Evaluating the Diagnostic Performance of Systemic Immune-Inflammation Index in Childhood Inflammatory Arthritis: A Focus on Differentiating Juvenile Idiopathic Arthritis from Reactive Arthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Collection of Clinical Data
2.3. Statistical Analysis
3. Results
3.1. Patient Demographics and Characteristics
3.2. Comparision of Hematological Parameters and Indices across Study Groups
3.3. Correlation Analysis of SII and NLR across Groups
3.4. Association between CBC-Derived Indices and JIA
3.5. Predictive Performances of Inflammatory Parameters in Discriminating JIA Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeller, L.; Tyrrell, P.N.; Wang, S.; Fischer, N.; Haas, J.P.; Hügle, B. α2-fraction and haptoglobin as biomarkers for disease activity in oligo- and polyarticular juvenile idiopathic arthritis. Pediatr. Rheumatol. Online J. 2022, 20, 66. [Google Scholar] [CrossRef] [PubMed]
- Manners, P.J.; Bower, C. Worldwide prevalence of juvenile arthritis why does it vary so much? J. Rheumatol. 2002, 29, 1520–1530. [Google Scholar] [PubMed]
- Petty, R.E.; Southwood, T.R.; Manners, P.; Baum, J.; Glass, D.N.; Goldenberg, J.; He, X.; Maldonado-Cocco, J.; Orozco-Alcala, J.; Prieur, A.M.; et al. International League of Associations for Rheumatology classification of juvenile idiopathic arthritis: Second revision, Edmonton, 2001. J. Rheumatol. 2004, 31, 390–392. [Google Scholar] [PubMed]
- Low, J.M.; Chauhan, A.K.; Kietz, D.A.; Daud, U.; Pepmueller, P.H.; Moore, T.L. Determination of anti-cyclic citrullinated peptide antibodies in the sera of patients with juvenile idiopathic arthritis. J. Rheumatol. 2004, 31, 1829–1833. [Google Scholar] [PubMed]
- Vehe, R.K.; Begovich, A.B.; Nepom, B.S. HLA susceptibility genes in rheumatoid factor ositive juvenile rheumatoid arthritis. J. Rheumatol. 1990, 26, 11–15. [Google Scholar]
- Toumbis, A.; Franklin, E.C.; McEwen, C.; Kuttner, A.G. Clinical and serologic observations in patients with juvenile rheumatoid arthritis and their relatives. J. Pediatr. 1963, 62, 463–473. [Google Scholar] [CrossRef]
- van Rossum, M.; van Soesbergen, R.; de Kort, S.; ten Cate, R.; Zwinderman, A.H.; de Jong, B.; Dijkmans, B.; van Venrooij, W.J. Anti-cyclic citrullinated peptide (anti-CCP) antibodies in children with juvenile idiopathic arthritis. J. Rheumatol. 2003, 30, 825–828. [Google Scholar]
- Thomson, W.; Barrett, R.D.; Donn, R.; Pepper, L.; Kennedy, L.J.; Ollier, W.E.; Silman, A.J.; Woo, P.; Southwood, T. Juvenile idiopathic arthritis classified by the ILAR criteria: HLA associations In UK patients. Rheumatology 2002, 41, 1183–1189. [Google Scholar] [CrossRef]
- Patwardhan, A. The Utility and Experience with Disease Biomarkers in Juvenile Onset Arthritis vs. Adult Onset Arthritis. Cureus 2019, 11, e5131. [Google Scholar] [CrossRef]
- Gupta, L.; Naveen, R.; Ahmed, S.; Zanwar, A.; Misra, D.P.; Lawrence, A.; Agarwal, V.; Misra, R.; Aggarwal, A. Juvenile Reactive Arthritis and other Spondyloarthritides of Childhood: A 28-year Experience from India. Mediterr. J. Rheumatol. 2021, 32, 338–344. [Google Scholar] [CrossRef]
- Singh, S.; Mehra, S. Approach to polyarthritis. Indian J. Pediatr. 2010, 77, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Duurland, C.L.; Wedderburn, L.R. Current developments in the use of biomarkers for juvenile idiopathic arthritis. Curr. Rheumatol. Rep. 2014, 16, 406. [Google Scholar] [CrossRef] [PubMed]
- Foell, D.; Jan Däbritz, M.; Jia, O. Biomarkers in Juvenile Idiopathic Arthritis: Translating Disease Mechanisms into Diagnostic Tools. Int. J. Adv. Rheumatol. 2011, 9, 8–16. [Google Scholar]
- Lowsby, R.; Gomes, C.; Jarman, I.; Lisboa, P.; Nee, P.A.; Vardhan, M.; Eckersley, T.; Saleh, R.; Mills, H. Neutrophil to lymphocyte count ratio as an early indicator of blood stream infection in the emergency department. Emerg. Med. J. 2015, 32, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Gökmen, F.; Akbal, A.; Reşorlu, H.; Gökmen, E.; Güven, M.; Aras, A.B.; Erbağ, G.; Kömürcü, E.; Akbal, E.; Coşar, M. NeutrophilLymphocyte Ratio Connected to Treatment Options and Inflammation Markers of Ankylosing Spondylitis. J. Clin. Lab. Anal. 2015, 29, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Hou, M.; Ding, Z.; Liu, X.; Shao, Y.; Li, X. Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Stroke: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 686–983. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.R.; Cook, E.J.; Goulder, F.; Justin, T.A.; Keeling, N.J. Neutrophil-lymphocyte ratio as a prognostic factor in colorectal cancer. J. Surg. Oncol. 2005, 91, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Adamstein, N.H.; MacFadyen, J.G.; Rose, L.M.; Glynn, R.J.; Dey, A.K.; Libby, P.; Tabas, I.A.; Mehta, N.N.; Ridker, P.M. The neutrophil–lympho cyte ratio and incident atherosclerotic events: Analyses from five contemporary randomized trials. Eur. Heart J. 2021, 42, 896–903. [Google Scholar] [CrossRef]
- Lee, P.; Oen, K.; Lim, G.; Hartono, J.; Muthiah, M.; Huang, D.; Teo, F.; Li, A.; Mak, A.; Chandran, N.; et al. Neutrophil-to-Lymphocyte Ratio Predicts Development of Immune-Related Adverse Events and Outcomes from Immune Checkpoint Blockade: A Case-Control Study. Cancers 2021, 13, 1308. [Google Scholar] [CrossRef]
- Bonow, R.O.; Fonarow, G.C.; O’Gara, P.T.; Yancy, C.W. Association of Coronavirus Disease 2019 (COVID-19) With Myocardial Injury and Mortality. JAMA Cardiol. 2020, 5, 751–753. [Google Scholar] [CrossRef]
- Gasparyan, A.Y.; Ayvazyan, L.; Mukanova, U.; Yessirkepov, M.; Kitas, G.D. The platelet-to-lymphocyte ratio as an inflammatory marker in rheumatic diseases. Ann. Lab. Med. 2019, 39, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Yang, X.R.; Xu, Y.; Sun, Y.F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.M.; Qiu, S.J.; Zhou, J.; et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Hu, T.; Wang, J.; Xiao, R.; Liao, X.; Liu, M.; Sun, Z. Systemic immune-inflammation index as a potential biomarker of cardiovascular diseases: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2022, 9, 933913. [Google Scholar] [CrossRef] [PubMed]
- Pricop, M.; Ancusa, O.; Talpos, S.; Urechescu, H.; Bumbu, B.A. The Predictive Value of Systemic Immune-Inflammation Index and Symptom Severity Score for Sepsis and Systemic Inflammatory Response Syndrome in Odontogenic Infections. J. Pers. Med. 2022, 12, 2026. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Tan, C.; Liu, X.; Wang, X.; Tan, Q.; Chen, Y. Associations between Systemic Immune-Inflammation Index and Diabetes Mellitus Secondary to Pancreatic Ductal Adenocarcinoma. J. Clin. Med. 2023, 12, 756. [Google Scholar] [CrossRef] [PubMed]
- Targońska-Stępniak, B.; Grzechnik, K. The Usefulness of Cellular Immune Inflammation Markers and Ultrasound Evaluation in the Assessment of Disease Activity in Patients with Spondyloarthritis. J. Clin. Med. 2023, 12, 5463. [Google Scholar] [CrossRef] [PubMed]
- Choe, J.Y.; Lee, C.U.; Kim, S.K. Association between Novel Hematological Indices and Measures of Disease Activity in Patients with Rheumatoid Arthritis. Medicina 2023, 59, 117. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yan, L.; Chai, K. Systemic immune-inflammation index is associated with disease activity in patients with ankylosing spondylitis. J. Clin. Lab. Anal. 2021, 35, e23964. [Google Scholar] [CrossRef]
- Tanacan, E.; Dincer, D.; Erdogan, F.G.; Gurler, A. A cutoff value for the Systemic Immune-Inflammation Index in determining activity of Behçet disease. Clin. Exp. Dermatol. 2021, 46, 286–291. [Google Scholar] [CrossRef]
- Chen, J.B.; Tang, R.; Zhong, Y.; Zhou, Y.O.; Zuo, X.; Luo, H.; Huang, L.; Lin, W.; Wu, T.; Yang, Y.; et al. Systemic immune-inflammation index predicts a reduced risk of end-stage renal disease in Chinese patients with myeloperoxidase-anti-neutrophil cytoplasmic antibody-associated vasculitis: A retrospective observational study. Exp. Ther. Med. 2021, 22, 989. [Google Scholar] [CrossRef]
- Kingsley, G.; Sieper, J. Third International Workshop on Reactive Arthritis. 23–26 September 1995, Berlin, Germany. Report and abstracts. Ann. Rheum. Dis. 1996, 55, 564–584. [Google Scholar] [CrossRef]
- Shulman, S.T.; Ayoub, E.M. Poststreptococcal reactive arthritis. Curr. Opin. Rheumatol. 2002, 14, 562–565. [Google Scholar] [CrossRef]
- Valiathan, R.; Ashman, M.; Asthana, D. Effects of Ageing on the Immune System: Infants to Elderly. Scand. J. Immunol. 2016, 83, 255–266. [Google Scholar] [CrossRef]
- Cassidy, J.T.; Petty, R.E. Textbook of Pediatric Rheumatology, 4th ed.; W.B Saunders: Phliladelphia, PA, USA, 2001; p. 258. [Google Scholar]
- Kim, K.H.; Kim, D.S. Juvenile idiopathic arthritis: Diagnosis and differential diagnosis. Korean J. Pediatr. 2010, 53, 931–935. [Google Scholar] [CrossRef]
- John, J.; Chandran, L. Arthritis in children and adolescents. Pediatr. Rev. 2011, 32, 470–479, quiz 480; Erratum in Pediatr. Rev. 2012, 33, 109. [Google Scholar] [CrossRef]
- Gamalero, L.; Ferrara, G.; Giani, T.; Cimaz, R. Acute Arthritis in Children: How to Discern between Septic and Non-Septic Arthritis? Children 2021, 8, 912. [Google Scholar] [CrossRef]
- Ostrowska, M.; Michalski, E.; Gietka, P.; Mańczak, M.; Posadzy, M.; Sudoł-Szopińska, I. Ankle Magnetic Resonance Imaging in Juvenile Idiopathic Arthritis Versus Non-Juvenile Idiopathic Arthritis Patients with Arthralgia. J. Clin. Med. 2022, 11, 760. [Google Scholar] [CrossRef]
- Gohar, F.; Kessel, C.; Lavric, M.; Holzinger, D.; Foell, D. Review of biomarkers in systemic juvenile idiopathic arthritis: Helpful tools or just playing tricks? Arthritis Res. Ther. 2016, 18, 163. [Google Scholar] [CrossRef]
- Kuek, A.; Hazleman, B.L.; Ostör, A.J. Immune-mediated inflammatory diseases (IMIDs) and biologic therapy: A medical revolution. Postgrad. Med. J. 2007, 83, 251–260. [Google Scholar] [CrossRef]
- Heckert, S.L.; Hissink-Muller, P.C.E.; van den Berg, J.M.; Schonenberg-Meinema, D.; van Suijlekom-Smit, L.W.; van Rossum, M.A.; Koopman, Y.; Ten Cate, R.; Brinkman, D.M.; Huizinga, T.W.; et al. Patterns of clinical joint inflammation in juvenile idiopathic arthritis. RMD Open 2023, 9, e002941. [Google Scholar] [CrossRef]
- Taha, S.I.; Samaan, S.F.; Ibrahim, R.A.; Moustafa, N.M.; El-Sehsah, E.M.; Youssef, M.K. Can Complete Blood Count Picture Tell Us More About the Activity of Rheumatological Diseases? Clin. Med. Insights Arthritis Musculoskelet Disord. 2022, 15, 11795441221089182. [Google Scholar] [CrossRef]
- López-Verdugo, F.; Furuzawa-Carballeda, J.; Romero-Hernández, F.; Coss-Adame, E.; Valdovinos, M.A.; Priego-Ranero, A.; Olvera-Prado, H.; Narváez-Chavez, S.; Peralta-Figueroa, J.; Torres-Villalobos, G. Hematological indices as indicators of silent inflammation in achalasia patients: A cross-sectional study. Medicine 2020, 99, e19326. [Google Scholar] [CrossRef]
- Parackova, Z.; Zentsova, I.; Horvath, R.; Malcova, H.; Cebecauerova, D.; Sediva, A.; Klocperk, A. Immunomodulation of neutrophils and platelets by TNF blockage in patients with juvenile idiopathic arthritis. Clin. Immunol. 2022, 245, 109170. [Google Scholar] [CrossRef]
- Jin, Z.; Cai, G.; Zhang, P.; Li, X.; Yao, S.; Zhuang, L.; Ren, M.; Wang, Q.; Yu, X. The value of the neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio as complementary diagnostic tools in the diagnosis of rheumatoid arthritis: A multicenter retrospective study. J. Clin. Lab. Anal. 2021, 35, e23569. [Google Scholar] [CrossRef]
- Song, B.-W.; Kim, A.-R.; Kim, Y.-K.; Kim, G.-T.; Ahn, E.-Y.; So, M.-W.; Lee, S.-G. Diagnostic Value of Neutrophil-to-Lymphocyte, Platelet-to-Lymphocyte, and Monocyte-to-Lymphocyte Ratios for the Assessment of Rheumatoid Arthritis in Patients with Undifferentiated Inflammatory Arthritis. Diagnostics 2022, 12, 1702. [Google Scholar] [CrossRef]
- Coşkun, B.N.; Öksüz, M.F.; Ermurat, S.; Tufan, A.N.; Oruçoğlu, N.; Doğan, A.; Dalkılıç, E.; Pehlivan, Y. Neutrophil lymphocyte ratio can be a valuable marker in defining disease activity in patients who have started anti-tumor necrosis factor (TNF) drugs for ankylosing spondylitis. Eur. J. Rheumatol. 2014, 1, 101–105. [Google Scholar] [CrossRef]
- Al-Osami, M.H.; Awadh, N.I.; Khalid, K.B.; Awadh, A.I. Neutrophil/lymphocyte and platelet/lymphocyte ratios as potential markers of disease activity in patients with Ankylosing spondylitis: A case-control study. Adv. Rheumatol. 2020, 60, 13. [Google Scholar] [CrossRef]
- Yu, H.; Jiang, L.; Yao, L.; Gan, C.; Han, X.; Liu, R.; Su, N. Predictive value of the neutrophil-to-lymphocyte ratio and hemoglobin insystemic lupus erythematosus. Exp. Ther. Med. 2018, 16, 1547–1553. [Google Scholar] [CrossRef]
- Liu, P.; Li, P.; Peng, Z.; Xiang, Y.; Xia, C.; Wu, J.; Yang, B.; He, Z. Predictive value of the neutrophil-to-lymphocyte ratio, monocyte-to-lymphocyte ratio, platelet-to-neutrophil ratio, and neutrophil-to-monocyte ratio in lupus nephritis. Lupus 2020, 29, 1031–1039. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Jia, X.; Yang, M.; Yu, J. Relationship between Neutrophil-to-Lymphocyte Ratio and Systemic Lupus Erythematosus: A Meta-analysis. Clinics 2020, 75, e1450. [Google Scholar] [CrossRef]
- Zhang, Z.; Su, Q.; Zhang, L.; Yang, Z.; Qiu, Y.; Mo, W. Diagnostic value of hemoglobin and neutrophil-to-lymphocyte ratio in Behcet Disease. Medicine 2019, 98, e18443. [Google Scholar] [CrossRef]
- Alamdari, M.G.; Kalami, N.; Shojaan, H.; Aminizadeh, S.; Ghaedi, A.; Bazrgar, A.; Khanzadeh, S. Systematic review of the diagnostic role of neutrophil to lymphocyte ratio in sarcoidosis. Sarcoidosis Vasc. Diffus. Lung Dis. 2023, 40, e2023008. [Google Scholar]
- Chandrashekara, S.; Mukhtar Ahmad, M.; Renuka, P.; Anupama, K.R.; Renuka, K. Characterization of neutrophil-to-lymphocyte ratio as a measure of inflammation in rheumatoid arthritis. Int. J. Rheum. Dis. 2017, 20, 1457–1467. [Google Scholar] [CrossRef]
- Tekeoğlu, İ.; Gürol, G.; Harman, H.; Karakeçe, E.; Çiftçi, İ.H. Overlooked hematological markers of disease activity in rheumatoid arthritis. Int. J. Rheum. Dis. 2016, 19, 1078–1082. [Google Scholar] [CrossRef]
- Targońska-Stępniak, B.; Zwolak, R.; Piotrowski, M.; Grzechnik, K.; Majdan, M. The Relationship between Hematological Markers of Systemic Inflammation (Neutrophil-To-Lymphocyte, Platelet-To-Lymphocyte, Lymphocyte-To-Monocyte Ratios) and Ultrasound Disease Activity Parameters in Patients with Rheumatoid Arthritis. J. Clin. Med. 2020, 9, 2760. [Google Scholar] [CrossRef]
- Uslu, A.U.; Küçük, A.; ¸Sahin, A.; Ugan, Y.; Yılmaz, R.; Güngör, T.; Bağcacı, S.; Küçük¸sen, S. Two new inflammatory markers associated with Disease Activity Score-28 in patients with rheumatoid arthritis: Neutrophil-lymphocyte ratio and platelet-lymphocyte ratio. Int. J. Rheum. Dis. 2015, 18, 731–735. [Google Scholar] [CrossRef]
- Fawzy, R.M.; Said, E.A.; Mansour, A.I. Association of neutrophil to lymphocyte ratio with disease activity indices and musculoskeletal ultrasound findings in recent onset rheumatoid arthritis patients. Egypt. Rheumatol. 2017, 39, 203–206. [Google Scholar] [CrossRef]
- Lee, H.N.; Kim, Y.K.; Kim, G.T.; Ahn, E.; So, M.W.; Sohn, D.H.; Lee, S.G. Neutrophil-to-lymphocyte and platelet-to-lymphocyte ratio as predictors of 12-week treatment response and drug persistence of anti-tumor necrosis factor-α agents in patients with rheumatoid arthritis: A retrospective chart review analysis. Rheumatol. Int. 2019, 39, 859–868. [Google Scholar] [CrossRef]
- Şan, H.; Şan, A.U. Correlation Between Diagnostic Imaging Findings of Sacroiliitis and Inflammation Parameters. Akt. Rheumatol. 2022, 47, 61–68. [Google Scholar] [CrossRef]
- Yorulmaz, A.; Hayran, Y.; Akpinar, U.; Yalcin, B. Systemic Immune-Inflammation Index (SII) Predicts Increased Severity in Psoriasis and Psoriatic Arthritis. Curr. Health Sci. J. 2020, 46, 352–357. [Google Scholar]
- Kelesoglu Dincer, A.B.; Sezer, S. Systemic Immune Inflammation Index as a Reliable Disease Activity Marker in Psoriatic Arthritis. J. Coll. Physicians Surg. Pak. 2022, 32, 773–778. [Google Scholar]
- Bayram, S.; Bilgili, F.; Kıral, D.; Yağcı, T.F.; Yıldırım, A.M.; Demirel, M. Which inflammatory marker is more reliable in diagnosing acute septic arthritis in the pediatric population? Pediatr. Int. 2021, 63, 889–894. [Google Scholar] [CrossRef]
- Güneş, A.; Ece, A.; Şen, V.; Uluca, Ü.; Aktar, F.; Tan, İ.; Yel, S.; Yolbaş, İ. Correlation of mean platelet volume, neutrophil-to-lymphocyte ratio, and disease activity in children with juvenile ıdiopathic arthritis. Int. J. Clin. Exp. Med. 2015, 8, 11337–11341. [Google Scholar]
- Sahin, A.; Bag, O.; Makay, B.; Omur Ecevit, C. Papel de los parámetros hematológicos en el diagnóstico de Artritis Idiopatica Juvenil en niños con artritis. Andes Pediatr. 2022, 93, 229–234. [Google Scholar] [CrossRef]
- Liang, T.C.; Hsu, C.T.; Yang, Y.H.; Lin, Y.T.; Chiang, B.L. Analysis of childhood reactive arthritis and comparison with juvenile idiopathic arthritis. Clin. Rheumatol. 2005, 24, 388–393. [Google Scholar] [CrossRef]
- Wallace, C.A.; Ravelli, A.; Huang, B.; Giannini, E.H. Preliminary validation of clinical remission criteria using the OMERACT filter for select categories of juvenile idiopathic arthritis. J. Rheumatol. 2006, 33, 789–795. [Google Scholar]
- Beukelman, T.; Patkar, N.M.; Saag, K.G.; Tolleson-Rinehart, S.; Cron, R.Q.; DeWitt, E.M.; Ilowite, N.T.; Kimura, Y.; Laxer, R.M.; Lovell, D.J.; et al. 2011 American College of Rheumatology recommendations for the treatment of juvenile idiopathic arthritis: Initiation and safety monitoring of therapeutic agents for the treatment of arthritis and systemic features. Arthritis Care Res. 2011, 63, 465–482. [Google Scholar] [CrossRef]
- Consolaro, A.; Ruperto, N.; Bazso, A.; Pistorio, A.; Magni-Manzoni, S.; Filocamo, G.; Malattia, C.; Viola, S.; Martini, A.; Ravelli, A. Development and validation of a composite disease activity score for juvenile idiopathic arthritis. Arthritis Rheum. 2009, 61, 658–667. [Google Scholar] [CrossRef]
- Swart, J.F.; de Roock, S.; Prakken, B.J. Understanding inflammation in juvenile idiopathic arthritis: How immune biomarkers guide clinical strategies in the systemic onset subtype. Eur. J. Immunol. 2016, 46, 2068–2077. [Google Scholar] [CrossRef]
- Moosmann, J.; Krusemark, A.; Dittrich, S.; Ammer, T.; Rauh, M.; Woelfle, J.; Metzler, M.; Zierk, J. Age- and sex-specific pediatric reference intervals for neutrophil-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, and platelet-to-lymphocyte ratio. Int. J. Lab. Hematol. 2022, 44, 296–301. [Google Scholar] [CrossRef]
- Gurion, R.; Lehman, T.J.; Moorthy, L.N. Systemic arthritis in children: A review of clinical presentation and treatment. Int. J. Inflam. 2012, 2012, 271569. [Google Scholar] [CrossRef]
- Smith, T.L.; Weyrich, A.S. Platelets as central mediators of systemic inflammatory responses. Thromb. Res. 2011, 127, 391–394. [Google Scholar] [CrossRef]
- Sugimoto, E.; Matsuda, H.; Shibata, S.; Mizuno, Y.; Koyama, A.; Li, L.; Taira, H.; Ito, Y.; Awaji, K.; Yamashita, T.; et al. Impact of Pretreatment Systemic Inflammatory Markers on Treatment Persistence with Biologics and Conventional Systemic Therapy: A Retrospective Study of Patients with Psoriasis Vulgaris and Psoriatic Arthritis. J. Clin. Med. 2023, 12, 3046. [Google Scholar] [CrossRef]
- Gawaz, M.; Langer, H.; May, A.E. Platelets in inflammation and atherogenesis. J. Clin. Investig. 2005, 115, 3378–3384. [Google Scholar] [CrossRef]
- Olumuyiwa-Akeredolu, O.O.; Page, M.J.; Soma, P.; Pretorius, E. Platelets: Emerging facilitators of cellular crosstalk in rheumatoid arthritis. Nat. Rev. Rheumatol. 2019, 15, 237–248. [Google Scholar] [CrossRef]
- Vakili, M.; Ziaee, V.; Moradinejad, M.H.; Raeeskarami, S.R.; Kompani, F.; Rahamooz, T. Changes of Platelet Indices in Juvenile Idiopathic Arthritis in Acute Phase and After Two Months Treatment. Iran. J. Pediatr. 2016, 26, e5006. [Google Scholar] [CrossRef]
- Gezer, K.; Pehlivan, H.H. Systemic immune-inflammation index and other inflammatory parameters in patients receiving biological or targeted synthetic DMARDs for inflammatory rheumatic disease. Marmara Med. J. 2022, 35, 316–322. [Google Scholar] [CrossRef]
- Kim, P.S.; Klausmeier, T.L.; Orr, D.P. Reactive arthritis: A review. J. Adolesc. Health. 2009, 44, 309–315. [Google Scholar] [CrossRef]
- Özcan, C.; Şaylı, T.R.; Koşan-Çulha, V. Reactive thrombocytosis in children. Turk. J. Pediatr. 2013, 55, 411–416. [Google Scholar]
Variables | Total (n = 108) | JIA (n = 70) | ReA (n = 38) | R-Value | p-Value |
---|---|---|---|---|---|
Age (years) | 10.6 (5.4, 14.3) | 12.1 (7.6, 14.5) | 7.7 (3.5, 11.9) | 0.698 | <0.001 |
Females % (n) | 46.3 (50) | 52.9 (37) | 34.2 (13) | 0.179 | 0.063 |
Number of affected joints % (n) | |||||
• Oligoarticular | 72.2 (78) | 67.1 (47) | 81.6 (31) | 0.154 | 0.110 |
• Polyarticular | 27.8 (30) | 32.9 (23) | 18.4 (7) | 0.154 | 0.110 |
Affected joints % (n) | |||||
• Small hand joints | 16.7 (18) | 21.4 (15) | 7.9 (3) | 0.173 | 0.104 |
• Wrist | 12 (13) | 15.7 (11) | 5.3 (2) | 0.153 | 0.133 |
• Elbow | 7.4 (8) | 5.7 (4) | 10.5 (4) | −0.088 | 0.448 |
• Shoulder | 4.6 (5) | 7.1 (5) | 0 | 0.162 | 0.159 |
• Small feet joints | 14.8 (16) | 17.1 (12) | 10.5 (4) | 0.089 | 0.410 |
• Ankle | 42.6 (46) | 47.1 (33) | 34.2 (13) | 0.125 | 0.194 |
• Knee | 50 (54) | 50 (35) | 50 (19) | 0 | 1 |
• Hip | 18.5 (15) | 11.4 (8) | 31.6 (12) | −0.377 | <0.001 |
• Spine | 10.2 (11) | 15.7 (11) | 0 | 0.248 | 0.008 |
CRP mg/L | 11.9 (1.88, 42.8) | 13.1 (4.8, 50.6) | 7.21 (0.49, 34.9) | 0.598 | 0.093 |
ESR mm/h | 35 (18, 69) | 41 (20, 81.2) | 24 (10, 47) | 0.643 | 0.017 |
Fibrinogen mg/dL | 389 (315.5, 457) | 397 (318, 442) | 369 (294, 476) | 0.5 | 1 |
Gamma globulins % | 14.8 (11.7, 17.4) | 15.6 (12.1, 17.6) | 12.5 (11.4, 17.4) | 0.611 | 0.158 |
IgG g/L | 12.3 (10.2, 16.1) | 13.13 (10.77, 17.15) | 10.55 (7.51, 14.92) | 0.633 | 0.085 |
Variables | Total (n = 108) | JIA (n = 70) | ReA (n = 38) | R-Value | p-Value |
---|---|---|---|---|---|
WBCs (×103/mm3) | 8.92 (7.24, 10.73) | 8.83 (7.30, 10.69) | 8.99 (6.85, 11.26) | 0.495 | 0.946 |
Neutrophils (×103/mm3) | 4.87 (3.79, 6.53) | 5.16 (4.26, 6.49) | 4.20 (2.56, 6.85) | 0.616 | 0.046 |
Lymphocytes (×103/mm3) | 2.79 (1.97, 3.49) | 2.68 (1.84, 3.37) | 2.96 (2.39, 3.88) | 0.399 | 0.090 |
Thrombocytes (×109/mm3) | 350 (283, 431) | 378 (311, 446) | 284 (258, 375) | 0.693 | <0.001 |
Monocytes (×103/mm3) | 0.770 (0.610, 0.962) | 0.740 (0.550, 0.907) | 0.840 (0.660, 1.150) | 0.366 | 0.025 |
Eosinophils (×103/mm3) | 0.130 (0.090, 0.295) | 0.120 (0.072, 0.250) | 0.200 (0.110, 0.330) | 0.382 | 0.049 |
Hb (g/dL) | 11.9 (10.9, 13) | 11.8 (10.8, 12.5) | 12.3 (11.05, 13.5) | 0.415 | 0.154 |
RDW (%) | 13.2 (12.8, 14.4) | 13.5 (12.8, 14.6) | 13.1 (12.6, 13.6) | 0.585 | 0.150 |
NLR | 1.82 (1.23, 2.86) | 2.12 (1.29, 3.07) | 1.33 (0.84, 2.19) | 0.667 | 0.005 |
SII | 691 (383, 1071) | 779.9 (480, 1233) | 410 (266, 737) | 0.721 | <0.001 |
Variables | Univariate Analysis OR (95% CI) | p-Value | Variable | Multivariate Analysis OR (95% CI) | p-Value |
---|---|---|---|---|---|
CRP | 1.007 (0.997, 1.017) | 0.188 | |||
ESR | 1.014 (1.001, 1.027) | 0.036 | ESR > 25 mm/h | 1.846 (0.763, 4.468) | 0.174 |
NLR | 1.313 (0.955, 1.805) | 0.094 | |||
SII | 1.001 (1.000, 1.002) | 0.005 | SII | 1.001 (1.000, 1.002) | 0.037 |
Age | 1.154 (1.057, 1.260) | 0.001 | Age > 3 years | 1.383 (0.356, 5.381) | 0.640 |
Variables | AUC | SE | 95% CI | Sensitivity | Specificity | Cut-Off | p-Value |
---|---|---|---|---|---|---|---|
NLR | 0.668 | 0.058 | 0.555–0.781 | 0.667 | 0.622 | 1.55 | 0.005 |
SII | 0.722 | 0.055 | 0.615–0.829 | 0.710 | 0.541 | 500.9 | <0.001 |
CRP | 0.599 | 0.060 | 0.482–0.716 | 0.586 | 0.541 | 8.92 | 0.093 |
ESR | 0.644 | 0.058 | 0.530–0.757 | 0.629 | 0.543 | 25.5 | 0.017 |
neutrophils | 0.617 | 0.063 | 0.493–0.740 | 0.614 | 0.579 | 4.71 | 0.046 |
lymphocytes | 0.600 | 0.057 | 0.488–0.712 | 0.595 | 0.522 | 2.76 | 0.090 |
platelets | 0.693 | 0.055 | 0.586–0.801 | 0.686 | 0.605 | 336 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicoară, D.-M.; Munteanu, A.-I.; Scutca, A.-C.; Brad, G.-F.; Asproniu, R.; Jugănaru, I.; Mărginean, O. Evaluating the Diagnostic Performance of Systemic Immune-Inflammation Index in Childhood Inflammatory Arthritis: A Focus on Differentiating Juvenile Idiopathic Arthritis from Reactive Arthritis. Biomedicines 2024, 12, 65. https://doi.org/10.3390/biomedicines12010065
Nicoară D-M, Munteanu A-I, Scutca A-C, Brad G-F, Asproniu R, Jugănaru I, Mărginean O. Evaluating the Diagnostic Performance of Systemic Immune-Inflammation Index in Childhood Inflammatory Arthritis: A Focus on Differentiating Juvenile Idiopathic Arthritis from Reactive Arthritis. Biomedicines. 2024; 12(1):65. https://doi.org/10.3390/biomedicines12010065
Chicago/Turabian StyleNicoară, Delia-Maria, Andrei-Ioan Munteanu, Alexandra-Cristina Scutca, Giorgiana-Flavia Brad, Raluca Asproniu, Iulius Jugănaru, and Otilia Mărginean. 2024. "Evaluating the Diagnostic Performance of Systemic Immune-Inflammation Index in Childhood Inflammatory Arthritis: A Focus on Differentiating Juvenile Idiopathic Arthritis from Reactive Arthritis" Biomedicines 12, no. 1: 65. https://doi.org/10.3390/biomedicines12010065
APA StyleNicoară, D. -M., Munteanu, A. -I., Scutca, A. -C., Brad, G. -F., Asproniu, R., Jugănaru, I., & Mărginean, O. (2024). Evaluating the Diagnostic Performance of Systemic Immune-Inflammation Index in Childhood Inflammatory Arthritis: A Focus on Differentiating Juvenile Idiopathic Arthritis from Reactive Arthritis. Biomedicines, 12(1), 65. https://doi.org/10.3390/biomedicines12010065