Timing and Graded BMP Signalling Determines Fate of Neural Crest and Ectodermal Placode Derivatives from Pluripotent Stem Cells
Abstract
:1. Introduction
2. Role and Function of BMP Signalling during Development
2.1. Dorsoventral Patterning and Ectodermal Derivatives
2.2. Placodal Lineages
2.2.1. Lens Development
2.2.2. Olfactory Epithelium Development
2.2.3. Inner Ear Development
2.2.4. Epibranchial Placodes
2.2.5. Trigeminal Neurons
2.3. Tooth Development
2.4. Neural Crest
2.5. Cardiac Development
2.6. Bone
3. Regulation of BMP Signalling during Development
3.1. BMP Signalling Pathways and Downstream Effects on Gene Expression
3.2. Endogenous Activators and Inhibitors of BMP Signalling
4. Consequences of BMP Dysregulation
5. Uses of Pluripotent Stem Cells to Investigate the Role of BMP in Development
5.1. Advantages and Limitations of Human PSCs
5.2. Otic Neurosensory Specification as a Model to Study BMP4 Signalling
6. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACVR1 | Activin A receptor type 1 |
BMP | Bone morphogenetic protein |
CHSY1 | Chondroitin synthase 1 |
ES | Embryonic stem cell |
FGF | Fibroblast growth factor |
hiPSC | Human induced pluripotent stem cell |
OEPD | Otic-epibranchial progenitor domain |
MSC | Mesenchymal stem cell |
NNE | Non-neural ectoderm |
PPE | Pre-placodal ectoderm |
PSC | Pluripotent stem cell |
SHH | Sonic hedgehog |
TAPT1 | Transmembrane anterior posterior transformation 1 |
TGFβ | Transforming growth factor beta |
TMEM53 | Transmembrane protein 53 |
TWSG1 | Twisted Gastrulation 1 |
USAG1 | Uterine sensitization associated gene-1 |
References
- Chiaradia, I.; Lancaster, M.A. Brain Organoids for the Study of Human Neurobiology at the Interface of In Vitro and In Vivo. Nat. Neurosci. 2020, 23, 1496–1508. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, M.A.; Renner, M.; Martin, C.-A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral Organoids Model Human Brain Development and Microcephaly. Nature 2013, 501, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Andersen, P.; Tampakakis, E.; Jimenez, D.V.; Kannan, S.; Miyamoto, M.; Shin, H.K.; Saberi, A.; Murphy, S.; Sulistio, E.; Chelko, S.P.; et al. Precardiac Organoids Form Two Heart Fields via Bmp/Wnt Signaling. Nat. Commun. 2018, 9, 3140. [Google Scholar] [CrossRef] [PubMed]
- Kostina, A.; Lewis-Israeli, Y.R.; Abdelhamid, M.; Gabalski, M.A.; Kiselev, A.; Volmert, B.D.; Lankerd, H.; Huang, A.R.; Wasserman, A.H.; Lydic, T.; et al. ER Stress and Lipid Imbalance Drive Diabetic Embryonic Cardiomyopathy in an Organoid Model of Human Heart Development. Stem Cell Rep. 2024, 19, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Lewis-Israeli, Y.R.; Wasserman, A.H.; Gabalski, M.A.; Volmert, B.D.; Ming, Y.; Ball, K.A.; Yang, W.; Zou, J.; Ni, G.; Pajares, N.; et al. Self-Assembling Human Heart Organoids for the Modeling of Cardiac Development and Congenital Heart Disease. Nat. Commun. 2021, 12, 5142. [Google Scholar] [CrossRef]
- Lewis-Israeli, Y.R.; Abdelhamid, M.; Olomu, I.; Aguirre, A. Modeling the Effects of Maternal Diabetes on the Developing Human Heart Using Pluripotent Stem Cell–Derived Heart Organoids. Curr. Protoc. 2022, 2, e461. [Google Scholar] [CrossRef]
- Wimmer, R.A.; Leopoldi, A.; Aichinger, M.; Wick, N.; Hantusch, B.; Novatchkova, M.; Taubenschmid, J.; Hämmerle, M.; Esk, C.; Bagley, J.A.; et al. Human Blood Vessel Organoids as a Model of Diabetic Vasculopathy. Nature 2019, 565, 505–510. [Google Scholar] [CrossRef]
- Agarwal, D.; Dash, N.; Mazo, K.W.; Chopra, M.; Avila, M.P.; Patel, A.; Wong, R.M.; Jia, C.; Do, H.; Cheng, J.; et al. Human Retinal Ganglion Cell Neurons Generated by Synchronous BMP Inhibition and Transcription Factor Mediated Reprogramming. NPJ Regen. Med. 2023, 8, 55. [Google Scholar] [CrossRef]
- Capowski, E.E.; Samimi, K.; Mayerl, S.J.; Phillips, M.J.; Pinilla, I.; Howden, S.E.; Saha, J.; Jansen, A.D.; Edwards, K.L.; Jager, L.D.; et al. Reproducibility and Staging of 3D Human Retinal Organoids across Multiple Pluripotent Stem Cell Lines. Development 2018, 146, dev171686. [Google Scholar] [CrossRef]
- Chichagova, V.; Hilgen, G.; Ghareeb, A.; Georgiou, M.; Carter, M.; Sernagor, E.; Lako, M.; Armstrong, L. Human IPSC Differentiation to Retinal Organoids in Response to IGF1 and BMP4 Activation Is Line- and Method-Dependent. Stem Cells 2020, 38, 195–201. [Google Scholar] [CrossRef]
- Hallam, D.; Hilgen, G.; Dorgau, B.; Zhu, L.; Yu, M.; Bojic, S.; Hewitt, P.; Schmitt, M.; Uteng, M.; Kustermann, S.; et al. Human-Induced Pluripotent Stem Cells Generate Light Responsive Retinal Organoids with Variable and Nutrient-Dependent Efficiency. Stem Cells 2018, 36, 1535–1551. [Google Scholar] [CrossRef] [PubMed]
- Kamarudin, T.A.; Bojic, S.; Collin, J.; Yu, M.; Alharthi, S.; Buck, H.; Shortt, A.; Armstrong, L.; Figueiredo, F.C.; Lako, M. Differences in the Activity of Endogenous Bone Morphogenetic Protein Signaling Impact on the Ability of Induced Pluripotent Stem Cells to Differentiate to Corneal Epithelial-Like Cells. Stem Cells 2018, 36, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Kabir, F.; Thomson, J.J.; Ma, Y.; Qiu, C.; Delannoy, M.; Khan, S.Y.; Riazuddin, S.A. Comparative Transcriptome Analysis of HESC- and IPSC-Derived Lentoid Bodies. Sci. Rep. 2019, 9, 18552. [Google Scholar] [CrossRef] [PubMed]
- Dincer, Z.; Piao, J.; Niu, L.; Ganat, Y.; Kriks, S.; Zimmer, B.; Shi, S.-H.; Tabar, V.; Studer, L. Specification of Functional Cranial Placode Derivatives from Human Pluripotent Stem Cells. Cell Rep. 2013, 5, 1387–1402. [Google Scholar] [CrossRef]
- Fu, Q.; Qin, Z.; Jin, X.; Zhang, L.; Chen, Z.; He, J.; Ji, J.; Yao, K. Generation of Functional Lentoid Bodies from Human Induced Pluripotent Stem Cells Derived from Urinary Cells. Investig. Opthalmol. Vis. Sci. 2017, 58, 517. [Google Scholar] [CrossRef]
- Zhang, L.; Qin, Z.; Lyu, D.; Lu, B.; Chen, Z.; Fu, Q.; Yao, K. Postponement of the Opacification of Lentoid Bodies Derived from Human Induced Pluripotent Stem Cells after Lanosterol Treatment—The First Use of the Lens Aging Model in Vitro in Cataract Drug Screening. Front. Pharmacol. 2022, 13, 959978. [Google Scholar] [CrossRef]
- Doda, D.; Alonso Jimenez, S.; Rehrauer, H.; Carreño, J.F.; Valsamides, V.; Di Santo, S.; Widmer, H.R.; Edge, A.; Locher, H.; van der Valk, W.H.; et al. Human Pluripotent Stem Cell-Derived Inner Ear Organoids Recapitulate Otic Development In Vitro. Development 2023, 150, dev201865. [Google Scholar] [CrossRef]
- Koehler, K.R.; Nie, J.; Longworth-Mills, E.; Liu, X.-P.; Lee, J.; Holt, J.R.; Hashino, E. Generation of Inner Ear Organoids Containing Functional Hair Cells from Human Pluripotent Stem Cells. Nat. Biotechnol. 2017, 35, 583–589. [Google Scholar] [CrossRef]
- Kurihara, S.; Fujioka, M.; Hirabayashi, M.; Yoshida, T.; Hosoya, M.; Nagase, M.; Kato, F.; Ogawa, K.; Okano, H.; Kojima, H.; et al. Otic Organoids Containing Spiral Ganglion Neuron-like Cells Derived from Human-Induced Pluripotent Stem Cells as a Model of Drug-Induced Neuropathy. Stem Cells Transl. Med. 2022, 11, 282–296. [Google Scholar] [CrossRef]
- Moore, S.T.; Nakamura, T.; Nie, J.; Solivais, A.J.; Aristizábal-Ramírez, I.; Ueda, Y.; Manikandan, M.; Reddy, V.S.; Romano, D.R.; Hoffman, J.R.; et al. Generating High-Fidelity Cochlear Organoids from Human Pluripotent Stem Cells. Cell Stem Cell 2023, 30, 950–961.e7. [Google Scholar] [CrossRef]
- Nie, J.; Ueda, Y.; Solivais, A.J.; Hashino, E. CHD7 Regulates Otic Lineage Specification and Hair Cell Differentiation in Human Inner Ear Organoids. Nat. Commun. 2022, 13, 7053. [Google Scholar] [CrossRef] [PubMed]
- Steinhart, M.R.; van der Valk, W.H.; Osorio, D.; Serdy, S.A.; Zhang, J.; Nist-Lund, C.; Kim, J.; Moncada-Reid, C.; Sun, L.; Lee, J.; et al. Mapping Oto-Pharyngeal Development in a Human Inner Ear Organoid Model. Development 2023, 150, dev201871. [Google Scholar] [CrossRef] [PubMed]
- Ueda, Y.; Nakamura, T.; Nie, J.; Solivais, A.J.; Hoffman, J.R.; Daye, B.J.; Hashino, E. Defining Developmental Trajectories of Prosensory Cells in Human Inner Ear Organoids at Single-Cell Resolution. Development 2023, 150, dev201071. [Google Scholar] [CrossRef] [PubMed]
- van der Valk, W.H.; van Beelen, E.S.A.; Steinhart, M.R.; Nist-Lund, C.; Osorio, D.; de Groot, J.C.M.J.; Sun, L.; van Benthem, P.P.G.; Koehler, K.R.; Locher, H. A Single-Cell Level Comparison of Human Inner Ear Organoids with the Human Cochlea and Vestibular Organs. Cell Rep. 2023, 42, 112623. [Google Scholar] [CrossRef]
- Urist, M.R.; Strates, B.S. Bone Morphogenetic Protein. J. Dent. Res. 1971, 50, 1392–1406. [Google Scholar] [CrossRef]
- Britton, G.; Heemskerk, I.; Hodge, R.; Qutub, A.A.; Warmflash, A. A Novel Self-Organizing Embryonic Stem Cell System Reveals Signaling Logic Underlying the Patterning of Human Ectoderm. Development 2019, 1, 169–191. [Google Scholar] [CrossRef]
- Camacho-Aguilar, E.; Yoon, S.T.; Ortiz-Salazar, M.A.; Du, S.; Guerra, M.C.; Warmflash, A. Combinatorial Interpretation of BMP and WNT Controls the Decision between Primitive Streak and Extraembryonic Fates. Cell Syst. 2024, 15, 445–461.e4. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, Q. BMP Signaling: Lighting up the Way for Embryonic Dorsoventral Patterning. Front. Cell Dev. Biol. 2021, 9, 799772. [Google Scholar] [CrossRef]
- Kwon, H.-J.; Bhat, N.; Sweet, E.M.; Cornell, R.A.; Riley, B.B. Identification of Early Requirements for Preplacodal Ectoderm and Sensory Organ Development. PLoS Genet. 2010, 6, e1001133. [Google Scholar] [CrossRef]
- Leung, A.W.; Kent Morest, D.; Li, J.Y.H. Differential BMP Signaling Controls Formation and Differentiation of Multipotent Preplacodal Ectoderm Progenitors from Human Embryonic Stem Cells. Dev. Biol. 2013, 379, 208–220. [Google Scholar] [CrossRef]
- Li, L.; Liu, C.; Biechele, S.; Zhu, Q.; Song, L.; Lanner, F.; Jing, N.; Rossant, J. Location of Transient Ectodermal Progenitor Potential in Mouse Development. Development 2013, 140, 4533–4543. [Google Scholar] [CrossRef] [PubMed]
- Reichert, S.; Randall, R.A.; Hill, C.S. A BMP Regulatory Network Controls Ectodermal Cell Fate Decisions at the Neural Plate Border. Development 2013, 140, 4435–4444. [Google Scholar] [CrossRef] [PubMed]
- Kattman, S.J.; Witty, A.D.; Gagliardi, M.; Dubois, N.C.; Niapour, M.; Hotta, A.; Ellis, J.; Keller, G. Stage-Specific Optimization of Activin/Nodal and BMP Signaling Promotes Cardiac Differentiation of Mouse and Human Pluripotent Stem Cell Lines. Cell Stem Cell 2011, 8, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Sa, S.; McCloskey, K.E. Activin A and BMP4 Signaling for Efficient Cardiac Differentiation of H7 and H9 Human Embryonic Stem Cells. J. Stem Cells Regen. Med. 2012, 8, 198–202. [Google Scholar] [CrossRef]
- Teague, S.; Primavera, G.; Chen, B.; Liu, Z.-Y.; Yao, L.; Freeburne, E.; Khan, H.; Jo, K.; Johnson, C.; Heemskerk, I. Time-Integrated BMP Signaling Determines Fate in a Stem Cell Model for Early Human Development. Nat. Commun. 2024, 15, 1471. [Google Scholar] [CrossRef]
- Kishimoto, Y.; Lee, K.-H.; Zon, L.; Hammerschmidt, M.; Schulte-Merker, S. The Molecular Nature of Zebrafish Swirl: BMP2 Function Is Essential during Early Dorsoventral Patterning. Development 1997, 124, 4457–4466. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, Q.; Gong, X.; Wang, C.; Bai, Y.; Wang, H.; Zhou, J.; Rong, X. Transmembrane Anterior Posterior Transformation 1 Regulates BMP Signaling and Modulates the Protein Stability of SMAD1/5. J. Biol. Chem. 2022, 298, 102684. [Google Scholar] [CrossRef]
- Yanagita, M.; Oka, M.; Watabe, T.; Iguchi, H.; Niida, A.; Takahashi, S.; Akiyama, T.; Miyazono, K.; Yanagisawa, M.; Sakurai, T. USAG-1: A Bone Morphogenetic Protein Antagonist Abundantly Expressed in the Kidney. Biochem. Biophys. Res. Commun. 2004, 316, 490–500. [Google Scholar] [CrossRef]
- Lee, H.; Seidl, C.; Sun, R.; Glinka, A.; Niehrs, C. R-Spondins Are BMP Receptor Antagonists in Xenopus Early Embryonic Development. Nat. Commun. 2020, 11, 5570. [Google Scholar] [CrossRef]
- Lee, H.; Sun, R.; Niehrs, C. Uncoupling the BMP Receptor Antagonist Function from the WNT Agonist Function of R-Spondin 2 Using the Inhibitory Peptide Dendrimer RWd. J. Biol. Chem. 2022, 298, 101586. [Google Scholar] [CrossRef]
- Suzuki, A.; Kaneko, E.; Ueno, N.; Hemmati-Brivanlou, A. Regulation of epidermal induction by BMP2 and BMP7 signaling. Dev. Biol. 1997, 189, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.A.; Hemmati-Brivanlou, A. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 1995, 376, 331–333. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.A.; Lagna, G.; Suzuki, A.; Hemmati-Brivanlou, A. Concentration-Dependent Patterning of the Xenopus Ectoderm by BMP4 and Its Signal Transducer Smad1. Development 1997, 124, 3177–3184. [Google Scholar] [CrossRef] [PubMed]
- Tchieu, J.; Zimmer, B.; Fattahi, F.; Amin, S.; Zeltner, N.; Chen, S.; Studer, L. A Modular Platform for Differentiation of Human PSCs into All Major Ectodermal Lineages. Cell Stem Cell 2017, 21, 399–410.e7. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-K.; Lee, H.-S.; Moody, S.A. Neural Transcription Factors: From Embryos to Neural Stem Cells. Mol. Cells 2014, 37, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Zine, A.; Fritzsch, B. Early Steps towards Hearing: Placodes and Sensory Development. Int. J. Mol. Sci. 2023, 24, 6994. [Google Scholar] [CrossRef]
- Metallo, C.M.; Ji, L.; de Pablo, J.J.; Palecek, S.P. Retinoic Acid and Bone Morphogenetic Protein Signaling Synergize to Efficiently Direct Epithelial Differentiation of Human Embryonic Stem Cells. Stem Cells 2008, 26, 372–380. [Google Scholar] [CrossRef]
- Bakkers, J.; Hild, M.; Kramer, C.; Furutani-Seiki, M.; Hammerschmidt, M. Zebrafish ΔNp63 Is a Direct Target of Bmp Signaling and Encodes a Transcriptional Repressor Blocking Neural Specification in the Ventral Ectoderm. Dev. Cell 2002, 2, 617–627. [Google Scholar] [CrossRef]
- Conti, E.; Harschnitz, O. Human Stem Cell Models to Study Placode Development, Function and Pathology. Development 2022, 149, dev200831. [Google Scholar] [CrossRef]
- Ahrens, K.; Schlosser, G. Tissues and Signals Involved in the Induction of Placodal Six1 Expression in Xenopus Laevis. Dev. Biol. 2005, 288, 40–59. [Google Scholar] [CrossRef]
- Pieper, M.; Ahrens, K.; Rink, E.; Peter, A.; Schlosser, G. Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm. Development 2012, 139, 1175–1187. [Google Scholar] [CrossRef] [PubMed]
- Pandit, T.; Jidigam, V.K.; Gunhaga, L. BMP-induced L-Maf regulates subsequent BMP-independent differentiation of primary lens fibre cells. Dev. Dyn. 2011, 240, 1917–1928. [Google Scholar] [CrossRef] [PubMed]
- Reza, H.M.; Ogino, H.; Yasuda, K. L-Maf, a downstream target of Pax6, is essential for chick lens development. Mech. Dev. 2002, 116, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A.P.; Bhattacharyya, S.; Bronner-Fraser, M.; Streit, A. Lens specification is the ground state of all sensory placodes, from which FGF promotes olfactory identity. Dev. Cell 2006, 11, 505–517. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Miller, C.; Imamura, F. Suppression of BMP Signaling Restores Mitral Cell Development Impaired by FGF Signaling Deficits in Mouse Olfactory Bulb. Mol. Cell. Neurosci. 2024, 128, 103913. [Google Scholar] [CrossRef]
- Panaliappan, T.K.; Wittmann, W.; Jidigam, V.K.; Mercurio, S.; Bertolini, J.A.; Sghari, S.; Bose, R.; Patthey, C.; Nicolis, S.K.; Gunhaga, L. Sox2 Is Required for Olfactory Pit Formation and Olfactory Neurogenesis through BMP Restriction and Hes5 Upregulation. Development 2018, 145, dev153791. [Google Scholar] [CrossRef]
- Peretto, P.; Cummings, D.; Modena, C.; Behrens, M.; Venkatraman, G.; Fasolo, A.; Margolis, F.L. BMP MRNA and Protein Expression in the Developing Mouse Olfactory System. J. Comp. Neurol. 2002, 451, 267–278. [Google Scholar] [CrossRef]
- Kikuta, H.; Tanaka, H.; Ozaki, T.; Ito, J.; Ma, J.; Moribe, S.; Hirano, M. Spontaneous Differentiation of Human Induced Pluripotent Stem Cells to Odorant-Responsive Olfactory Sensory Neurons. Biochem. Biophys. Res. Commun. 2024, 719, 150062. [Google Scholar] [CrossRef]
- Sun, L.; Ping, L.; Gao, R.; Zhang, B.; Chen, X. Lmo4a Contributes to Zebrafish Inner Ear and Vestibular Development via Regulation of the Bmp Pathway. Genes 2023, 14, 1371. [Google Scholar] [CrossRef]
- Pujades, C.; Kamaid, A.; Alsina, B.; Giraldez, F. BMP-Signaling Regulates the Generation of Hair-Cells. Dev. Biol. 2006, 292, 55–67. [Google Scholar] [CrossRef]
- Lewis, R.M.; Keller, J.J.; Wan, L.; Stone, J.S. Bone Morphogenetic Protein 4 Antagonizes Hair Cell Regeneration in the Avian Auditory Epithelium. Hear. Res. 2018, 364, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Corrales, C.E.; Wang, Z.; Zhao, Y.; Wang, Y.; Liu, H.; Heller, S. BMP4 Signaling Is Involved in the Generation of Inner Ear Sensory Epithelia. BMC Dev. Biol. 2005, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, T.; Basch, M.L.; Mishina, Y.; Lyons, K.M.; Segil, N.; Groves, A.K. BMP Signaling Is Necessary for Patterning the Sensory and Nonsensory Regions of the Developing Mammalian Cochlea. J. Neurosci. 2010, 30, 15044–15051. [Google Scholar] [CrossRef] [PubMed]
- Washausen, S.; Knabe, W. Responses of Epibranchial Placodes to Disruptions of the FGF and BMP Signaling Pathways in Embryonic Mice. Front. Cell Dev. Biol. 2021, 9, 712522. [Google Scholar] [CrossRef] [PubMed]
- Engelhard, C.; Sarsfield, S.; Merte, J.; Wang, Q.; Li, P.; Beppu, H.; Kolodkin, A.L.; Sucov, H.M.; Ginty, D.D. MEGF8 is a modifier of BMP signaling in trigeminal sensory neurons. Elife 2013, 17, e01160. [Google Scholar] [CrossRef]
- Zimmer, B.; Ewaleifoh, O.; Harschnitz, O.; Lee, Y.-S.; Peneau, C.; McAlpine, J.L.; Liu, B.; Tchieu, J.; Steinbeck, J.A.; Lafaille, F.; et al. Human IPSC-Derived Trigeminal Neurons Lack Constitutive TLR3-Dependent Immunity That Protects Cortical Neurons from HSV-1 Infection. Proc. Natl. Acad. Sci. USA 2018, 115, E8775–E8782. [Google Scholar] [CrossRef]
- Thesleff, I. Epithelial-Mesenchymal Signalling Regulating Tooth Morphogenesis. J. Cell Sci. 2003, 116, 1647–1648. [Google Scholar] [CrossRef]
- Li, J.; Feng, J.; Liu, Y.; Ho, T.-V.; Grimes, W.; Ho, H.A.; Park, S.; Wang, S.; Chai, Y. BMP-SHH Signaling Network Controls Epithelial Stem Cell Fate via Regulation of Its Niche in the Developing Tooth. Dev. Cell 2015, 33, 125–135. [Google Scholar] [CrossRef]
- Yuan, G.; Yang, G.; Zheng, Y.; Zhu, X.; Chen, Z.; Zhang, Z.; Chen, Y. The Non-Canonical BMP and Wnt/β-Catenin Signaling Pathways Orchestrate Early Tooth Development. Development 2015, 142, 128–139. [Google Scholar] [CrossRef]
- Kiso, H.; Takahashi, K.; Saito, K.; Togo, Y.; Tsukamoto, H.; Huang, B.; Sugai, M.; Shimizu, A.; Tabata, Y.; Economides, A.N.; et al. Interactions between BMP-7 and USAG-1 (Uterine Sensitization-Associated Gene-1) Regulate Supernumerary Organ Formations. PLoS ONE 2014, 9, e96938. [Google Scholar] [CrossRef]
- Murashima-Suginami, A.; Takahashi, K.; Sakata, T.; Tsukamoto, H.; Sugai, M.; Yanagita, M.; Shimizu, A.; Sakurai, T.; Slavkin, H.C.; Bessho, K. Enhanced BMP Signaling Results in Supernumerary Tooth Formation in USAG-1 Deficient Mouse. Biochem. Biophys. Res. Commun. 2008, 369, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
- Murashima-Suginami, A.; Takahashi, K.; Kawabata, T.; Sakata, T.; Tsukamoto, H.; Sugai, M.; Yanagita, M.; Shimizu, A.; Sakurai, T.; Slavkin, H.C.; et al. Rudiment Incisors Survive and Erupt as Supernumerary Teeth as a Result of USAG-1 Abrogation. Biochem. Biophys. Res. Commun. 2007, 359, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Murashima-Suginami, A.; Kiso, H.; Tokita, Y.; Mihara, E.; Nambu, Y.; Uozumi, R.; Tabata, Y.; Bessho, K.; Takagi, J.; Sugai, M.; et al. Anti-USAG-1 Therapy for Tooth Regeneration through Enhanced BMP Signaling. Sci. Adv. 2021, 7, eabf1798. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, S.; Sui, Y.; Fu, X.; Li, Y.; Wei, S. Sequential Stimulation with Different Concentrations of BMP4 Promotes the Differentiation of Human Embryonic Stem Cells into Dental Epithelium with Potential for Tooth Formation. Stem Cell Res. Ther. 2019, 10, 276. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Y.; Dong, Q.; Tian, C.; Gong, J.; Bai, X.; Ruan, J.; Gao, J. Small Molecules Promote the Rapid Generation of Dental Epithelial Cells from Human-Induced Pluripotent Stem Cells. Int. J. Mol. Sci. 2024, 25, 4138. [Google Scholar] [CrossRef]
- LaBonne, C.; Bronner-Fraser, M. Neural crest induction in Xenopus: Evidence for a two-signal model. Development 1998, 125, 2403–2414. [Google Scholar] [CrossRef]
- Raible, D.W.; Ragland, J.W. Reiterated Wnt and BMP Signals in Neural Crest Development. Semin. Cell Dev. Biol. 2005, 16, 673–682. [Google Scholar] [CrossRef]
- Steventon, B.; Araya, C.; Linker, C.; Kuriyama, S.; Mayor, R. Differential requirements of BMP and Wnt signalling during gastrulation and neurulation define two steps in neural crest induction. Development 2009, 136, 771–779. [Google Scholar] [CrossRef]
- Villanueva, S.; Glavic, A.; Ruiz, P.; Mayor, R. Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction. Dev. Biol. 2002, 241, 289–301. [Google Scholar] [CrossRef]
- Mehrotra, P.; Ikhapoh, I.; Lei, P.; Tseropoulos, G.; Zhang, Y.; Wang, J.; Liu, S.; Bronner, M.E.; Andreadis, S.T. Wnt/BMP Mediated Metabolic Reprogramming Preserves Multipotency of Neural Crest-Like Stem Cells. Stem Cells 2023, 41, 287–305. [Google Scholar] [CrossRef]
- Pegge, J.; Tatsinkam, A.J.; Rider, C.C.; Bell, E. Heparan sulfate proteoglycans regulate BMP signalling during neural crest induction. Dev. Biol. 2020, 460, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Galdos, F.X.; Guo, Y.; Paige, S.L.; VanDusen, N.J.; Wu, S.M.; Pu, W.T. Cardiac Regeneration. Circ. Res. 2017, 120, 941–959. [Google Scholar] [CrossRef] [PubMed]
- Schultheiss, T.M.; Burch, J.B.; Lassar, A.B. A Role for Bone Morphogenetic Proteins in the Induction of Cardiac Myogenesis. Genes Dev. 1997, 11, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, H. Cardiac Neural Crest. Cold Spring Harb. Perspect. Biol. 2021, 13, a036715. [Google Scholar] [CrossRef] [PubMed]
- Sande-Melón, M.; Marques, I.J.; Galardi-Castilla, M.; Langa, X.; Pérez-López, M.; Botos, M.-A.; Sánchez-Iranzo, H.; Guzmán-Martínez, G.; Ferreira Francisco, D.M.; Pavlinic, D.; et al. Adult Sox10+ Cardiomyocytes Contribute to Myocardial Regeneration in the Zebrafish. Cell Rep. 2019, 29, 1041–1054.e5. [Google Scholar] [CrossRef] [PubMed]
- Tamura, Y.; Matsumura, K.; Sano, M.; Tabata, H.; Kimura, K.; Ieda, M.; Arai, T.; Ohno, Y.; Kanazawa, H.; Yuasa, S.; et al. Neural Crest–Derived Stem Cells Migrate and Differentiate into Cardiomyocytes After Myocardial Infarction. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Martik, M.L.; Li, Y.; Bronner, M.E. Cardiac Neural Crest Contributes to Cardiomyocytes in Amniotes and Heart Regeneration in Zebrafish. Elife 2019, 8, e47929. [Google Scholar] [CrossRef]
- Hatzistergos, K.E.; Takeuchi, L.M.; Saur, D.; Seidler, B.; Dymecki, S.M.; Mai, J.J.; White, I.A.; Balkan, W.; Kanashiro-Takeuchi, R.M.; Schally, A.V.; et al. CKit + Cardiac Progenitors of Neural Crest Origin. Proc. Natl. Acad. Sci. USA 2015, 112, 13051–13056. [Google Scholar] [CrossRef]
- Arai, H.N.; Sato, F.; Yamamoto, T.; Woltjen, K.; Kiyonari, H.; Yoshimoto, Y.; Shukunami, C.; Akiyama, H.; Kist, R.; Sehara-Fujisawa, A. Metalloprotease-Dependent Attenuation of BMP Signaling Restricts Cardiac Neural Crest Cell Fate. Cell Rep. 2019, 29, 603–616.e5. [Google Scholar] [CrossRef]
- Sela-Donenfeld, D.; Kalcheim, C. Regulation of the Onset of Neural Crest Migration by Coordinated Activity of BMP4 and Noggin in the Dorsal Neural Tube. Development 1999, 126, 4749–4762. [Google Scholar] [CrossRef]
- Burstyn-Cohen, T.; Stanleigh, J.; Sela-Donenfeld, D.; Kalcheim, C. Canonical Wnt Activity Regulates Trunk Neural Crest Delamination Linking BMP/Noggin Signaling with G1/S Transition. Development 2004, 131, 5327–5339. [Google Scholar] [CrossRef] [PubMed]
- Shoval, I.; Ludwig, A.; Kalcheim, C. Antagonistic Roles of Full-Length N-Cadherin and Its Soluble BMP Cleavage Product in Neural Crest Delamination. Development 2007, 134, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Lowery, J.W.; Rosen, V. The BMP Pathway and Its Inhibitors in the Skeleton. Physiol. Rev. 2018, 98, 2431–2452. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Wu, S.; Chen, W.; Li, Y.-P. The Roles and Regulatory Mechanisms of TGF-β and BMP Signaling in Bone and Cartilage Development, Homeostasis and Disease. Cell Res. 2024, 34, 101–123. [Google Scholar] [CrossRef]
- Gultian, K.A.; Gandhi, R.; DeCesari, K.; Romiyo, V.; Kleinbart, E.P.; Martin, K.; Gentile, P.M.; Kim, T.W.B.; Vega, S.L. Injectable Hydrogel with Immobilized BMP-2 Mimetic Peptide for Local Bone Regeneration. Front. Biomater. Sci. 2022, 1, 948493. [Google Scholar] [CrossRef]
- Hanada, K.; Dennis, J.E.; Caplan, A.I. Stimulatory Effects of Basic Fibroblast Growth Factor and Bone Morphogenetic Protein-2 on Osteogenic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells. J. Bone Miner. Res. 1997, 12, 1606–1614. [Google Scholar] [CrossRef]
- Love, S.A.; Gultian, K.A.; Jalloh, U.S.; Stevens, A.; Kim, T.W.B.; Vega, S.L. Mesenchymal Stem Cells Enhance Targeted Bone Growth from Injectable Hydrogels with BMP-2 Peptides. J. Orthop. Res. 2024, 42, 1599–1607. [Google Scholar] [CrossRef]
- Moutsatsos, I.K.; Turgeman, G.; Zhou, S.; Kurkalli, B.G.; Pelled, G.; Tzur, L.; Kelley, P.; Stumm, N.; Mi, S.; Müller, R.; et al. Exogenously Regulated Stem Cell-Mediated Gene Therapy for Bone Regeneration. Mol. Ther. 2001, 3, 449–461. [Google Scholar] [CrossRef]
- Freitas, G.P.; Lopes, H.B.; Souza, A.T.P.; Gomes, M.P.O.; Quiles, G.K.; Gordon, J.; Tye, C.; Stein, J.L.; Stein, G.S.; Lian, J.B.; et al. Mesenchymal Stem Cells Overexpressing BMP-9 by CRISPR-Cas9 Present High In Vitro Osteogenic Potential and Enhance in Vivo Bone Formation. Gene Ther. 2021, 28, 748–759. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, W.; Huang, E.; Wang, J.; Liao, J.; Li, R.; Yu, X.; Zhao, C.; Zeng, Z.; Shu, Y.; et al. BMP9-Induced Osteoblastic Differentiation Requires Functional Notch Signaling in Mesenchymal Stem Cells. Lab. Investig. 2019, 99, 58–71. [Google Scholar] [CrossRef]
- Calixto, R.D.; Freitas, G.P.; Souza, P.G.; Ramos, J.I.R.; Santos, I.C.; de Oliveira, F.S.; Almeida, A.L.G.; Rosa, A.L.; Beloti, M.M. Effect of the Secretome of Mesenchymal Stem Cells Overexpressing BMP-9 on Osteoblast Differentiation and Bone Repair. J. Cell. Physiol. 2023, 238, 2625–2637. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-B.; Lee, H.-J.; Park, J.-B. Bone Morphogenetic Protein-9 Promotes Osteogenic Differentiation and Mineralization in Human Stem-Cell-Derived Spheroids. Medicina 2023, 59, 1315. [Google Scholar] [CrossRef] [PubMed]
- Kawai, S.; Yoshitomi, H.; Sunaga, J.; Alev, C.; Nagata, S.; Nishio, M.; Hada, M.; Koyama, Y.; Uemura, M.; Sekiguchi, K.; et al. In Vitro Bone-like Nodules Generated from Patient-Derived IPSCs Recapitulate Pathological Bone Phenotypes. Nat. Biomed. Eng. 2019, 3, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Oudina, K.; Paquet, J.; Moya, A.; Massourides, E.; Bensidhoum, M.; Larochette, N.; Deschepper, M.; Pinset, C.; Petite, H. The Paracrine Effects of Human Induced Pluripotent Stem Cells Promote Bone-like Structures via the Upregulation of BMP Expression in a Mouse Ectopic Model. Sci. Rep. 2018, 8, 17106. [Google Scholar] [CrossRef]
- Graf, D.; Malik, Z.; Hayano, S.; Mishina, Y. Common Mechanisms in Development and Disease: BMP Signaling in Craniofacial Development. Cytokine Growth Factor. Rev. 2016, 27, 129–139. [Google Scholar] [CrossRef]
- Mimura, S.; Suga, M.; Okada, K.; Kinehara, M.; Nikawa, H.; Furue, M.K. Bone Morphogenetic Protein 4 Promotes Craniofacial Neural Crest Induction from Human Pluripotent Stem Cells. Int. J. Dev. Biol. 2016, 60, 21–28. [Google Scholar] [CrossRef]
- Komatsu, Y.; Yu, P.B.; Kamiya, N.; Pan, H.; Fukuda, T.; Scott, G.J.; Ray, M.K.; Yamamura, K.; Mishina, Y. Augmentation of Smad-Dependent BMP Signaling in Neural Crest Cells Causes Craniosynostosis in Mice. J. Bone Miner. Res. 2013, 28, 1422–1433. [Google Scholar] [CrossRef]
- Ueharu, H.; Pan, H.; Liu, X.; Ishii, M.; Pongetti, J.; Kulkarni, A.K.; Adegbenro, F.E.; Wurn, J.; Maxson, R.E.; Sun, H.; et al. Augmentation of BMP Signaling in Cranial Neural Crest Cells Leads to Premature Cranial Sutures Fusion through Endochondral Ossification in Mice. JBMR Plus 2023, 7, e10716. [Google Scholar] [CrossRef]
- Ueharu, H.; Pan, H.; Hayano, S.; Zapien-Guerra, K.; Yang, J.; Mishina, Y. Augmentation of Bone Morphogenetic Protein Signaling in Cranial Neural Crest Cells in Mice Deforms Skull Base Due to Premature Fusion of Intersphenoidal Synchondrosis. Genesis 2023, 61, e23509. [Google Scholar] [CrossRef]
- Akintoye, S.O.; Lam, T.; Shi, S.; Brahim, J.; Collins, M.T.; Robey, P.G. Skeletal Site-Specific Characterization of Orofacial and Iliac Crest Human Bone Marrow Stromal Cells in Same Individuals. Bone 2006, 38, 758–768. [Google Scholar] [CrossRef]
- Srinivasan, A.; Teo, N.; Poon, K.J.; Tiwari, P.; Ravichandran, A.; Wen, F.; Teoh, S.H.; Lim, T.C.; Toh, Y.-C. Comparative Craniofacial Bone Regeneration Capacities of Mesenchymal Stem Cells Derived from Human Neural Crest Stem Cells and Bone Marrow. ACS Biomater. Sci. Eng. 2021, 7, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Coucouvanis, E.; Martin, G.R. BMP Signaling Plays a Role in Visceral Endoderm Differentiation and Cavitation in the Early Mouse Embryo. Development 1999, 126, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.N.; Green, J.; Wang, Z.; Deng, Y.; Qiao, M.; Peabody, M.; Zhang, Q.; Ye, J.; Yan, Z.; Denduluri, S.; et al. Bone Morphogenetic Protein (BMP) Signaling in Development and Human Diseases. Genes Dis. 2014, 1, 87–105. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.-H.; Johnson, R.; Wu, D.K. Differential Expression of Bone Morphogenetic Proteins in the Developing Vestibular and Auditory Sensory Organs. J. Neurosci. 1996, 16, 6463–6475. [Google Scholar] [CrossRef] [PubMed]
- Solloway, M.J.; Robertson, E.J. Early Embryonic Lethality in Bmp5;Bmp7 Double Mutant Mice Suggests Functional Redundancy within the 60A Subgroup. Development 1999, 126, 1753–1768. [Google Scholar] [CrossRef]
- Wu, M.Y.; Hill, C.S. TGF-β Superfamily Signaling in Embryonic Development and Homeostasis. Dev. Cell 2009, 16, 329–343. [Google Scholar] [CrossRef]
- Morrison, S.J.; Perez, S.E.; Qiao, Z.; Verdi, J.M.; Hicks, C.; Weinmaster, G.; Anderson, D.J. Transient Notch Activation Initiates an Irreversible Switch from Neurogenesis to Gliogenesis by Neural Crest Stem Cells. Cell 2000, 101, 499–510. [Google Scholar] [CrossRef]
- Lim, D.A.; Tramontin, A.D.; Trevejo, J.M.; Herrera, D.G.; García-Verdugo, J.M.; Alvarez-Buylla, A. Noggin Antagonizes BMP Signaling to Create a Niche for Adult Neurogenesis. Neuron 2000, 28, 713–726. [Google Scholar] [CrossRef]
- Gomes, W.A.; Mehler, M.F.; Kessler, J.A. Transgenic Overexpression of BMP4 Increases Astroglial and Decreases Oligodendroglial Lineage Commitment. Dev. Biol. 2003, 255, 164–177. [Google Scholar] [CrossRef]
- Winnier, G.; Blessing, M.; Labosky, P.A.; Hogan, B.L. Bone Morphogenetic Protein-4 Is Required for Mesoderm Formation and Patterning in the Mouse. Genes Dev. 1995, 9, 2105–2116. [Google Scholar] [CrossRef]
- Zhang, H.; Bradley, A. Mice Deficient for BMP2 Are Nonviable and Have Defects in Amnion/Chorion and Cardiac Development. Development 1996, 122, 2977–2986. [Google Scholar] [CrossRef] [PubMed]
- Dudley, A.T.; Lyons, K.M.; Robertson, E.J. A Requirement for Bone Morphogenetic Protein-7 during Development of the Mammalian Kidney and Eye. Genes Dev. 1995, 9, 2795–2807. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Hofmann, C.; Bronckers, A.L.; Sohocki, M.; Bradley, A.; Karsenty, G. BMP-7 Is an Inducer of Nephrogenesis, and Is Also Required for Eye Development and Skeletal Patterning. Genes Dev. 1995, 9, 2808–2820. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Adachi, Y.; Numata, T.; Nakada, S.; Yanagita, M.; Nakagata, N.; Evans, S.M.; Graf, D.; Economides, A.; Haraguchi, R.; et al. Reduced BMP Signaling Results in Hindlimb Fusion with Lethal Pelvic/Urogenital Organ Aplasia: A New Mouse Model of Sirenomelia. PLoS ONE 2012, 7, e43453. [Google Scholar] [CrossRef] [PubMed]
- Correns, A.; Zimmermann, L.M.A.; Baldock, C.; Sengle, G. BMP Antagonists in Tissue Development and Disease. Matrix Biol. Plus 2021, 11, 100071. [Google Scholar] [CrossRef]
- Gomez-Puerto, M.C.; Iyengar, P.V.; García de Vinuesa, A.; ten Dijke, P.; Sanchez-Duffhues, G. Bone Morphogenetic Protein Receptor Signal Transduction in Human Disease. J. Pathol. 2019, 247, 9–20. [Google Scholar] [CrossRef]
- Sánchez-Duffhues, G.; Hiepen, C. Human IPSCs as Model Systems for BMP-Related Rare Diseases. Cells 2023, 12, 2200. [Google Scholar] [CrossRef]
- Tang, J.; Tan, M.; Liao, S.; Pang, M.; Li, J. Recent Progress in the Biology and Physiology of BMP-8a. Connect. Tissue Res. 2023, 64, 219–228. [Google Scholar] [CrossRef]
- Zhang, Y.; Que, J. BMP Signaling in Development, Stem Cells, and Diseases of the Gastrointestinal Tract. Annu. Rev. Physiol. 2020, 82, 251–273. [Google Scholar] [CrossRef]
- Chang, W.; Lin, Z.; Kulessa, H.; Hebert, J.; Hogan, B.L.M.; Wu, D.K. Bmp4 Is Essential for the Formation of the Vestibular Apparatus That Detects Angular Head Movements. PLoS Genet. 2008, 4, e1000050. [Google Scholar] [CrossRef]
- Morikawa, M.; Koinuma, D.; Mizutani, A.; Kawasaki, N.; Holmborn, K.; Sundqvist, A.; Tsutsumi, S.; Watabe, T.; Aburatani, H.; Heldin, C.-H.; et al. BMP Sustains Embryonic Stem Cell Self-Renewal through Distinct Functions of Different Krüppel-like Factors. Stem Cell Rep. 2016, 6, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Hirai, H.; Karian, P.; Kikyo, N. Regulation of Embryonic Stem Cell Self-Renewal and Pluripotency by Leukaemia Inhibitory Factor. Biochem. J. 2011, 438, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Tomizawa, M.; Shinozaki, F.; Sugiyama, T.; Yamamoto, S.; Sueishi, M.; Yoshida, T. Activin A Maintains Pluripotency Markers and Proliferative Potential of Human Induced Pluripotent Stem Cells. Exp. Ther. Med. 2011, 2, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Tomizawa, M.; Shinozaki, F.; Sugiyama, T.; Yamamoto, S.; Sueishi, M.; Yoshida, T. Activin A Is Essential for Feeder-free Culture of Human Induced Pluripotent Stem Cells. J. Cell. Biochem. 2013, 114, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Hsiao, E.C.; Sami, S.; Lancero, M.; Schlieve, C.R.; Nguyen, T.; Yano, K.; Nagahashi, A.; Ikeya, M.; Matsumoto, Y.; et al. BMP-SMAD-ID Promotes Reprogramming to Pluripotency by Inhibiting P16/INK4A-Dependent Senescence. Proc. Natl. Acad. Sci. USA 2016, 113, 13057–13062. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.M.; Zimmerman, S.; Leeson, H.; Nefzger, C.M.; Mar, J.C.; Laslett, A.; Polo, J.M.; Wolvetang, E.; Cooper-White, J.J. Superior Induced Pluripotent Stem Cell Generation through Phactr3-Driven Mechanomodulation of Both Early and Late Phases of Cell Reprogramming. Biomater. Res. 2024, 28, 0025. [Google Scholar] [CrossRef]
- Sagara, J.; Higuchi, T.; Hattori, Y.; Moriya, M.; Sarvotham, H.; Shima, H.; Shirato, H.; Kikuchi, K.; Taniguchi, S. Scapinin, a Putative Protein Phosphatase-1 Regulatory Subunit Associated with the Nuclear Nonchromatin Structure. J. Biol. Chem. 2003, 278, 45611–45619. [Google Scholar] [CrossRef]
- Sagara, J.; Arata, T.; Taniguchi, S. Scapinin, the Protein Phosphatase 1 Binding Protein, Enhances Cell Spreading and Motility by Interacting with the Actin Cytoskeleton. PLoS ONE 2009, 4, e4247. [Google Scholar] [CrossRef]
- Boog, H.; Medda, R.; Cavalcanti-Adam, E.A. Single Cell Center of Mass for the Analysis of BMP Receptor Heterodimers Distributions. J. Imaging 2021, 7, 219. [Google Scholar] [CrossRef]
- Gabdoulline, R.; Kaisers, W.; Gaspar, A.; Meganathan, K.; Doss, M.X.; Jagtap, S.; Hescheler, J.; Sachinidis, A.; Schwender, H. Differences in the Early Development of Human and Mouse Embryonic Stem Cells. PLoS ONE 2015, 10, e0140803. [Google Scholar] [CrossRef]
- Rossant, J. Mouse and Human Blastocyst-Derived Stem Cells: Vive Les Differences. Development 2015, 142, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Johnson Chacko, L.; Wertjanz, D.; Sergi, C.; Dudas, J.; Fischer, N.; Eberharter, T.; Hoermann, R.; Glueckert, R.; Fritsch, H.; Rask-Andersen, H.; et al. Growth and Cellular Patterning during Fetal Human Inner Ear Development Studied by a Correlative Imaging Approach. BMC Dev. Biol. 2019, 19, 11. [Google Scholar] [CrossRef] [PubMed]
- Richard, C.; Courbon, G.; Laroche, N.; Prades, J.M.; Vico, L.; Malaval, L. Inner Ear Ossification and Mineralization Kinetics in Human Embryonic Development—Microtomographic and Histomorphological Study. Sci. Rep. 2017, 7, 4825. [Google Scholar] [CrossRef] [PubMed]
- Kopecky, B.; Johnson, S.; Schmitz, H.; Santi, P.; Fritzsch, B. Scanning Thin-sheet Laser Imaging Microscopy Elucidates Details on Mouse Ear Development. Dev. Dyn. 2012, 241, 465–480. [Google Scholar] [CrossRef]
- Shnerson, A.; Pujol, R. Age-Related Changes in the C57BL/6J Mouse Cochlea. I. Physiological Findings. Dev. Brain Res. 1981, 2, 65–75. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, K.; Zhang, X.; Wang, H.; Wang, Q. Genetic Correction of Induced Pluripotent Stem Cells from a DFNA36 Patient Results in Morphologic and Functional Recovery of Derived Hair Cell-like Cells. Stem Cell Res. Ther. 2024, 15, 4. [Google Scholar] [CrossRef]
- Liu, X.; Lillywhite, J.; Zhu, W.; Huang, Z.; Clark, A.M.; Gosstola, N.; Maguire, C.T.; Dykxhoorn, D.; Chen, Z.-Y.; Yang, J. Generation and Genetic Correction of USH2A c.2299delG Mutation in Patient-Derived Induced Pluripotent Stem Cells. Genes 2021, 12, 805. [Google Scholar] [CrossRef]
- Sanjurjo-Soriano, C.; Erkilic, N.; Baux, D.; Mamaeva, D.; Hamel, C.P.; Meunier, I.; Roux, A.-F.; Kalatzis, V. Genome Editing in Patient IPSCs Corrects the Most Prevalent USH2A Mutations and Reveals Intriguing Mutant MRNA Expression Profiles. Mol. Ther.-Methods Clin. Dev. 2020, 17, 156–173. [Google Scholar] [CrossRef]
- Chen, C.; Guan, M.-X. Genetic Correction of TRMU Allele Restored the Mitochondrial Dysfunction-Induced Deficiencies in IPSCs-Derived Hair Cells of Hearing-Impaired Patients. Hum. Mol. Genet. 2022, 31, 3068–3082. [Google Scholar] [CrossRef]
- Liu, X.; Wen, J.; Liu, X.; Chen, A.; Li, S.; Liu, J.; Sun, J.; Gong, W.; Kang, X.; Feng, Z.; et al. Gene Regulation Analysis of Patient-Derived IPSCs and Its CRISPR-Corrected Control Provides a New Tool for Studying Perturbations of ELMOD3 c.512A>G Mutation during the Development of Inherited Hearing Loss. PLoS ONE 2023, 18, e0288640. [Google Scholar] [CrossRef]
- Tang, Z.-H.; Chen, J.-R.; Zheng, J.; Shi, H.-S.; Ding, J.; Qian, X.-D.; Zhang, C.; Chen, J.-L.; Wang, C.-C.; Li, L.; et al. Genetic Correction of Induced Pluripotent Stem Cells from a Deaf Patient with MYO7A Mutation Results in Morphologic and Functional Recovery of the Derived Hair Cell-Like Cells. Stem Cells Transl. Med. 2016, 5, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Wang, H.; Fan, M.; Pan, H.; Guan, J.; Jiang, Y.; Jia, Z.; Wu, K.; Zhou, H.; Zhuang, Q.; et al. Impaired AIF-CHCHD4 Interaction and Mitochondrial Calcium Overload Contribute to Auditory Neuropathy Spectrum Disorder in Patient-IPSC-Derived Neurons with AIFM1 Variant. Cell Death Dis. 2023, 14, 375. [Google Scholar] [CrossRef] [PubMed]
- Doetzlhofer, A.; White, P.M.; Johnson, J.E.; Segil, N.; Groves, A.K. In Vitro Growth and Differentiation of Mammalian Sensory Hair Cell Progenitors: A Requirement for EGF and Periotic Mesenchyme. Dev. Biol. 2004, 272, 432–447. [Google Scholar] [CrossRef] [PubMed]
- Huh, S.-H.; Warchol, M.E.; Ornitz, D.M. Cochlear Progenitor Number Is Controlled through Mesenchymal FGF Receptor Signaling. Elife 2015, 4, e05921. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zuo, N.; Wu, C.; Chen, P.; Ma, J.; Wang, C.; Li, W.; Liu, S. Role of the Periotic Mesenchyme in the Development of Sensory Cells in Early Mouse Cochlea. J. Otol. 2020, 15, 138–143. [Google Scholar] [CrossRef]
- Rose, K.P.; Manilla, G.; Milon, B.; Zalzman, O.; Song, Y.; Coate, T.M.; Hertzano, R. Spatially Distinct Otic Mesenchyme Cells Show Molecular and Functional Heterogeneity Patterns before Hearing Onset. iScience 2023, 26, 107769. [Google Scholar] [CrossRef]
- Moeinvaziri, F.; Shojaei, A.; Haghparast, N.; Yakhkeshi, S.; Nemati, S.; Hassani, S.-N.; Baharvand, H. Towards Maturation of Human Otic Hair Cell–like Cells in Pluripotent Stem Cell–Derived Organoid Transplants. Cell Tissue Res. 2021, 386, 321–333. [Google Scholar] [CrossRef]
- Xia, M.; Ma, J.; Wu, M.; Guo, L.; Chen, Y.; Li, G.; Sun, S.; Chai, R.; Li, H.; Li, W. Generation of Innervated Cochlear Organoid Recapitulates Early Development of Auditory Unit. Stem Cell Rep. 2023, 18, 319–336. [Google Scholar] [CrossRef]
- Lu, J.; Wang, M.; Meng, Y.; An, W.; Wang, X.; Sun, G.; Wang, H.; Liu, W. Current Advances in Biomaterials for Inner Ear Cell Regeneration. Front. Neurosci. 2024, 17, 1334162. [Google Scholar] [CrossRef]
- Pressé, M.T.; Malgrange, B.; Delacroix, L. The Cochlear Matrisome: Importance in Hearing and Deafness. Matrix Biol. 2024, 125, 40–58. [Google Scholar] [CrossRef]
- Ma, J.; You, D.; Li, W.; Lu, X.; Sun, S.; Li, H. Bone Morphogenetic Proteins and Inner Ear Development. J. Zhejiang Univ. B 2019, 20, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Saeki, T.; Yoshimatsu, S.; Ishikawa, M.; Hon, C.-C.; Koya, I.; Shibata, S.; Hosoya, M.; Saegusa, C.; Ogawa, K.; Shin, J.W.; et al. Critical Roles of FGF, RA, and WNT Signalling in the Development of the Human Otic Placode and Subsequent Lineages in a Dish. Regen. Ther. 2022, 20, 165–186. [Google Scholar] [CrossRef] [PubMed]
- Maharana, S.K.; Saint-Jeannet, J.-P. Molecular Mechanisms of Hearing Loss in Nager Syndrome. Dev. Biol. 2021, 476, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Sher, G.; Naeem, M. A Novel CHSY1 Gene Mutation Underlies Temtamy Preaxial Brachydactyly Syndrome in a Pakistani Family. Eur. J. Med. Genet. 2014, 57, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Laue, K.; Temtamy, S.; Aglan, M.; Kotan, L.D.; Yigit, G.; Canan, H.; Pawlik, B.; Nürnberg, G.; Wakeling, E.L.; et al. Temtamy Preaxial Brachydactyly Syndrome Is Caused by Loss-of-Function Mutations in Chondroitin Synthase 1, a Potential Target of BMP Signaling. Am. J. Hum. Genet. 2010, 87, 757–767. [Google Scholar] [CrossRef]
- Lyu, Z.; Da, Y.; Liu, H.; Wang, Z.; Zhu, Y.; Tian, J. Chsy1 Deficiency Reduces Extracellular Matrix Productions and Aggravates Cartilage Injury in Osteoarthritis. Gene 2022, 827, 146466. [Google Scholar] [CrossRef]
- Kaplan, F.S.; Xu, M.; Seemann, P.; Connor, J.M.; Glaser, D.L.; Carroll, L.; Delai, P.; Fastnacht-Urban, E.; Forman, S.J.; Gillessen-Kaesbach, G.; et al. Classic and Atypical Fibrodysplasia Ossificans Progressiva (FOP) Phenotypes Are Caused by Mutations in the Bone Morphogenetic Protein (BMP) Type I Receptor ACVR1. Hum. Mutat. 2009, 30, 379–390. [Google Scholar] [CrossRef]
- Kaplan, F.S.; Kobori, J.A.; Orellana, C.; Calvo, I.; Rosello, M.; Martinez, F.; Lopez, B.; Xu, M.; Pignolo, R.J.; Shore, E.M.; et al. Multi-system Involvement in a Severe Variant of Fibrodysplasia Ossificans Progressiva (ACVR1 c.772G>A; R258G): A Report of Two Patients. Am. J. Med. Genet. Part A 2015, 167, 2265–2271. [Google Scholar] [CrossRef]
- Levy, C.E.; Lash, A.T.; Janoff, H.B.; Kaplan, F.S. Conductive Hearing Loss in Individuals with Fibrodysplasia Ossificans Progressiva. Am. J. Audiol. 1999, 8, 29–33. [Google Scholar] [CrossRef]
- Hasegawa, K.; Tanaka, H.; Futagawa, N.; Miyahara, H.; Tsukahara, H. Rapid Progression of Heterotopic Ossification in Severe Variant of Fibrodysplasia Ossificans Progressiva with p.Arg258Gly in ACVR1: A Case Report and Review of Clinical Phenotypes. Case Rep. Genet. 2022, 2022, 5021758. [Google Scholar] [CrossRef]
- Ealy, M.; Meyer, N.C.; Corchado, J.C.; Schrauwen, I.; Bress, A.; Pfister, M.; Van Camp, G.; Smith, R.J.H. Rare Variants in BMP2 and BMP4 Found in Otosclerosis Patients Reduce Smad Signaling. Otol. Neurotol. 2014, 35, 395–400. [Google Scholar] [CrossRef] [PubMed]
- Hansdah, K.; Singh, N.; Bouzid, A.; Priyadarshi, S.; Ray, C.S.; Desai, A.; Panda, K.C.; Choudhury, J.C.; Biswal, N.C.; Tekari, A.; et al. Evaluation of the Genetic Association and MRNA Expression of the COL1A1, BMP2, and BMP4 Genes in the Development of Otosclerosis. Genet. Test. Mol. Biomark. 2020, 24, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Priestley, J.R.C.; Deshwar, A.R.; Murthy, H.; D’Agostino, M.D.; Dupuis, L.; Gangaram, B.; Gray, C.; Jobling, R.; Pannia, E.; Platzer, K.; et al. Monoallelic Loss-of-Function BMP2 Variants Result in BMP2-Related Skeletal Dysplasia Spectrum. Genet. Med. 2023, 25, 100863. [Google Scholar] [CrossRef] [PubMed]
- Schrauwen, I.; Thys, M.; Vanderstraeten, K.; Fransen, E.; Dieltjens, N.; Huyghe, J.R.; Ealy, M.; Claustres, M.; Cremers, C.R.; Dhooge, I.; et al. Association of Bone Morphogenetic Proteins with Otosclerosis. J. Bone Miner. Res. 2008, 23, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.Y.; Gonzaga-Jauregui, C.; Bhoj, E.J.; Strauss, K.A.; Brigatti, K.; Puffenberger, E.; Li, D.; Xie, L.; Das, N.; Skubas, I.; et al. Monoallelic BMP2 Variants Predicted to Result in Haploinsufficiency Cause Craniofacial, Skeletal, and Cardiac Features Overlapping Those of 20p12 Deletions. Am. J. Hum. Genet. 2017, 101, 985–994. [Google Scholar] [CrossRef]
- Nixon, T.R.W.; Richards, A.; Towns, L.K.; Fuller, G.; Abbs, S.; Alexander, P.; McNinch, A.; Sandford, R.N.; Snead, M.P. Bone Morphogenetic Protein 4 (BMP4) Loss-of-Function Variant Associated with Autosomal Dominant Stickler Syndrome and Renal Dysplasia. Eur. J. Hum. Genet. 2019, 27, 369–377. [Google Scholar] [CrossRef]
- Wyatt, A.W.; Osborne, R.J.; Stewart, H.; Ragge, N.K. Bone Morphogenetic Protein 7 (BMP7) Mutations Are Associated with Variable Ocular, Brain, Ear, Palate, and Skeletal Anomalies. Hum. Mutat. 2010, 31, 781–787. [Google Scholar] [CrossRef]
- Adeyemo, A.; Faridi, R.; Chattaraj, P.; Yousaf, R.; Tona, R.; Okorie, S.; Bharadwaj, T.; Nouel-Saied, L.M.; Acharya, A.; Schrauwen, I.; et al. Genomic Analysis of Childhood Hearing Loss in the Yoruba Population of Nigeria. Eur. J. Hum. Genet. 2022, 30, 42–52. [Google Scholar] [CrossRef]
- Driesen, J.; Van Hoecke, H.; Maes, L.; Janssens, S.; Acke, F.; De Leenheer, E. CHD7 Disorder—Not CHARGE Syndrome—Presenting as Isolated Cochleovestibular Dysfunction. Genes 2024, 15, 643. [Google Scholar] [CrossRef]
- Roux, I.; Fenollar-Ferrer, C.; Lee, H.J.; Chattaraj, P.; Lopez, I.A.; Han, K.; Honda, K.; Brewer, C.C.; Butman, J.A.; Morell, R.J.; et al. CHD7 Variants Associated with Hearing Loss and Enlargement of the Vestibular Aqueduct. Hum. Genet. 2023, 142, 1499–1517. [Google Scholar] [CrossRef]
- Akahira-Azuma, M.; Enomoto, Y.; Nakamura, N.; Yokoi, T.; Minatogawa, M.; Harada, N.; Tsurusaki, Y.; Kurosawa, K. Novel COL2A1 Variants in Japanese Patients with Spondyloepiphyseal Dysplasia Congenita. Hum. Genome Var. 2022, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Terhal, P.A.; Nievelstein, R.J.A.J.; Verver, E.J.J.; Topsakal, V.; van Dommelen, P.; Hoornaert, K.; Le Merrer, M.; Zankl, A.; Simon, M.E.H.; Smithson, S.F.; et al. A Study of the Clinical and Radiological Features in a Cohort of 93 Patients with a COL2A1 Mutation Causing Spondyloepiphyseal Dysplasia Congenita or a Related Phenotype. Am. J. Med. Genet. Part A 2015, 167, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Li, Z.; Zhu, Y.; Wang, X.; Chen, G.; Hou, Z.; Zhang, Q. Discovery of Sensorineural Hearing Loss and Ossicle Deformity in a Chinese Li Nationality Family with Spondyloepiphyseal Dysplasia Congenita Caused by p.G504S Mutation of COL2A1. BMC Med. Genom. 2021, 14, 170. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Tabouni, M.; Kizhakkedath, P.; Baydoun, I.; Allam, M.; John, A.; Busafared, F.; Alnuaimi, A.; Al-Jasmi, F.; Alblooshi, H. Spectrum of Genetic Variants in Bilateral Sensorineural Hearing Loss. Front. Genet. 2024, 15, 1314535. [Google Scholar] [CrossRef]
- Clarke, R.A.; Fang, Z.; Murrell, D.; Sheriff, T.; Eapen, V. GDF6 Knockdown in a Family with Multiple Synostosis Syndrome and Speech Impairment. Genes 2021, 12, 1354. [Google Scholar] [CrossRef]
- Terhal, P.A.; Verbeek, N.E.; Knoers, N.; Nievelstein, R.J.A.J.; van den Ouweland, A.; Sakkers, R.J.; Speleman, L.; van Haaften, G. Further Delineation of the GDF6 Related Multiple Synostoses Syndrome. Am. J. Med. Genet. Part A 2018, 176, 225–229. [Google Scholar] [CrossRef]
- Wang, J.; Yu, T.; Wang, Z.; Ohte, S.; Yao, R.; Zheng, Z.; Geng, J.; Cai, H.; Ge, Y.; Li, Y.; et al. A New Sub type of Multiple Synostoses Syndrome Is Caused by a Mutation in GDF6 That Decreases Its Sensitivity to Noggin and Enhances Its Potency as a BMP Signal. J. Bone Miner. Res. 2016, 31, 882–889. [Google Scholar] [CrossRef]
- Carlson, R.J.; Quesnel, A.; Wells, D.; Brownstein, Z.; Gilony, D.; Gulsuner, S.; Leppig, K.A.; Avraham, K.B.; King, M.-C.; Walsh, T.; et al. Genetic Heterogeneity and Core Clinical Features of NOG-Related-Symphalangism Spectrum Disorder. Otol. Neurotol. 2021, 42, e1143–e1151. [Google Scholar] [CrossRef]
- Hirshoren, N.; Gross, M.; Banin, E.; Sosna, J.; Bargal, R.; Raas-Rothschild, A. P35S Mutation in the NOG Gene Associated with Teunissen–Cremers Syndrome and Features of Multiple NOG Joint-Fusion Syndromes. Eur. J. Med. Genet. 2008, 51, 351–357. [Google Scholar] [CrossRef]
- Ishino, T.; Takeno, S.; Hirakawa, K. Novel NOG Mutation in Japanese Patients with Stapes Ankylosis with Broad Thumbs and Toes. Eur. J. Med. Genet. 2015, 58, 427–432. [Google Scholar] [CrossRef]
- Masuda, S.; Namba, K.; Mutai, H.; Usui, S.; Miyanaga, Y.; Kaneko, H.; Matsunaga, T. A Mutation in the Heparin-Binding Site of Noggin as a Novel Mechanism of Proximal Symphalangism and Conductive Hearing Loss. Biochem. Biophys. Res. Commun. 2014, 447, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, T.; Ganaha, A.; Tsumagari, S.; Nakamura, T.; Yamada, Y.; Nakamura, E.; Usami, S.; Tono, T. Is the Conductive Hearing Loss in NOG-Related Symphalangism Spectrum Disorder Congenital? ORL 2021, 83, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Wang, Z.; Chai, Y.; Chen, H.; Li, L.; Sun, L.; Jia, H.; Wu, H.; Yang, T. A Novel Missense Mutation of NOG Interferes with the Dimerization of NOG and Causes Proximal Symphalangism Syndrome in a Chinese Family. Ann. Otol. Rhinol. Laryngol. 2015, 124, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Sonoyama, T.; Ishino, T.; Ogawa, Y.; Oda, T.; Takeno, S. Identification of a Novel Nonsense NOG Mutation in a Patient with Stapes Ankylosis and Symphalangism Spectrum Disorder. Hum. Genome Var. 2023, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Takano, K.; Ogasawara, N.; Matsunaga, T.; Mutai, H.; Sakurai, A.; Ishikawa, A.; Himi, T. A Novel Nonsense Mutation in the NOG Gene Causes Familial NOG-Related Symphalangism Spectrum Disorder. Hum. Genome Var. 2016, 3, 16023. [Google Scholar] [CrossRef]
- Thomeer, H.G.X.M.; Admiraal, R.J.C.; Hoefsloot, L.; Kunst, H.P.M.; Cremers, C.W.R.J. Proximal Symphalangism, Hyperopia, Conductive Hearing Impairment, and the NOG Gene. Otol. Neurotol. 2011, 32, 632–638. [Google Scholar] [CrossRef]
- Yu, R.; Jiang, H.; Liao, H.; Luo, W. Genetic and Clinical Phenotypic Analysis of Familial Stapes Sclerosis Caused by an NOG Mutation. BMC Med. Genom. 2020, 13, 187. [Google Scholar] [CrossRef]
- Caputo, V.; Bocchinfuso, G.; Castori, M.; Traversa, A.; Pizzuti, A.; Stella, L.; Grammatico, P.; Tartaglia, M. Novel SMAD4 Mutation Causing Myhre Syndrome. Am. J. Med. Genet. Part A 2014, 164, 1835–1840. [Google Scholar] [CrossRef]
- Cătană, A.; Simonescu-Colan, R.; Cuzmici-Barabaș, Z.; Militaru, D.; Iordănescu, I.; Militaru, M. First Documented Case of Myhre Syndrome in Romania: A Case Report. Exp. Ther. Med. 2022, 23, 323. [Google Scholar] [CrossRef]
- Le Goff, C.; Mahaut, C.; Abhyankar, A.; Le Goff, W.; Serre, V.; Afenjar, A.; Destrée, A.; di Rocco, M.; Héron, D.; Jacquemont, S.; et al. Mutations at a Single Codon in Mad Homology 2 Domain of SMAD4 Cause Myhre Syndrome. Nat. Genet. 2012, 44, 85–88. [Google Scholar] [CrossRef]
- Lin, A.E.; Alali, A.; Starr, L.J.; Shah, N.; Beavis, A.; Pereira, E.M.; Lindsay, M.E.; Klugman, S. Gain-of-function Pathogenic Variants in SMAD4 Are Associated with Neoplasia in Myhre Syndrome. Am. J. Med. Genet. Part A 2020, 182, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Michot, C.; Le Goff, C.; Mahaut, C.; Afenjar, A.; Brooks, A.S.; Campeau, P.M.; Destree, A.; Di Rocco, M.; Donnai, D.; Hennekam, R.; et al. Myhre and LAPS Syndromes: Clinical and Molecular Review of 32 Patients. Eur. J. Hum. Genet. 2014, 22, 1272–1277. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wang, X.; Wang, W.; Han, M.; Hu, L.; Kang, D.; Yang, J.; Liu, M.; Gao, X.; Yuan, Y.; et al. A Newborn Male with Myhre Syndrome, Hearing Loss, and Complete Syndactyly of Fingers 3–4. Mol. Genet. Genom. Med. 2023, 11, e2103. [Google Scholar] [CrossRef] [PubMed]
- Caputo, V.; Cianetti, L.; Niceta, M.; Carta, C.; Ciolfi, A.; Bocchinfuso, G.; Carrani, E.; Dentici, M.L.; Biamino, E.; Belligni, E.; et al. A Restricted Spectrum of Mutations in the SMAD4 Tumor-Suppressor Gene Underlies Myhre Syndrome. Am. J. Hum. Genet. 2012, 90, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Iida, A.; Bhavani, G.S.; Gowrishankar, K.; Wang, Z.; Xue, J.; Wang, J.; Miyake, N.; Matsumoto, N.; Hasegawa, T.; et al. Deficiency of TMEM53 Causes a Previously Unknown Sclerosing Bone Disorder by Dysregulation of BMP-SMAD Signaling. Nat. Commun. 2021, 12, 2046. [Google Scholar] [CrossRef]
- Whyte, M.P.; Weinstein, R.S.; Phillips, P.H.; McAlister, W.H.; Ramakrishnaiah, R.H.; Schaefer, G.B.; Cai, R.; Hutchison, M.R.; Duan, S.; Gottesman, G.S.; et al. Transmembrane Protein 53 Craniotubular Dysplasia (OMIM # 619727): The Skeletal Disease and Consequent Blindness of This New Disorder. Bone 2024, 188, 117218. [Google Scholar] [CrossRef]
Gene | Role in BMP Signalling | Inner Ear Deficits | Additional Symptoms | References |
---|---|---|---|---|
ACVR1 (Activin A receptor type 1) | Type 1 BMP receptor | Sensorineural hearing loss; conductive hearing loss | Bone and skeletal disorders | [167,168,169,170] |
BMP2 | BMP ligand | Conductive hearing loss (otosclerosis) | Craniofacial, cardiac, and skeletal anomalies | [171,172,173,174,175] |
BMP4 | BMP ligand | Sensorineural hearing loss; conductive hearing loss (otosclerosis) | Eye, joint, and craniofacial disorders, renal dysplasia | [171,172,174,176] |
BMP7 | BMP ligand | Sensorineural hearing loss | Eye anomalies, developmental delay, scoliosis, cleft palate | [177] |
CHD7 | Promotes Col2a1 expression; regulation of BMPR1B expression | Sensorineural hearing loss; some conductive hearing loss due to enlargement of vestibular aqueduct | Vestibular dysfunctions, hypogonadotropic hypogonadism | [178,179,180] |
CHSY1 (Chondroitin synthase 1) | BMP inhibition | Sensorineural hearing loss | Facial dysmorphism, dental anomalies, digital anomalies, delayed motor development, delayed mental development, growth retardation | [164] |
COL2A1 | Binds BMPs | Sensorineural hearing loss | Short stature, bone and joint dysplasias, ocular problems | [181,182,183] |
GDF6 (Growth and differentiation factor 6) | Forms heterodimers with BMPs | Conductive hearing loss (otosclerosis); cochlear aplasia | Wrist and ankle deformities, tarsal–carpal fusion, vertebral fusion, speech impairment | [184,185,186,187] |
NOG (Noggin) | BMP antagonist | Conductive hearing loss (stapes ankylosis and incus short process fixation) | Bone and joint disorders, digital and eye anomalies | [188,189,190,191,192,193,194,195,196,197] |
SF3B4 (Splicing factor 3B subunit 4) | Spliceosome that affects Noggin and BMP expression | Conductive, sensorineural, and mixed hearing loss | Craniofacial defects, limb defects | [163] |
SMAD4 | Downstream effector of BMP signalling | Conductive, sensorineural, and mixed hearing loss | Short stature, facial dysmorphism, muscular hypertrophy, cognitive delay | [198,199,200,201,202,203,204] |
TMEM53 (Transmembrane protein 53) | Inhibits BMP/SMAD signalling | Sensorineural hearing loss | Bone and eye disorders | [205,206] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, K.; Millet, M.; Rouillon, L.; Zine, A. Timing and Graded BMP Signalling Determines Fate of Neural Crest and Ectodermal Placode Derivatives from Pluripotent Stem Cells. Biomedicines 2024, 12, 2262. https://doi.org/10.3390/biomedicines12102262
Chung K, Millet M, Rouillon L, Zine A. Timing and Graded BMP Signalling Determines Fate of Neural Crest and Ectodermal Placode Derivatives from Pluripotent Stem Cells. Biomedicines. 2024; 12(10):2262. https://doi.org/10.3390/biomedicines12102262
Chicago/Turabian StyleChung, Keshi, Malvina Millet, Ludivine Rouillon, and Azel Zine. 2024. "Timing and Graded BMP Signalling Determines Fate of Neural Crest and Ectodermal Placode Derivatives from Pluripotent Stem Cells" Biomedicines 12, no. 10: 2262. https://doi.org/10.3390/biomedicines12102262
APA StyleChung, K., Millet, M., Rouillon, L., & Zine, A. (2024). Timing and Graded BMP Signalling Determines Fate of Neural Crest and Ectodermal Placode Derivatives from Pluripotent Stem Cells. Biomedicines, 12(10), 2262. https://doi.org/10.3390/biomedicines12102262