Iota-Carrageenan from Marine Alga Solieria filiformis Prevents Naproxen-Induced Gastrointestinal Injury via Its Antioxidant and Anti-Inflammatory Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drugs and Reagents
2.2. Marine Alga and Iota-Carrageenan
2.3. Animals
2.4. Experimental Protocols
2.5. Macroscopic Injury
2.6. NP-SH Levels
2.7. MDA Concentration
2.8. MPO Activity
2.9. Cytokine Levels
2.10. Gastric Secretion
2.11. Gastric Emptying and Gastrointestinal Transit
2.12. Acute Toxicity
2.12.1. Macroscopic and Histological Analyses
2.12.2. Biochemical Analysis
2.13. Statistical Analysis
3. Results
3.1. IC-Sf Prevents Naproxen-Induced Gastrointestinal Injury
3.2. IC-Sf Prevents Naproxen-Induced Gastrointestinal Oxidative Imbalance
3.3. IC-Sf Reduces Naproxen-Induced Gastrointestinal Inflammatory Response
3.4. IC-Sf Does Not Alter Gastric Secretion, Gastric Emptying, or Gastrointestinal Transit
3.5. IC-Sf Does Not Cause Acute Toxic Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, S.-Y.; Huang, X.; Cheong, K.-L. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities. Mar. Drugs 2017, 15, 388. [Google Scholar] [CrossRef] [PubMed]
- Maliki, I.M.; Misson, M.; Teoh, P.L.; Rodrigues, K.F.; Yong, W.T.L. Production of Lectins from Marine Algae: Current Status, Challenges, and Opportunities for Non-Destructive Extraction. Mar. Drugs 2022, 20, 102. [Google Scholar] [CrossRef] [PubMed]
- Gager, L.; Lalegerie, F.; Connan, S.; Stiger-Pouvreau, V. Chaper 11. Marine Algal Derived Phenolic Compounds and Their Biological Activities for Medicinal and Cosmetic Applications. In Recent Advances in Micro and Macroalgal Processing; Wiley-Blackwell: Hoboken, NJ, USA, 2021; pp. 278–334. ISBN 9781119542650. [Google Scholar]
- Jiao, G.; Yu, G.; Zhang, J.; Ewart, H.S. Chemical Structures and Bioactivities of Sulfated Polysaccharides from Marine Algae. Mar. Drugs 2011, 9, 196–223. [Google Scholar] [CrossRef] [PubMed]
- Kalasariya, H.S.; Yadav, V.K.; Yadav, K.K.; Tirth, V.; Algahtani, A.; Islam, S.; Gupta, N.; Jeon, B.-H. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021, 26, 5313. [Google Scholar] [CrossRef]
- Rodrigues, D.; Freitas, A.C.; Pereira, L.; Rocha-Santos, T.A.P.; Vasconcelos, M.W.; Roriz, M.; Rodríguez-Alcalá, L.M.; Gomes, A.M.P.; Duarte, A.C. Chemical Composition of Red, Brown and Green Macroalgae from Buarcos Bay in Central West Coast of Portugal. Food Chem. 2015, 183, 197–207. [Google Scholar] [CrossRef]
- Cao, S.; He, X.; Qin, L.; He, M.; Yang, Y.; Liu, Z.; Mao, W. Anticoagulant and Antithrombotic Properties in Vitro and in Vivo of a Novel Sulfated Polysaccharide from Marine Green Alga Monostroma nitidum. Mar. Drugs 2019, 17, 247. [Google Scholar] [CrossRef]
- Tiasto, V.A.; Goncharov, N.V.; Romanishin, A.O.; Zhidkov, M.E.; Khotimchenko, Y.S. κ- and λ-Carrageenans from Marine Alga Chondrus armatus Exhibit Anticancer In Vitro Activity in Human Gastrointestinal Cancers Models. Mar. Drugs 2022, 20, 741. [Google Scholar] [CrossRef]
- Araújo, I.W.F.; Rodrigues, J.A.G.; Vanderlei, E.S.O.; Paula, G.A.; Lima, T.D.B.; Benevides, N.M.B. Iota-Carragenanas Da Rodofícea Solieria filiformis e Seus Efeitos Na Inflamação e Coagulação. Acta Sci. Technol. 2012, 34, 127–135. [Google Scholar] [CrossRef]
- Sousa, W.M.; Silva, R.O.; Bezerra, F.F.; Bingana, R.D.; Barros, F.C.N.; Costa, L.E.C.; Sombra, V.G.; Soares, P.M.G.; Feitosa, J.P.A.; Paula, R.C.M.; et al. Sulfated Polysaccharide Fraction from Marine Algae Solieria filiformis: Structural Characterization, Gastroprotective and Antioxidant Effects. Carbohydr. Polym. 2016, 152, 140–148. [Google Scholar] [CrossRef]
- Udayakumar, S.; Girigoswami, A.; Girigoswami, K. Biological Activities of Carrageenan from Red Algae: A Mini Review. Curr. Pharmacol. Rep. 2024, 10, 12–26. [Google Scholar] [CrossRef]
- Abreu, T.M.; Ribeiro, N.A.; Chaves, H.V.; Jorge, R.J.B.; Bezerra, M.M.; Monteiro, H.S.A.; Vasconcelos, I.M.; Mota, É.F.; Benevides, N.M.B. Antinociceptive and Anti-Inflammatory Activities of the Lectin from Marine Red Alga Solieria filiformis. Planta Med. 2016, 82, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Chaves, R.P.; Santos, A.K.B.; Andrade, A.L.; Pinheiro, A.A.; Silva, J.M.S.; Silva, F.M.S.; Sousa, J.P.; Barroso Neto, I.L.; Bezerra, E.H.S.; Abreu, J.O.; et al. Structural Study and Antimicrobial and Wound Healing Effects of Lectin from Solieria filiformis (Kützing) P.W.Gabrielson. Biochimie 2023, 214, 61–76. [Google Scholar] [CrossRef] [PubMed]
- Abreu, T.M.; Monteiro, V.S.; Martins, A.B.S.; Teles, F.B.; Rivanor, R.L.C.; Mota, É.F.; Macedo, D.S.; Vasconcelos, S.M.M.; Júnior, J.E.R.H.; Benevides, N.M.B. Involvement of the Dopaminergic System in the Antidepressant-like Effect of the Lectin Isolated from the Red Marine Alga Solieria filiformis in Mice. Int. J. Biol. Macromol. 2018, 111, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Holanda, M.L.; Melo, V.M.M.; Silva, L.M.C.M.; Amorim, R.C.N.; Pereira, M.G.; Benevides, N.M.B. Differential Activity of a Lectin from Solieria filiformis against Human Pathogenic Bacteria. Braz. J. Med. Biol. Res. 2005, 38, 1769–1773. [Google Scholar] [CrossRef] [PubMed]
- Chaves, R.P.; Silva, S.R.; Nascimento Neto, L.G.; Carneiro, R.F.; Silva, A.L.C.; Sampaio, A.H.; Sousa, B.L.; Cabral, M.G.; Videira, P.A.; Teixeira, E.H.; et al. Structural Characterization of Two Isolectins from the Marine Red Alga Solieria filiformis (Kützing) P.W. Gabrielson and Their Anticancer Effect on MCF-7 Breast Cancer Cells. Int. J. Biol. Macromol. 2018, 107, 1320–1329. [Google Scholar] [CrossRef]
- Ana, P.; Nathalie, B.; Gilles, B.; Daniel, R.; Tomás, M.-S.; Yolanda, F.-P. Anti-Herpes Simplex Virus (HSV-1) Activity and Antioxidant Capacity of Carrageenan-Rich Enzymatic Extracts from Solieria filiformis (Gigartinales, Rhodophyta). Int. J. Biol. Macromol. 2021, 168, 322–330. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kwon, H.J.; Kim, B.W. Protective Effect of 4-(3,4-Dihydroxyphenyl)-3-Buten-2-One from Phellinus Linteus on Naproxen-Induced Gastric Antral Ulcers in Rats. J. Microbiol. Biotechnol. 2016, 26, 823–828. [Google Scholar] [CrossRef]
- Diniz, P.B.F.; Ribeiro, A.R.S.; Estevam, C.S.; Bani, C.C.; Thomazzi, S.M. Possible Mechanisms of Action of Caesalpinia pyramidalis against Ethanol-Induced Gastric Damage. J. Ethnopharmacol. 2015, 168, 79–86. [Google Scholar] [CrossRef]
- Repetto, M.G.; Llesuy, S.F. Antioxidant Properties of Natural Compounds Used in Popular Medicine for Gastric Ulcers. Braz. J. Med. Biol. Res. 2002, 35, 523–534. [Google Scholar] [CrossRef]
- Gomes, C.C.F.; Oliveira, L.S.; Rodrigues, D.C.; Ribeiro, P.R.V.; Canuto, K.M.; Duarte, A.S.G.; Eça, K.S.; Figueiredo, R.W. Evidence for Antioxidant and Anti-Inflammatory Potential of Mango (Mangifera indica L.) in Naproxen-Induced Gastric Lesions in Rat. J. Food Biochem. 2022, 46, e13880. [Google Scholar] [CrossRef]
- Farias, W.R.; Valente, A.P.; Pereira, M.S.; Mourão, P.A. Structure and Anticoagulant Activity of Sulfated Galactans. Isolation of a Unique Sulfated Galactan from the Red Algae Botryocladia occidentalis and Comparison of Its Anticoagulant Action with That of Sulfated Galactans from Invertebrates. J. Biol. Chem. 2000, 275, 29299–29307. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Kim, Y.-S.; Song, G.-G.; Park, J.-J.; Chang, H.-I. Protective Effect of Astaxanthin on Naproxen-Induced Gastric Antral Ulceration in Rats. Eur. J. Pharmacol. 2005, 514, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.P.; Beck, P.L.; Herridge, M.S.; Depew, W.T.; Szewczuk, M.R.; Wallace, J.L. Hapten-Induced Model of Chronic Inflammation and Ulceration in the Rat Colon. Gastroenterology 1989, 96, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Sedlak, J.; Lindsay, R.H. Estimation of Total, Protein-Bound, and Nonprotein Sulfhydryl Groups in Tissue with Ellman’s Reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Mihara, M.; Uchiyama, M. Determination of Malonaldehyde Precursor in Tissues by Thiobarbituric Acid Test. Anal. Biochem. 1978, 86, 271–278. [Google Scholar] [CrossRef]
- Bradley, P.P.; Priebat, D.A.; Christensen, R.D.; Rothstein, G. Measurement of Cutaneous Inflammation: Estimation of Neutrophil Content with an Enzyme Marker. J. Investig. Dermatol. 1982, 78, 206–209. [Google Scholar] [CrossRef]
- Cunha, F.Q.; Boukili, M.A.; da Motta, J.I.; Vargaftig, B.B.; Ferreira, S.H. Blockade by Fenspiride of Endotoxin-Induced Neutrophil Migration in the Rat. Eur. J. Pharmacol. 1993, 238, 47–52. [Google Scholar] [CrossRef]
- Visscher, F.E.; Seay, P.H.; Tazelaar, A.P.; Veldkamp, W.; Vander Brook, M.J. Pharmacology of Pamine Bromide. J. Pharmacol. Exp. Ther. 1954, 110, 188–204. [Google Scholar]
- Reynell, P.C.; Spray, G.H. The Simultaneous Measurement of Absorption and Transit in the Gastro-Intestinal Tract of the Rat. J. Physiol. 1956, 131, 452–462. [Google Scholar] [CrossRef]
- Miller, M.S.; Galligan, J.J.; Burks, T.F. Accurate Measurement of Intestinal Transit in the Rat. J. Pharmacol. Methods 1981, 6, 211–217. [Google Scholar] [CrossRef]
- OECD. Test No. 423: Acute Oral Toxicity—Acute Toxic Class Method; OECD Guidelines for the Testing of Chemicals, Section 4; OECD: Paris, France, 2002. [Google Scholar] [CrossRef]
- Malone, M.H.; Robichaud, R.C. A Hippocratic Screen for Pure or Crude Drug Materials. Lloydia 1962, 25, 320–332. [Google Scholar]
- Jothy, S.L.; Zakaria, Z.; Chen, Y.; Lau, Y.L.; Latha, L.Y.; Sasidharan, S. Acute Oral Toxicity of Methanolic Seed Extract of Cassia fistula in Mice. Molecules 2011, 16, 5268–5282. [Google Scholar] [CrossRef] [PubMed]
- An, G.-M.; Jung, T.-H.; Han, K.-S. Protective Effects on Neuronal SH-SY5Y Cells and Antioxidant Activity of Enzymatic Hydrolyzate from Silkworms Fed the Leaves of Cudrania tricuspidata. Appl. Sci. 2024, 14, 1733. [Google Scholar] [CrossRef]
- Araújo, I.W.F.; Vanderlei, E.D.S.O.; Rodrigues, J.A.G.; Coura, C.O.; Quinderé, A.L.G.; Fontes, B.P.; Queiroz, I.N.L.; Jorge, R.J.B.; Bezerra, M.M.; Silva, A.A.R.; et al. Effects of a Sulfated Polysaccharide Isolated from the Red Seaweed Solieria filiformis on Models of Nociception and Inflammation. Carbohydr. Polym. 2011, 86, 1207–1215. [Google Scholar] [CrossRef]
- Araújo, I.W.F.; Chaves, H.V.; Pachêco, J.M.; Val, D.R.; Vieira, L.V.; Santos, R.; Freitas, R.S.; Rivanor, R.L.; Monteiro, V.S.; Clemente-Napimoga, J.T.; et al. Role of Central Opioid on the Antinociceptive Effect of Sulfated Polysaccharide from the Red Seaweed Solieria filiformis in Induced Temporomandibular Joint Pain. Int. Immunopharmacol. 2017, 44, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Assreuy, A.M.S.; Pontes, G.C.; Rodrigues, N.V.F.C.; Gomes, D.M.; Xavier, P.A.; Araujo, G.S.; Sampaio, A.H.; Cavada, B.S.; Pereira, M.G.; Farias, W.R.L. Vascular Effects of a Sulfated Polysaccharide from the Red Marine Alga Solieria filiformis. Nat. Prod. Commun. 2010, 5, 1267–1272. [Google Scholar]
- Tanaka, A.; Araki, H.; Komoike, Y.; Hase, S.; Takeuchi, K. Inhibition of Both COX-1 and COX-2 Is Required for Development of Gastric Damage in Response to Nonsteroidal Antiinflammatory Drugs. J. Physiol. Paris. 2001, 95, 21–27. [Google Scholar] [CrossRef]
- Silva, R.O.; Santana, A.P.M.; Carvalho, N.S.; Bezerra, T.S.; Oliveira, C.B.; Damasceno, S.R.B.; Chaves, L.S.; Freitas, A.L.P.; Soares, P.M.G.; Souza, M.H.L.P.; et al. A Sulfated-Polysaccharide Fraction from Seaweed Gracilaria birdiae Prevents Naproxen-Induced Gastrointestinal Damage in Rats. Mar. Drugs 2012, 10, 2618–2633. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases. Physiol. Rev. 2014, 94, 329–354. [Google Scholar] [CrossRef]
- Pereira Júnior, L.C.; Nascimento, F.G.; Oliveira, S.R.B.D.; Lima, G.C.; Chagas, F.D.S.; Sombra, V.G.; Feitosa, J.P.A.; Soriano, E.M.; Souza, M.H.L.P.; Zocolo, G.J.; et al. Protective Effect against Gastric Mucosa Injury of a Sulfated Agaran from Acanthophora spicifera. Carbohydr. Polym. 2021, 261, 117829. [Google Scholar] [CrossRef]
- Silva, R.O.; Lucetti, L.T.; Wong, D.V.T.; Aragão, K.S.; Junior, E.M.A.; Soares, P.M.G.; Barbosa, A.L.R.; Ribeiro, R.A.; Souza, M.H.L.P.; Medeiros, J.-V.R. Alendronate Induces Gastric Damage by Reducing Nitric Oxide Synthase Expression and NO/CGMP/K(ATP) Signaling Pathway. Nitric Oxide 2014, 40, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Brito, T.V.; Neto, J.P.R.P.; Prudêncio, R.S.; Batista, J.A.; Júnior, J.S.C.; Silva, R.O.; Franco, A.X.; Aragão, K.S.; Soares, P.M.G.; Souza, M.H.L.P.; et al. Sulfated-Polysaccharide Fraction Extracted from Red Algae Gracilaria birdiae Ameliorates Trinitrobenzenesulfonic Acid-Induced Colitis in Rats. J. Pharm. Pharmacol. 2014, 66, 1161–1170. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Wu, D.; Li, L.; Li, J.; Xu, Y. TBHQ Attenuates Ferroptosis against 5-Fluorouracil-Induced Intestinal Epithelial Cell Injury and Intestinal Mucositis via Activation of Nrf2. Cell. Mol. Biol. Lett. 2021, 26, 48. [Google Scholar] [CrossRef]
- Song, E.; Su, C.; Fu, J.; Xia, X.; Yang, S.; Xiao, C.; Lu, B.; Chen, H.; Sun, Z.; Wu, S.; et al. Selenium Supplementation Shows Protective Effects against Patulin-Induced Brain Damage in Mice via Increases in GSH-Related Enzyme Activity and Expression. Life Sci. 2014, 109, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, J.L.S.; Rodrigues, L.H.M.; Silva, L.D.; Santos, V.M.R.; Gomes, D.A.; Chagas, F.D.S.; Chaves, L.S.; Melo, M.R.S.; Freitas, A.L.P.; Souza, M.H.L.P.; et al. Sulfated Iota-Carrageenan from Marine Alga Agardhiella ramosissima Prevents Gastric Injury in Rodents via Its Antioxidant Properties. Algal Res. 2024, 77, 103371. [Google Scholar] [CrossRef]
- Wallace, J.L.; Keenan, C.M.; Granger, D.N. Gastric Ulceration Induced by Nonsteroidal Anti-Inflammatory Drugs Is a Neutrophil-Dependent Process. Am. J. Physiol. 1990, 259, G462–G467. [Google Scholar] [CrossRef]
- Wallace, J.L. Pathogenesis of NSAID-Induced Gastroduodenal Mucosal Injury. Best Pract. Res. Clin. Gastroenterol. 2001, 15, 691–703. [Google Scholar] [CrossRef]
- Chen, S.; Chen, H.; Du, Q.; Shen, J. Targeting Myeloperoxidase (MPO) Mediated Oxidative Stress and Inflammation for Reducing Brain Ischemia Injury: Potential Application of Natural Compounds. Front. Physiol. 2020, 11, 433. [Google Scholar] [CrossRef]
- Feng, Y.; Wassie, T.; Gan, R.; Wu, X. Structural Characteristics and Immunomodulatory Effects of Sulfated Polysaccharides Derived from Marine Algae. Crit. Rev. Food Sci. Nutr. 2023, 63, 7180–7196. [Google Scholar] [CrossRef]
- Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory Responses and Inflammation-Associated Diseases in Organs. Oncotarget 2018, 9, 7204–7218. [Google Scholar] [CrossRef]
- Kolaczkowska, E.; Kubes, P. Neutrophil Recruitment and Function in Health and Inflammation. Nat. Rev. Immunol. 2013, 13, 159–175. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Ren, D.; Song, Y.; Wu, L.; He, Y.; Peng, Y.; Zhou, H.; Liu, S.; Cong, H.; Zhang, Z.; et al. Gastric Protective Activities of Fucoidan from Brown Alga Kjellmaniella crassifolia through the NF-ΚB Signaling Pathway. Int. J. Biol. Macromol. 2020, 149, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Engevik, A.C.; Kaji, I.; Goldenring, J.R. The Physiology of the Gastric Parietal Cell. Physiol. Rev. 2020, 100, 573–602. [Google Scholar] [CrossRef] [PubMed]
- Beiranvand, M.; Bahramikia, S. Ameliorating and Protective Effects Mesalazine on Ethanol-Induced Gastric Ulcers in Experimental Rats. Eur. J. Pharmacol. 2020, 888, 173573. [Google Scholar] [CrossRef] [PubMed]
- Masuy, I.; Van Oudenhove, L.; Tack, J. Review Article: Treatment Options for Functional Dyspepsia. Aliment. Pharmacol. Ther. 2019, 49, 1134–1172. [Google Scholar] [CrossRef]
- Davis, T.A.; Miller, A.; Hachem, C.; Velez, C.; Patel, D. The Current State of Gastrointestinal Motility Evaluation in Cystic Fibrosis: A Comprehensive Literature Review. Transl. Gastroenterol. Hepatol. 2024, 9, 10. [Google Scholar] [CrossRef]
- Cruz, L.F.; Figueiredo, G.F.; Pedro, L.P.; Amorin, Y.M.; Andrade, J.T.; Passos, T.F.; Rodrigues, F.F.; Souza, I.L.A.; Gonçalves, T.P.R.; Lima, L.A.R.S.; et al. Umbelliferone (7-Hydroxycoumarin): A Non-Toxic Antidiarrheal and Antiulcerogenic Coumarin. Biomed. Pharmacother. 2020, 129, 110432. [Google Scholar] [CrossRef]
- Schmidt, B.M.; Ilic, N.; Poulev, A.; Raskin, I. Toxicological Evaluation of a Chicory Root Extract. Food Chem. Toxicol. 2007, 45, 1131–1139. [Google Scholar] [CrossRef]
- Al-Afifi, N.A.; Alabsi, A.M.; Bakri, M.M.; Ramanathan, A. Acute and Sub-Acute Oral Toxicity of Dracaena cinnabari Resin Methanol Extract in Rats. BMC Complement. Altern. Med. 2018, 18, 50. [Google Scholar] [CrossRef]
- Faria, W.C.S.; Silva, A.A.; Veggi, N.; Kawashita, N.H.; Lemes, S.A.F.; Barros, W.M.; Cardoso, E.C.; Converti, A.; Moura, W.M.; Bragagnolo, N. Acute and Subacute Oral Toxicity Assessment of Dry Encapsulated and Non-Encapsulated Green Coffee Fruit Extracts. J. Food Drug Anal. 2020, 28, 337–355. [Google Scholar] [CrossRef]
- Abdalla, Y.O.A.; Nyamathulla, S.; Shamsuddin, N.; Arshad, N.M.; Mun, K.S.; Awang, K.; Nagoor, N.H. Acute and 28-Day Sub-Acute Intravenous Toxicity Studies of 1′-S-1′-Acetoxychavicol Acetate in Rats. Toxicol. Appl. Pharmacol. 2018, 356, 204–213. [Google Scholar] [CrossRef]
- Tayeb, W.; Nakbi, A.; Trabelsi, M.; Miled, A.; Hammami, M. Biochemical and Histological Evaluation of Kidney Damage after Sub-Acute Exposure to 2,4-Dichlorophenoxyacetic Herbicide in Rats: Involvement of Oxidative Stress. Toxicol. Mech. Methods 2012, 22, 696–704. [Google Scholar] [CrossRef]
Groups | Gastric Secretion | Motility | ||||
---|---|---|---|---|---|---|
Volume (µL) | Total Acidity (Eq[H+]/mL/4 h) | pH | Pepsin Activity (µM Tyrosine/4 h) | Gastric Emptying (% Retention) | Gastrointestinal Transit | |
Saline | 109.8 ± 20.3 a | 0.034 ± 0.002 a | 1.47 ± 0.02 b | 587.5 ± 19.6 a | 25.9 ± 3.0 b | 2.55 ± 0.06 a |
IC-Sf | 128.0 ± 25.5 a | 0.037 ± 0.002 a | 1.42 ± 0.02 b | 622.9 ± 20.4 a | 24.0 ± 2.2 b | 2.48 ± 0.05 a |
Omeprazole | 52.7 ± 2.3 b | 0.021 ± 0.005 b | 1.71 ± 0.09 a | 531.7 ± 13.9 b | 0 | 0 |
Atropine | 0 | 0 | 0 | 0 | 36.8 ± 2.8 a | 1.87 ± 0.07 b |
Parameter | Saline | IC-Sf |
---|---|---|
Albumin (g/dL) | 2.1 ± 0.2 | 2.2 ± 0.1 |
Glucose (mg/dL) | 111.0 ± 3.2 | 117.4 ± 8.9 |
Total Cholesterol (mg/dL) | 123.5 ± 8.0 | 120.7 ± 5.7 |
ALT (U/L) | 45.6 ± 4.0 | 44.1 ± 2.4 |
AST (U/L) | 85.5 ± 3.5 | 86.3 ± 4.4 |
Alkaline Phosphatase (U/L) | 57.5 ± 5.8 | 59.6 ± 3.6 |
Urea (mg/dL) | 53.4 ± 6.2 | 50.0 ± 3.2 |
Creatinine (mg/dL) | 0.30 ± 0.03 | 0.30 ± 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinheiro, J.L.S.; Sousa, W.M.; Rodrigues, L.H.M.; Bezerra, F.F.; Cunha, C.L.O.A.; Santos, V.M.R.; Oliveira, S.R.B.D.; Bingana, R.D.; Barbosa, A.L.R.; Souza, M.H.L.P.; et al. Iota-Carrageenan from Marine Alga Solieria filiformis Prevents Naproxen-Induced Gastrointestinal Injury via Its Antioxidant and Anti-Inflammatory Activities. Biomedicines 2024, 12, 2574. https://doi.org/10.3390/biomedicines12112574
Pinheiro JLS, Sousa WM, Rodrigues LHM, Bezerra FF, Cunha CLOA, Santos VMR, Oliveira SRBD, Bingana RD, Barbosa ALR, Souza MHLP, et al. Iota-Carrageenan from Marine Alga Solieria filiformis Prevents Naproxen-Induced Gastrointestinal Injury via Its Antioxidant and Anti-Inflammatory Activities. Biomedicines. 2024; 12(11):2574. https://doi.org/10.3390/biomedicines12112574
Chicago/Turabian StylePinheiro, João L. S., Willer M. Sousa, Lucas H. M. Rodrigues, Francisco F. Bezerra, Cecília L. O. A. Cunha, Victória M. R. Santos, Samara R. B. D. Oliveira, Rudy D. Bingana, André Luiz. R. Barbosa, Marcellus H. L. P. Souza, and et al. 2024. "Iota-Carrageenan from Marine Alga Solieria filiformis Prevents Naproxen-Induced Gastrointestinal Injury via Its Antioxidant and Anti-Inflammatory Activities" Biomedicines 12, no. 11: 2574. https://doi.org/10.3390/biomedicines12112574
APA StylePinheiro, J. L. S., Sousa, W. M., Rodrigues, L. H. M., Bezerra, F. F., Cunha, C. L. O. A., Santos, V. M. R., Oliveira, S. R. B. D., Bingana, R. D., Barbosa, A. L. R., Souza, M. H. L. P., Freitas, A. L. P., & Damasceno, R. O. S. (2024). Iota-Carrageenan from Marine Alga Solieria filiformis Prevents Naproxen-Induced Gastrointestinal Injury via Its Antioxidant and Anti-Inflammatory Activities. Biomedicines, 12(11), 2574. https://doi.org/10.3390/biomedicines12112574