592–607. [Google Scholar] [CrossRef]
- Typiak, M.; Piwkowska, A. Antiinflammatory Actions of Klotho: Implications for Therapy of Diabetic Nephropathy. Int. J. Mol. Sci. 2021, 22, 956. [Google Scholar] [CrossRef]
- Kim, B.; Yoon, H.; Kim, T.; Lee, S. Role of Klotho as a Modulator of Oxidative Stress Associated with Ovarian Tissue Cryopreservation. Int. J. Mol. Sci. 2021, 22, 3547. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Hwang, K.-H.; Park, K.-S.; Kong, I.D.; Cha, S.-K. Biological Role of Anti-Aging Protein Klotho. J. Lifestyle Med. 2015, 5, 1–6. [Google Scholar] [CrossRef]
- Wu, C.; Borné, Y.; Gao, R.; López Rodriguez, M.; Roell, W.C.; Wilson, J.M.; Regmi, A.; Luan, C.; Aly, D.M.; Peter, A.; et al. Elevated Circulating Follistatin Associates with an Increased Risk of Type 2 Diabetes. Nat. Commun. 2021, 12, 6486. [Google Scholar] [CrossRef] [PubMed]
- Sylow, L.; Vind, B.F.; Kruse, R.; Møller, P.M.; Wojtaszewski, J.F.P.; Richter, E.A.; Højlund, K. Circulating Follistatin and Activin A and Their Regulation by Insulin in Obesity and Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2020, 105, 1343–1354. [Google Scholar] [CrossRef]
- Pervin, S.; Reddy, S.T.; Singh, R. Novel Roles of Follistatin/Myostatin in Transforming Growth Factor-β Signaling and Adipose Browning: Potential for Therapeutic Intervention in Obesity Related Metabolic Disorders. Front. Endocrinol. 2021, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, L.; Xu, H.J.; Li, Y.; Hu, C.M.; Yang, J.Y.; Sun, M.Y. The Anti-Inflammatory Effects of Vitamin D in Tumorigenesis. Int. J. Mol. Sci. 2018, 19, 2736. [Google Scholar] [CrossRef]
- Vranić, L.; Mikolašević, I.; Milić, S. Vitamin D Deficiency: Consequence or Cause of Obesity? Medicina 2019, 55, 541. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Pichiah, P.B.T.; Cha, Y.S. Vitamin D and Metabolic Diseases: Growing Roles of Vitamin D. J. Obes. Metab. Syndr. 2018, 27, 223–232. [Google Scholar] [CrossRef]
- Borsky, P.; Holmannova, D.; Andrys, C.; Kremlacek, J.; Fiala, Z.; Parova, H.; Rehacek, V.; Svadlakova, T.; Byma, S.; Kucera, O.; et al. Evaluation of Potential Aging Biomarkers in Healthy Individuals: Telomerase, AGEs, GDF11/15, Sirtuin 1, NAD+, NLRP3, DNA/RNA Damage, and Klotho. Biogerontology 2023, 24, 937–955. [Google Scholar] [CrossRef]
- Razgonova, M.P.; Zakharenko, A.M.; Golokhvast, K.S.; Thanasoula, M.; Sarandi, E.; Nikolouzakis, K.; Fragkiadaki, P.; Tsoukalas, D.; Spandidos, D.A.; Tsatsakis, A. Telomerase and Telomeres in Aging Theory and Chronographic Aging Theory (Review). Mol. Med. Rep. 2020, 22, 1679–1694. [Google Scholar] [CrossRef]
- Wu, L.; Fidan, K.; Um, J.Y.; Ahn, K.S. Telomerase: Key Regulator of Inflammation and Cancer. Pharmacol. Res. 2020, 155, 104726. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.G.; Hayden, M.S.; Ghosh, S. NF-ΚB, Inflammation, and Metabolic Disease. Cell Metab. 2011, 13, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Chen, J.; Cheng, A.S.L.; Ko, B.C.B. Depletion of Sirtuin 1 (SIRT1) Leads to Epigenetic Modifications of Telomerase (TERT) Gene in Hepatocellular Carcinoma Cells. PLoS ONE 2014, 9, e84931. [Google Scholar] [CrossRef] [PubMed]
- Kuhlow, D.; Florian, S.; von Figura, G.; Weimer, S.; Schulz, N.; Petzke, K.J.; Zarse, K.; Pfeiffer, A.F.H.; Rudolph, K.L.; Ristow, M. Telomerase Deficiency Impairs Glucose Metabolism and Insulin Secretion. Aging 2010, 2, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.X.; Zhu, X.D.; Ma, X.R.; Wang, L.B.; Dong, Z.J.; Lin, R.R.; Cao, Y.N.; Zhao, J.W. Loss of Growth Differentiation Factor 11 Shortens Telomere Length by Downregulating Telomerase Activity. Front. Physiol. 2021, 12, 726345. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Luo, G.; Liu, Y.; Lin, H.; Zheng, C.; Xie, D.; Zhu, Y.; Chen, L.; Huang, X.; Hu, D.; et al. Growth Differentiation Factor 11 Attenuates Cardiac Ischemia Reperfusion Injury via Enhancing Mitochondrial Biogenesis and Telomerase Activity. Cell Death Dis. 2021, 12, 665. [Google Scholar] [CrossRef]
- Jaijyan, D.K.; Selariu, A.; Cruz-Cosme, R.; Tong, M.; Yang, S.; Stefa, A.; Kekich, D.; Sadoshima, J.; Herbig, U.; Tang, Q.; et al. New Intranasal and Injectable Gene Therapy for Healthy Life Extension. Proc. Natl. Acad. Sci. USA 2022, 119, e2121499119. [Google Scholar] [CrossRef]
- Hansen, J.; Rinnov, A.; Krogh-Madsen, R.; Fischer, C.P.; Andreasen, A.S.; Berg, R.M.G.; Møller, K.; Pedersen, B.K.; Plomgaard, P. Plasma Follistatin Is Elevated in Patients with Type 2 Diabetes: Relationship to Hyperglycemia, Hyperinsulinemia, and Systemic Low-Grade Inflammation. Diabetes Metab. Res. Rev. 2013, 29, 463–472. [Google Scholar] [CrossRef]
- Mafi, F.; Biglari, S.; Afousi, A.G.; Gaeini, A.A. Improvement in Skeletal Muscle Strength and Plasma Levels of Follistatin and Myostatin Induced by an 8-Week Resistance Training and Epicatechin Supplementation in Sarcopenic Older Adults. J. Aging Phys. Act. 2019, 27, 384–391. [Google Scholar] [CrossRef]
- Wang, C.M.; Chang, C.S.; Chang, Y.F.; Wu, S.J.; Chiu, C.J.; Hou, M.T.; Chen, C.Y.; Liu, P.Y.; Wu, C.H. Inverse Relationship between Metabolic Syndrome and 25-Hydroxyvitamin D Concentration in Elderly People without Vitamin D Deficiency. Sci. Rep. 2018, 8, 17052. [Google Scholar] [CrossRef]
- Liu, L.; Cao, Z.; Lu, F.; Liu, Y.; Lv, Y.; Qu, Y.; Gu, H.; Li, C.; Cai, J.; Ji, S.; et al. Vitamin D Deficiency and Metabolic Syndrome in Elderly Chinese Individuals: Evidence from CLHLS. Nutr. Metab. 2020, 17, 58. [Google Scholar] [CrossRef] [PubMed]
- Meehan, M.; Penckofer, S. The Role of Vitamin D in the Aging Adult. J. Aging Gerontol. 2014, 2, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Rao, Z.; Chen, X.; Wu, J.; Xiao, M.; Zhang, J.; Wang, B.; Fang, L.; Zhang, H.; Wang, X.; Yang, S.; et al. Vitamin D Receptor Inhibits NLRP3 Activation by Impeding Its BRCC3-Mediated Deubiquitination. Front. Immunol. 2019, 10, 2783. [Google Scholar] [CrossRef] [PubMed]
- Tunbridge, M.; Gois, P.H.F. Vitamin D and the NLRP3 Inflammasome. Appl. Sci. 2020, 10, 8462. [Google Scholar] [CrossRef]
- de la Guía-Galipienso, F.; Martínez-Ferran, M.; Vallecillo, N.; Lavie, C.J.; Sanchis-Gomar, F.; Pareja-Galeano, H. Vitamin D and Cardiovascular Health. Clin. Nutr. 2021, 40, 2946. [Google Scholar] [CrossRef]
- Kheirouri, S.; Alizadeh, M. Vitamin D and Advanced Glycation End Products and Their Receptors. Pharmacol. Res. 2020, 158, 104879. [Google Scholar] [CrossRef]
- Omidian, M.; Djalali, M.; Javanbakht, M.H.; Eshraghian, M.R.; Abshirini, M.; Omidian, P.; Alvandi, E.; Mahmoudi, M. Effects of Vitamin D Supplementation on Advanced Glycation End Products Signaling Pathway in T2DM Patients: A Randomized, Placebo-Controlled, Double Blind Clinical Trial. Diabetol. Metab. Syndr. 2019, 11, 86. [Google Scholar] [CrossRef]
- Kim, Y.; Noren Hooten, N.; Evans, M.K. CRP Stimulates GDF15 Expression in Endothelial Cells through P53. Mediat. Inflamm. 2018, 2018, 8278039. [Google Scholar] [CrossRef]
- Carballo-Casla, A.; García-Esquinas, E.; Buño-Soto, A.; Struijk, E.A.; López-García, E.; Rodríguez-Artalejo, F.; Ortolá, R. Metabolic Syndrome and Growth Differentiation Factor 15 in Older Adults. Geroscience 2022, 44, 867–880. [Google Scholar] [CrossRef]
- Conte, M.; Martucci, M.; Mosconi, G.; Chiariello, A.; Cappuccilli, M.; Totti, V.; Santoro, A.; Franceschi, C.; Salvioli, S. GDF15 Plasma Level Is Inversely Associated with Level of Physical Activity and Correlates with Markers of Inflammation and Muscle Weakness. Front. Immunol. 2020, 11, 915. [Google Scholar] [CrossRef]
- Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Capó, X.; Bouzas, C.; Mateos, D.; Pons, A.; Tur, J.A.; Sureda, A. Metabolic Syndrome Is Associated with Oxidative Stress and Proinflammatory State. Antioxidants 2020, 9, 236. [Google Scholar] [CrossRef] [PubMed]
- Borska, L.; Kremlacek, J.; Andrys, C.; Krejsek, J.; Hamakova, K.; Borsky, P.; Palicka, V.; Rehacek, V.; Malkova, A.; Fiala, Z. Systemic Inflammation, Oxidative Damage to Nucleic Acids, and Metabolic Syndrome in the Pathogenesis of Psoriasis. Int. J. Mol. Sci. 2017, 18, 2238. [Google Scholar] [CrossRef] [PubMed]
- Demirbag, R.; Yilmaz, R.; Gur, M.; Celik, H.; Guzel, S.; Selek, S.; Kocyigit, A. DNA Damage in Metabolic Syndrome and Its Association with Antioxidative and Oxidative Measurements. Int. J. Clin. Pract. 2006, 60, 1187–1193. [Google Scholar] [CrossRef] [PubMed]
- Karaman, A.; Aydin, H.; Geçkinli, B.; Çetinkaya, A.; Karaman, S. DNA Damage Is Increased in Lymphocytes of Patients with Metabolic Syndrome. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2015, 782, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Yousefzadeh, M.; Henpita, C.; Vyas, R.; Soto-Palma, C.; Robbins, P.; Niedernhofer, L. Dna Damage—How and Why We Age? eLife 2021, 10, e62852. [Google Scholar] [CrossRef]
- Licandro, G.; Ling Khor, H.; Beretta, O.; Lai, J.; Derks, H.; Laudisi, F.; Conforti-Andreoni, C.; Liang Qian, H.; Gee Teng, G.; Ricciardi-Castagnoli, P.; et al. The NLRP3 Inflammasome Affects DNA Damage Responses after Oxidative and Genotoxic Stress in Dendritic Cells. Eur. J. Immunol. 2013, 43, 2126–2137. [Google Scholar] [CrossRef]
- Abderrazak, A.; Syrovets, T.; Couchie, D.; El Hadri, K.; Friguet, B.; Simmet, T.; Rouis, M. NLRP3 Inflammasome: From a Danger Signal Sensor to a Regulatory Node of Oxidative Stress and Inflammatory Diseases. Redox Biol. 2015, 4, 296–307. [Google Scholar] [CrossRef]
N | Median | Q1 | Q3 | Min. | Max. | p Value | |
---|---|---|---|---|---|---|---|
BMI (body mass index) | |||||||
Non-MetS | 111 | 24.91 | 22.74 | 27.12 | 18.21 | 32.53 | p < 0.001 |
Mets | 58 | 29.65 | 27.44 | 32.81 | 22.59 | 45.17 | |
Systolic blood pressure mmHg | |||||||
Non-MetS | 111 | 122 | 112 | 131 | 100 | 151 | p < 0.001 |
MetS | 58 | 136 | 130 | 143 | 108 | 163 | |
Diastolic blood pressure mmHg | |||||||
Non-MetS | 111 | 78 | 71 | 84.5 | 60 | 99 | p < 0.001 |
Mets | 58 | 88 | 85 | 95.0 | 12 | 100 | |
Waist cm | |||||||
Non-MetS | 111 | 80.0 | 75 | 90 | 54 | 109 | p < 0.001 |
Mets | 58 | 103.5 | 94 | 110 | 75 | 125 | |
Age years | |||||||
Non-MetS | 111 | 38.00 | 29.59 | 51.57 | 19.62 | 65.92 | p < 0.01 |
Mets | 58 | 45.89 | 40.10 | 53.98 | 22.43 | 63.54 | |
Total cholesterol mmol/L | |||||||
Non-MetS | 111 | 4.61 | 4.21 | 5.07 | 2.39 | 7.16 | p < 0.01 |
Mets | 58 | 5.02 | 4.65 | 5.75 | 2.90 | 6.91 | |
LDL (low density lipoprotein) mmol/L | |||||||
Non-MetS | 111 | 2.58 | 2.05 | 3.03 | 0.85 | 4.60 | p < 0.01 |
Mets | 58 | 3.05 | 2.66 | 3.75 | 1.37 | 4.52 | |
HDL (high density lipoprotein) mmol/L | |||||||
Non-MetS | 111 | 1.27 | 1.46 | 1.80 | 0.75 | 2.63 | p < 0.001 |
Mets | 58 | 0.96 | 1.08 | 1.25 | 0.72 | 2.03 | |
nonHDL (total non-high density lipoprotein) mmol/L | |||||||
Non-MetS | 111 | 3.13 | 2.52 | 3.58 | 1.52 | 5.50 | p < 0.001 |
Mets | 58 | 3.92 | 3.52 | 4.65 | 1.60 | 5.88 | |
Triglycerides mmol/L | |||||||
Non-MetS | 111 | 1.07 | 0.78 | 1.41 | 0.39 | 3.04 | p < 0.001 |
Mets | 58 | 1.92 | 1.52 | 2.50 | 0.51 | 11.05 | |
Fasting glucose mmol/L | |||||||
Non-MetS | 111 | 4.53 | 3.99 | 4.90 | 2.37 | 7.52 | p < 0.01 |
Mets | 58 | 4.86 | 4.36 | 5.33 | 3.76 | 7.81 |
N | Median | Q1 | Q3 | Min | Max | ||
---|---|---|---|---|---|---|---|
Group > 35 | |||||||
Follistatin pg/mL | |||||||
Non-MetS | 48 | 1045.45 | 849.70 | 1840.28 | 322.21 | 5976.39 | p < 0.05 |
MetS | 9 | 888.11 | 635.54 | 943.13 | 628.50 | 1082.47 | |
Vitamin D ng/mL | |||||||
Non-MetS | 48 | 23.19 | 20.35 | 28.11 | 14.11 | 37.31 | p < 0.05 |
MetS | 9 | 18.61 | 17.47 | 21.43 | 11.84 | 28.64 | |
Group 35–50 | |||||||
Follistatin pg/mL | |||||||
Non-MetS | 31 | 1100.24 | 837.97 | 1261.45 | 477.58 | 2190.54 | p < 0.01 |
MetS | 28 | 1316.68 | 1094.69 | 1723.55 | 863.00 | 19,006.93 | |
GDF15 pg/mL | |||||||
Non-MetS | 31 | 255.75 | 231.20 | 333.97 | 117.71 | 412.30 | p < 0.05 |
MetS | 28 | 305.99 | 262.17 | 350.59 | 167.02 | 460.99 | |
Group > 50 | Without significant differences |
MetS | Spearman’s Rho | p Value | Non-MetS | Spearman’s Rho | p Value |
---|---|---|---|---|---|
NLRP3 | |||||
Age | xx | xx | 0.212 | 0.026 | |
GDF11 | xx | xx | 0.320 | 0.0007 | |
DNA/RNA | −0.3506 | 0.007 | −0.348 | 0.0002 | |
Vitamin D | xx | xx | −0.302 | 0.001 | |
Follistatin | 0.288 | 0.028 | xx | xx | |
Telomerase | xx | xx | −0.248 | 0.009 | |
Klotho | xx | xx | 0.207 | 0.029 | |
Klotho | |||||
Age | xx | xx | 0.232 | 0.015 | |
HDL | xx | xx | 0.259 | 0.006 | |
Sirtuin 1 | xx | xx | −0.237 | 0.013 | |
NAD | 0.293 | 0.026 | xx | xx | |
GDF11 | 0.297 | 0.025 | 0.302 | 0.002 | |
Telomerase | xx | xx | −0.207 | 0.029 | |
Telomerase | |||||
Fasting glucose | −0.319 | 0.015 | −0.1926 | 0.04297 | |
Sirtuin 1 | 0.637 | 1.011 × 10−7 | 0.6809 | 5.151 × 10−16 | |
NAD | xx | xx | −0.2940 | 0.00179 | |
GDF11 | −0.261 | 0.050 | −0.3934 | 2.537 × 10−5 | |
DNA/RNA | 0.369 | 0.004 | 0.3881 | 2.565 × 10−5 | |
AGEs | 0.372 | 0.004 | 0.4035 | 1.344 × 10−5 | |
Follistatin | |||||
Age | 0.332 | 0.011 | xx | xx | |
Cholesterol | xx | xx | 0.2269 | 0.0166 | |
nonHDL | xx | xx | 0.1986 | 0.0367 | |
TAG | xx | xx | 0.2210 | 0.0198 | |
GDF15 | 0.4412 | 0.0006 | 0.3303 | 0.0004 | |
AGE | 0.4073 | 0.0015 | xx | xx | |
AGE | |||||
nonHDL | xx | xx | 0.2681 | 0.0044 | |
LDL | xx | xx | 0.2778 | 0.0032 | |
Sirtuin 1 | 0.2770 | 0.0370 | 0.3661 | 9.760 × 10−5 | |
GDF11 | xx | xx | −0.3699 | 8.159 × 10−5 | |
GDF15 | 0.31757 | 0.0151 | xx | xx | |
Vitamin D | xxx | xx | 0.3040 | 0.0012 | |
Vitamin D | |||||
BMI | −0.3553 | 0.0062 | −0.2072 | 0.029 | |
waist | −0.3231 | 0.0134 | xx | xx | |
HDLC | xx | xx | 0.2732 | 0.0037 | |
GDF11 | xx | xx | −0.3169 | 0.0008 | |
DNA/RNA damage | |||||
BMI | xx | xx | 0.2178 | 0.0217 | |
Sirtuin 1 | 0.3206 | 0.0150 | 0.2947 | 0.0020 | |
GDF11 | xx | xx | −0.2793 | 0.0034 | |
GDF15 | |||||
Age | 0.6324 | 1.008 × 10−7 | 0.4913 | 4.378 × 10−8 | |
Cholesterol | xx | xx | 0.3764 | 4.660 × 10−5 | |
nonHDL | xx | xx | 0.3520 | 0.0002 | |
LDL | xx | xx | 0.3467 | 0.0002 | |
GDF11 | |||||
Sirtuin 1 | −0.4191 | 0.0012 | −0.49291 | 5.991 × 10−8 | |
NAD | 0.4409 | 0.0006 | 0.2543 | 0.0079 | |
NAD | |||||
HDL | 0.2808 | 0.0328 | xx | xx | |
Sirtuin 1 | −0.3378 | 0.01038 | −0.1907 | 0.0480 |
M- | NLRP3 | Klotho | Telom | Folli | AGE | Vit D | DNA | GDF15 | GDF11 | NAD | Sirt 1 |
---|---|---|---|---|---|---|---|---|---|---|---|
age | * | * | *** | * | |||||||
BMI | * | * | |||||||||
waist | |||||||||||
GLU | * | ||||||||||
CHOL | * | *** | |||||||||
HDL | ** | ** | |||||||||
nHDL | * | ** | *** | ||||||||
TAG | * | ||||||||||
LDL | ** | *** | |||||||||
Sirt 1 | * | *** | *** | ** | *** | * | x | ||||
NAD | ** | ** | x | ||||||||
GDF11 | *** | ** | *** | *** | *** | ** | x | ||||
GDF15 | *** | x | |||||||||
DNA | *** | *** | x | ||||||||
Vit D | ** | ** | x | ||||||||
AGE | *** | x | |||||||||
Folli | x | ||||||||||
Telom | ** | * | x | ||||||||
Klotho | * | x |
MetS | NLRP3 | Klotho | Telom | Folli | AGE | Vit D | DNA | GDF15 | GDF11 | NAD | Sirt 1 |
---|---|---|---|---|---|---|---|---|---|---|---|
age | * | *** | |||||||||
BMI | ** | ||||||||||
waist | * | ||||||||||
GLU | * | ||||||||||
CHOL | |||||||||||
HDL | * | ||||||||||
nHDL | |||||||||||
TAG | |||||||||||
LDL | |||||||||||
Sirt 1 | *** | * | * | ** | * | x | |||||
NAD | * | *** | x | ||||||||
GDF11 | * | * | x | ||||||||
GDF15 | *** | * | x | ||||||||
DNA | ** | ** | x | ||||||||
Vit D | x | ||||||||||
AGE | ** | ** | x | ||||||||
Follistatin | * | x | |||||||||
Telomerase | x | ||||||||||
Klotho | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holmannova, D.; Borsky, P.; Andrys, C.; Kremlacek, J.; Fiala, Z.; Parova, H.; Rehacek, V.; Esterkova, M.; Poctova, G.; Maresova, T.; et al. The Influence of Metabolic Syndrome on Potential Aging Biomarkers in Participants with Metabolic Syndrome Compared to Healthy Controls. Biomedicines 2024, 12, 242. https://doi.org/10.3390/biomedicines12010242
Holmannova D, Borsky P, Andrys C, Kremlacek J, Fiala Z, Parova H, Rehacek V, Esterkova M, Poctova G, Maresova T, et al. The Influence of Metabolic Syndrome on Potential Aging Biomarkers in Participants with Metabolic Syndrome Compared to Healthy Controls. Biomedicines. 2024; 12(1):242. https://doi.org/10.3390/biomedicines12010242
Chicago/Turabian StyleHolmannova, Drahomira, Pavel Borsky, Ctirad Andrys, Jan Kremlacek, Zdenek Fiala, Helena Parova, Vit Rehacek, Monika Esterkova, Gabriela Poctova, Tereza Maresova, and et al. 2024. "The Influence of Metabolic Syndrome on Potential Aging Biomarkers in Participants with Metabolic Syndrome Compared to Healthy Controls" Biomedicines 12, no. 1: 242. https://doi.org/10.3390/biomedicines12010242
APA StyleHolmannova, D., Borsky, P., Andrys, C., Kremlacek, J., Fiala, Z., Parova, H., Rehacek, V., Esterkova, M., Poctova, G., Maresova, T., & Borska, L. (2024). The Influence of Metabolic Syndrome on Potential Aging Biomarkers in Participants with Metabolic Syndrome Compared to Healthy Controls. Biomedicines, 12(1), 242. https://doi.org/10.3390/biomedicines12010242