N-Pep-Zn Improves Cognitive Functions and Acute Stress Response Affected by Chronic Social Isolation in Aged Spontaneously Hypertensive Rats (SHRs)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Social Isolation Housing
2.3. N-Pep-Zn Preparation and Treatment
2.4. Blood Pressure Measurement
2.5. Behavioral Study
2.5.1. Sucrose Preference Test
2.5.2. Open Field Test
2.5.3. Elevated Plus Maze
2.5.4. Three-Chamber Sociability and Social Novelty Test
2.5.5. Spatial Learning and Memory in a Barnes Maze
2.6. Collection of Biomaterial
2.6.1. Blood Collection
2.6.2. Saliva Collection
2.7. Measurements of Biochemical Indices
2.7.1. Enzyme-Linked Immunosorbent Assays (ELISA)
2.7.2. Salivary Protein Concentration and Salivary Amylase Activity
2.8. Statistical Analysis
3. Results
3.1. Physiological Indices
3.1.1. Mortality
3.1.2. General Condition
3.1.3. Arterial Pressure and Heart Rate
3.1.4. Behavior
Locomotor and Exploratory Activity
Emotional State, Anxiety and Depression-like Behavior
Social Behavior
Learning and Memory
3.2. Biochemical INDICES
3.2.1. Salivary Amylase Activity and Blood Inflammatory Markers
3.2.2. Effects of Social Isolation and N-Pep-Zn Treatment on the Response of SHRs to Acute Immobilization Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CNS | central nervous system |
EPM | elevated plus maze |
HPA axis | hypothalamo-pituitary-adrenal axis |
OFT | open field test |
SHR | spontaneously hypertensive rat |
SHRiso | SHRs subjected to chronic social isolation |
SHRisoP | SHRs subjected to chronic social isolation and receiving N-Pep-Zn |
SHRsoc | SHRs housed in groups |
SPT | sucrose preference test |
SVD | small vessel disease |
VCI | vascular cognitive impairment |
VCID | vascular cognitive impairment dementia |
VD | vascular dementia |
References
- Shafqat, A.; Khan, S.; Omer, M.H.; Niaz, M.; Albalkhi, I.; AlKattan, K.; Yaqinuddin, A.; Tchkonia, T.; Kirkland, J.L.; Hashmi, S.K. Cellular senescence in brain aging and cognitive decline. Front. Aging Neurosci. 2023, 15, 1281581. [Google Scholar] [CrossRef] [PubMed]
- Brito, D.V.C.; Esteves, F.; Rajado, A.T.; Silva, N.; ALFA score Consortium; Araújo, I.; Bragança, J.; Castelo-Branco, P.; Nóbrega, C. Assessing cognitive decline in the aging brain: Lessons from rodent and human studies. NPJ Aging 2023, 9, 23. [Google Scholar] [CrossRef] [PubMed]
- de Souza-Talarico, J.N.; Marin, M.F.; Sindi, S.; Lupien, S.J. Effects of stress hormones on the brain and cognition: Evidence from normal to pathological aging. Dement. Neuropsychol. 2011, 5, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Lupien, S.J.; McEwen, B.S.; Gunnar, M.R.; Heim, C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 2009, 10, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, S.; Hamada, M.; Yamauchi, K.; Sakai, K.; Yamamoto, S. The role of vitamin E in T-cell differentiation and the decrease of cellular immunity with aging. J. Med. Investig. 1998, 45, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, S. The role of vitamin E in T-cell differentiation and the decrease of cellular immunity with aging. Biofactors. 1998, 7, 77–86. [Google Scholar] [CrossRef]
- Boluyt, M.O.; Bing, O.H. Matrix gene expression and decompensated heart failure: The aged SHR model. Cardiovasc. Res. 2000, 46, 239–249. [Google Scholar] [CrossRef]
- Zhou, X.; Frohlich, E.D. Analogy of cardiac and renal complications in essential hypertension and aged SHR or L-NAME/SHR. Med. Chem. 2007, 3, 61–65. [Google Scholar] [CrossRef]
- Amenta, F.; Di Tullio, M.A.; Tomassoni, D. Arterial hypertension and brain damage—Evidence from animal models (review). Clin. Exp. Hypertens. 2003, 25, 359–380. [Google Scholar] [CrossRef]
- Tayebati, S.K.; Tomassoni, D.; Amenta, F. Spontaneously hypertensive rat as a model of vascular brain disorder: Microanatomy, neurochemistry and behavior. J. Neurol. Sci. 2012, 322, 241–249. [Google Scholar] [CrossRef]
- Stepanichev, M.Y.; Mamedova, D.I.; Gulyaeva, N.V. Hippocampus under Pressure: Molecular Mechanisms of Development of Cognitive Impairments in SHRs. Biochemistry 2024, 89, 711–725. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Jiao, J.; Zhang, Y. Therapeutic approaches for improving cognitive function in the aging brain. Front. Neurosci. 2022, 16, 1060556. [Google Scholar] [CrossRef]
- Hamman, J.H.; Enslin, G.M.; Kotzé, A.F. Oral delivery of peptide drugs: Barriers and developments. BioDrugs 2005, 19, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Hutter-Paier, B.; Reininger-Gutmann, B.; Wronski, R.; Doppler, E.; Moessler, H. Long-term treatment of aged Long Evans rats with a dietary supplement containing neuroprotective peptides (N-PEP-12) to prevent brain aging: Effects of three months daily treatment by oral gavage. J. Med. Life. 2015, 8, 207–212. [Google Scholar] [PubMed]
- Li, Z.; Liu, Y.; Wei, R.; Yong, V.W.; Xue, M. The Important Role of Zinc in Neurological Diseases. Biomolecules 2022, 13, 28. [Google Scholar] [CrossRef] [PubMed]
- Haselgrübler, T.; Hutterer, C.; Winter, S.; Schartner, J.; Winkler, J. Method for Producing a Mammalian Brain Protein Hydrolysate. Patent EP-4114843, 13 July 2020. Available online: https://pubchem.ncbi.nlm.nih.gov/patent/EP-4114843-A1 (accessed on 27 August 2024).
- Scheggi, S.; De Montis, M.G.; Gambarana, C. Making Sense of Rodent Models of Anhedonia. Int. J. Neuropsychopharmacol. 2018, 21, 1049–1065. [Google Scholar] [CrossRef] [PubMed]
- Stepanichev, M.Y.; Tishkina, A.O.; Novikova, M.R.; Levshina, I.P.; Freiman, S.V.; Onufriev, M.V.; Levchenko, O.A.; Lazareva, N.A.; Gulyaeva, N.V. Anhedonia but not passive floating is an indicator of depressive-like behavior in two chronic stress paradigms. Acta Neurobiol. Exp. 2016, 76, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Kraeuter, A.K.; Guest, P.C.; Sarnyai, Z. The Open Field Test for Measuring Locomotor Activity and Anxiety-Like Behavior. Methods Mol. Biol. 2019, 1916, 99–103. [Google Scholar] [CrossRef]
- Sturman, O.; Germain, P.L.; Bohacek, J. Exploratory rearing: A context- and stress-sensitive behavior recorded in the open-field test. Stress. 2018, 21, 443–452. [Google Scholar] [CrossRef]
- Kraeuter, A.K.; Guest, P.C.; Sarnyai, Z. The Elevated Plus Maze Test for Measuring Anxiety-Like Behavior in Rodents. Methods Mol. Biol. 2019, 1916, 69–74. [Google Scholar] [CrossRef]
- Carobrez, A.P.; Bertoglio, L.J. Ethological and temporal analyses of anxiety-like behavior: The elevated plus-maze model 20 years on. Neurosci. Biobehav. Rev. 2005, 29, 1193–1205. [Google Scholar] [CrossRef] [PubMed]
- Gawel, K.; Gibula, E.; Marszalek-Grabska, M.; Filarowska, J.; Kotlinska, J.H. Assessment of spatial learning and memory in the Barnes maze task in rodents-methodological consideration. Naunyn Schmiedebergs Arch. Pharmacol. 2019, 392, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Guhad, F.A.; Hau, J. Salivary IgA as a marker of social stress in rats. Neurosci. Lett. 1996, 216, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Luiten, P.G.; de Jong, G.I.; Schuurman, T. Cerebrovascular, neuronal, and behavioral effects of long-term Ca2+ channel blockade in aging normotensive and hypertensive rat strains. Ann. N. Y. Acad. Sci. 1994, 747, 431–451. [Google Scholar] [CrossRef]
- Bing, O.H.; Conrad, C.H.; Boluyt, M.O.; Robinson, K.G.; Brooks, W.W. Studies of prevention, treatment and mechanisms of heart failure in the aging spontaneously hypertensive rat. Heart Fail Rev. 2002, 7, 71–88. [Google Scholar] [CrossRef]
- Gulyaeva, N.V. Glucocorticoids Orchestrate Adult Hippocampal Plasticity: Growth Points and Translational Aspects. Biochemistry 2023, 88, 565–589. [Google Scholar] [CrossRef]
- Podgorny, O.V.; Gulyaeva, N.V. Glucocorticoid-mediated mechanisms of hippocampal damage: Contribution of subgranular neurogenesis. J. Neurochem. 2021, 157, 370–392. [Google Scholar] [CrossRef]
- De Nicola, A.F.; Pietranera, L.; Beauquis, J.; Ferrini, M.G.; Saravia, F.E. Steroid protection in aging and age-associated diseases. Exp. Gerontol. 2009, 44, 34–40. [Google Scholar] [CrossRef]
- De Nicola, A.F.; Brocca, M.E.; Pietranera, L.; Garcia-Segura, L.M. Neuroprotection and sex steroid hormones: Evidence of estradiol-mediated protection in hypertensive encephalopathy. Mini Rev. Med. Chem. 2012, 12, 1081–1089. [Google Scholar] [CrossRef]
- Llorens, S.; Fernández, A.P.; Nava, E. Cardiovascular and renal alterations on the nitric oxide pathway in spontaneous hypertension and ageing. Clin. Hemorheol. Microcirc. 2007, 37, 149–156. [Google Scholar]
- Sutoo, D.; Akiyama, K. Regulation of brain function by exercise. Neurobiol. Dis. 2003, 13, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kimura-Ohba, S.; Thompson, J.; Rosenberg, G.A. Rodent Models of Vascular Cognitive Impairment. Transl. Stroke Res. 2016, 7, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Farkas, E.; De Jong, G.I.; Apró, E.; De Vos, R.A.; Steur, E.N.; Luiten, P.G. Similar ultrastructural breakdown of cerebrocortical capillaries in Alzheimer’s disease, Parkinson’s disease, and experimental hypertension. What is the functional link? Ann. N. Y. Acad. Sci. 2000, 903, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Lebedev, D.T.; Rukavishnikov, A.S.; Lupashko, E.V.; Khokhlyuk, E.V.; Saginbaev, U.R. The medical significance of loneliness and social isolation in old age (literature review). Adv. Gerotol. 2024, 37, 130–137. [Google Scholar]
- Leite, A.O.F.; Bento Torres Neto, J.; Dos Reis, R.R.; Sobral, L.L.; de Souza, A.C.P.; Trévia, N.; de Oliveira, R.B.; Lins, N.A.A.; Diniz, D.G.; Diniz, J.A.P.; et al. Unwanted Exacerbation of the Immune Response in Neurodegenerative Disease: A Time to Review the Impact. Front. Cell. Neurosci. 2021, 15, 749595. [Google Scholar] [CrossRef] [PubMed]
- Gulyaeva, N.V. Brain Mechanisms Involved in Post COVID Syndrome: A Narrative Review. Neurochem. J. 2024, 18, 397–405. [Google Scholar]
- Flores, I.O.; Treviño, S.; Díaz, A. Neurotrophic fragments as therapeutic alternatives to ameliorate brain aging. Neural Regen. Res. 2023, 18, 51–56. [Google Scholar] [CrossRef]
- Windisch, M.; Hutter-Paier, B.; Grygar, E.; Doppler, E.; Moessler, H. N-PEP-12—A novel peptide compound that protects cortical neurons in culture against different age and disease associated lesions. J. Neural Transm. 2005, 112, 1331–1343. [Google Scholar] [CrossRef]
- Hernández-Hernández, E.M.; Caporal Hernandez, K.; Vázquez-Roque, R.A.; Díaz, A.; de la Cruz, F.; Florán, B.; Flores, G. The neuropeptide-12 improves recognition memory and neuronal plasticity of the limbic system in old rats. Synapse. 2018, 72, e22036. [Google Scholar] [CrossRef]
- Flores, G.; Hernández-Cabrera, J.; Santamaria-Juarez, C.; Vázquez-Roque, R.; Monserrat-Hernández, E.; Gómez-Villalobos, M.; Flores-Hernández, J.; Atonal-Flores, F.; López-López, J. Chronic Administration of the Resveratrol or N-PEP-12 Ameliorates the Endothelial Dysfunction in Aging Rats. Pharmacol. Pharm. 2014, 5, 69–74. [Google Scholar] [CrossRef]
- Alvarez, X.A.; Corzo, L.; Laredo, M.; Sampedro, C.; Cacabelos, R.; Windisch, M.; Moessler, H.; Crook, T.H. Neuropeptide dietary supplement N-PEP-12 enhances cognitive function and activates brain bioelectrical activity in healthy elderly subjects. Methods Find. Exp. Clin. Pharmacol. 2005, 27, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Balea, M.; Birle, C.; Costin, C.; Marton, J.; Muresanu, I.A.; Jemna, N.; Popa, L.L.; Slavoaca, D.; Rosu, O.V.; Stan, A.; et al. Effects of N-Pep-12 dietary supplementation on neurorecovery after ischemic stroke. Neurol. Sci. 2021, 42, 2031–2037. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, A.; Ștefănescu, E.; Strilciuc, Ș.; Rafila, A.; Mureșanu, D. Correlating Eye-Tracking Fixation Metrics and Neuropsychological Assessment after Ischemic Stroke. Medicina 2023, 59, 1361. [Google Scholar] [CrossRef] [PubMed]
- Livinț Popa, L.; Chira, D.; Dăbală, V.; Hapca, E.; Popescu, B.O.; Dina, C.; Cherecheș, R.; Strilciuc, Ș.; Mureșanu, D.F. Quantitative EEG as a Biomarker in Evaluating Post-Stroke Depression. Diagnostics 2022, 13, 49. [Google Scholar] [CrossRef] [PubMed]
- Popa, L.L.; Iancu, M.; Livint, G.; Balea, M.; Dina, C.; Vacaras, V.; Vladescu, C.; Balanescu, L.; Buzoianu, A.D.; Strilciuc, S.; et al. N-Pep-12 supplementation after ischemic stroke positively impacts frequency domain QEEG. Neurol. Sci. 2022, 43, 1115–1125. [Google Scholar] [CrossRef]
- Crook, T.H.; Ferris, S.H.; Alvarez, X.A.; Laredo, M.; Moessler, H. Effects of N-PEP-12 on memory among older adults. Int. Clin. Psychopharmacol. 2005, 20, 97–100. [Google Scholar] [CrossRef]
- Picco, D.C.; Costa, L.F.; Delbem, A.C.; Sassaki, K.T.; Sumida, D.H.; Antoniali, C. Spontaneously hypertensive rat as experimental model of salivary hypofunction. Arch. Oral Biol. 2012, 57, 1320–1326. [Google Scholar] [CrossRef]
- Elias, G.P.; dos Santos, O.A.; Sassaki, K.T.; Delbem, A.C.; Antoniali, C. Dental mineralization and salivary activity are reduced in offspring of spontaneously hypertensive rats (SHR). J. Appl. Oral Sci. 2006, 14, 253–259. [Google Scholar] [CrossRef]
- Xia, N.; Li, H. Loneliness, Social Isolation, and Cardiovascular Health. Antioxid. Redox Signal. 2018, 28, 837–851. [Google Scholar] [CrossRef]
- Nater, U.M.; La Marca, R.; Florin, L.; Moses, A.; Langhans, W.; Koller, M.M.; Ehlert, U. Stress-induced changes in human salivary alpha-amylase activity—Associations with adrenergic activity. Psychoneuroendocrinology 2006, 31, 49–58. [Google Scholar] [CrossRef]
- Kort, W.J. The effect of chronic stress on the immune response. Adv. Neuroimmunol. 1994, 4, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Popovic, M.; Popovic, N.; Eric-Jovicic, M.; Jovanova-Nesic, K. Immune Responses in Nucleus Basalis Magnocellularis-Lesioned Rats Exposed to Chronic Isolation Stress. Int. J. Neurosci. 1999, 100, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Gądek-Michalska, A.; Tadeusz, J.; Bugajski, A.; Bugajski, J. Chronic Isolation Stress Affects Subsequent Crowding Stress-Induced Brain Nitric Oxide Synthase (NOS) Isoforms and Hypothalamic-Pituitary-Adrenal (HPA) Axis Responses. Neurotox. Res. 2019, 36, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Gavrilov, V.V.; Onufriev, M.V.; Moiseeva, Y.V.; Alexandrov, Y.I.; Gulyaeva, N.V. Chronic Social Isolation Stress and Crowding in Rats Have Different Effects on Learning an Operant Behavior and the State of the Hypothalamo- Hypophyseal-Adrenocortical System. Neurosci. Behav. Physiol. 2022, 52, 698–704. [Google Scholar] [CrossRef]
- Szabo, S.; Yoshida, M.; Filakovszky, J.; Juhasz, G. “Stress” is 80 Years Old: From Hans Selye Original Paper in 1936 to Recent Advances in GI Ulceration. Curr. Pharm. Des. 2017, 23, 4029–4041. [Google Scholar] [CrossRef]
- Varga, I.; Mikusova, R.; Pospisilova, V.; Galfiova, P.; Adamkov, M.; Polak, S.; Galbavy, S. Morphologic heterogeneity of human thymic nonlymphocytic cells. Neuro Endocrinol. Lett. 2009, 30, 275–283. [Google Scholar]
- Gruver, A.L.; Sempowski, G.D. Cytokines, leptin, and stress-induced thymic atrophy. J. Leukoc. Biol. 2008, 84, 915–923. [Google Scholar] [CrossRef]
- Gray, D.H.; Seach, N.; Ueno, T.; Milton, M.K.; Liston, A.; Lew, A.M.; Goodnow, C.C.; Boyd, R.L. Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood. 2006, 108, 3777–3785. [Google Scholar] [CrossRef]
- Shissler, S.C.; Bhandoola, A. ThymUS in times of stress. Nat. Immunol. 2021, 22, 545–549. [Google Scholar] [CrossRef]
- Warren, A.; Nyavor, Y.; Beguelin, A.; Frame, L.A. Dangers of the chronic stress response in the context of the microbiota-gut-immune-brain axis and mental health: A narrative review. Front. Immunol. 2024, 15, 1365871. [Google Scholar] [CrossRef]
- Zefferino, R.; Di Gioia, S.; Conese, M. Molecular links between endocrine, nervous and immune system during chronic stress. Brain Behav. 2021, 11, e01960. [Google Scholar] [CrossRef] [PubMed]
- Freeman, H.J. Clinical relevance of intestinal peptide uptake. World J. Gastrointest. Pharmacol. Ther. 2015, 6, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Ruseska, I.; Zimmer, A. Internalization mechanisms of cell-penetrating peptides. Beilstein J. Nanotechnol. 2020, 11, 101–123. [Google Scholar] [CrossRef] [PubMed]
- Abeer, M.M.; Trajkovic, S.; Brayden, D.J. Measuring the oral bioavailability of protein hydrolysates derived from food sources: A critical review of current bioassays. Biomed. Pharmacother. 2021, 144, 112275. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Matsui, T. Intestinal absorption of small peptides: A review. Int. J. Food Sci. Technol. 2019, 54, 1942–1948. [Google Scholar] [CrossRef]
- Rejdak, K.; Sienkiewicz-Jarosz, H.; Bienkowski, P.; Alvarez, A. Modulation of neurotrophic factors in the treatment of dementia, stroke and TBI: Effects of Cerebrolysin. Med. Res. Rev. 2023, 43, 1668–1700. [Google Scholar] [CrossRef]
Group | χ2 | df | n | p-Value |
---|---|---|---|---|
SHRsoc | 16.61 | 4 | 16 | 0.00230 |
SHRisoC | 10.08 | 4 | 11 | 0.03906 |
SHRisoP | 18.42 | 4 | 16 | 0.00102 |
Group | Training Days | |||
---|---|---|---|---|
1–2 | 1–3 | 1–4 | 1–5 | |
SHRsoc | Z(15) = 1.65; p = 0.098 | Z(15) = 2.25; p = 0.024 | Z(15) = 3.26; p = 0.0011 | Z(15) = 3.18; p = 0.0015 |
SHRisoC | Z(10) = 1.02; p = 0.31 | Z(10) = 2.40; p = 0.016 | Z(10) = 2.80; p = 0.0051 | Z(10) = 1.60; p = 0.11 |
SHRisoP | Z(15) = 2.17; p = 0.030 | Z(15) = 2.95; p = 0.0032 | Z(15) = 2.84; p = 0.0044 | Z(15) = 2.90; p = 0.0038 |
Group | χ2 | df | n | p-Value |
---|---|---|---|---|
SHRsoc | 3.38 | 2 | 16 | 0.185 |
SHRisoC | 2.84 | 2 | 11 | 0.242 |
SHRisoP | 3.33 | 2 | 16 | 0.189 |
Group | Training Days | |
---|---|---|
7–8 | 7–9 | |
SHRsoc | Z(15) = 2.40; p = 0.016 | Z(15) = 1.76; p = 0.079 |
SHRisoC | Z(10) = 1.94; p = 0.053 | Z(10) = 1.96; p = 0.050 |
SHRisoP | Z(15) = 1.59; p = 0.11 | Z(15) = 1.48; p = 0.14 |
Group | χ2 | df | n | p-Value |
---|---|---|---|---|
Acquisition | ||||
SHRsoc | 22.033 | 4 | 16 | 0.0002 |
SHRisoC | 3.74 | 4 | 11 | 0.442 |
SHRisoP | 11.61 | 4 | 16 | 0.020 |
Reversal | ||||
SHRsoc | 0.95 | 2 | 16 | 0.622 |
SHRisoC | 8.061 | 2 | 11 | 0.0178 |
SHRisoP | 2.15 | 2 | 16 | 0.341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepanichev, M.Y.; Onufriev, M.V.; Moiseeva, Y.V.; Nedogreeva, O.A.; Novikova, M.R.; Kostryukov, P.A.; Lazareva, N.A.; Manolova, A.O.; Mamedova, D.I.; Ovchinnikova, V.O.; et al. N-Pep-Zn Improves Cognitive Functions and Acute Stress Response Affected by Chronic Social Isolation in Aged Spontaneously Hypertensive Rats (SHRs). Biomedicines 2024, 12, 2261. https://doi.org/10.3390/biomedicines12102261
Stepanichev MY, Onufriev MV, Moiseeva YV, Nedogreeva OA, Novikova MR, Kostryukov PA, Lazareva NA, Manolova AO, Mamedova DI, Ovchinnikova VO, et al. N-Pep-Zn Improves Cognitive Functions and Acute Stress Response Affected by Chronic Social Isolation in Aged Spontaneously Hypertensive Rats (SHRs). Biomedicines. 2024; 12(10):2261. https://doi.org/10.3390/biomedicines12102261
Chicago/Turabian StyleStepanichev, Mikhail Y., Mikhail V. Onufriev, Yulia V. Moiseeva, Olga A. Nedogreeva, Margarita R. Novikova, Pavel A. Kostryukov, Natalia A. Lazareva, Anna O. Manolova, Diana I. Mamedova, Victoria O. Ovchinnikova, and et al. 2024. "N-Pep-Zn Improves Cognitive Functions and Acute Stress Response Affected by Chronic Social Isolation in Aged Spontaneously Hypertensive Rats (SHRs)" Biomedicines 12, no. 10: 2261. https://doi.org/10.3390/biomedicines12102261
APA StyleStepanichev, M. Y., Onufriev, M. V., Moiseeva, Y. V., Nedogreeva, O. A., Novikova, M. R., Kostryukov, P. A., Lazareva, N. A., Manolova, A. O., Mamedova, D. I., Ovchinnikova, V. O., Kastberger, B., Winter, S., & Gulyaeva, N. V. (2024). N-Pep-Zn Improves Cognitive Functions and Acute Stress Response Affected by Chronic Social Isolation in Aged Spontaneously Hypertensive Rats (SHRs). Biomedicines, 12(10), 2261. https://doi.org/10.3390/biomedicines12102261