Cardiotoxic and Cardioprotective Effects of Methylene Blue in the Animal Model of Cardiac Ischemia and Reperfusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Surgical Protocol for Induction of Cardiac Ischemia and Reperfusion (CIR)
2.3. Biochemical Analusis of Serum Biomarkers of Cardiac Injury
2.4. Biochemical Analysis of Cardiac Lipid Hydroperoxide
2.5. Histopathological Analysis of Left Ventricle Miocardial Tissue
2.6. Statistical Analysis
3. Results
3.1. Incidence of VA, AVB, and LET
3.2. Histopathological Analysis of the Myocardium
3.3. Serum Concentration of Total Creatine Kinase (CK) and Creatine Kinase-MB (CK-MB)
3.4. Cardiac Concentration of Lipid Hydroperoxide (LH)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Menezes-Rodrigues, F.S.; Tavares, J.G.P.; Vasques, E.R.; Errante, P.R.; Araújo, E.A.; Pires-Oliveira, M.; Scorza, C.A.; Scorza, F.A.; Taha, M.O.; Caricati-Neto, A. Cardioprotective effects of pharmacological blockade of the mitochondrial calcium uniporter on myocardial ischemia-reperfusion injury. Acta Cir. Bras. 2020, 35, e202000306. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Fitzsimons, M.G.; Iyer, M.H.; Essandoh, M.; Kumar, J.E.; Dalia, A.A.; Osho, A.; Sawyer, T.R.; Bardia, A.J. Vasoplegic syndrome during heart transplantation: A systematic review and meta-analysis. Heart Lung Transplant. 2024, 43, 931–943. [Google Scholar] [CrossRef] [PubMed]
- Mehaffey, J.H.; Johnston, L.E.; Hawkins, R.B.; Charles, E.J.; Yarboro, L.; Kern, J.A.; Ailawadi, G.; Kron, I.L.; Ghanta, R.K. Methylene Blue for Vasoplegic Syndrome After Cardiac Operation: Early Administration Improves Survival. Ann. Thorac. Surg. 2017, 104, 36–41. [Google Scholar] [CrossRef]
- Gomes, W.J.; Carvalho, A.C.; Palma, J.H.; Gonçalves, I., Jr.; Buffolo, E. Vasoplegic syndrome: A new dilemma. J. Thorac. Cardiovasc. Surg. 1994, 107, 942–943. [Google Scholar] [CrossRef]
- Gomes, W.J.; Carvalho, A.C.; Palma, J.H.; Teles, C.A.; Branco, J.N.; Silas, M.G.; Buffolo, E. Vasoplegic syndrome after open heart surgery. J. Cardiovasc. Surg. 1998, 39, 619–623. [Google Scholar]
- Levin, R.L.; Degrange, M.A.; Bruno, G.F.; Del Mazo, C.D.; Taborda, D.J.; Griotti, J.J.; Boullon, F.J. Methylene blue reduces mortality and morbidity in vasoplegic patients after cardiac surgery. Ann. Thorac. Surg. 2004, 77, 496–499. [Google Scholar] [CrossRef] [PubMed]
- Evora, P.R.; Alves Junior, L.; Ferreira, C.A.; Menardi, A.C.; Bassetto, S.; Rodrigues, A.J.; Scorzoni Filho, A.; Vicente, W.V.A. Twenty years of vasoplegic syndrome treatment in heart surgery. Methylene blue revised. Rev. Bras. Cir. Cardiovasc. 2015, 30, 84–92. [Google Scholar] [CrossRef]
- de Araújo, E.A.; Tallo, F.S.; Oliveira, A.S.F.; Toghlobi, G.S.E.; Arantes, R.A.; Balsimelli, R.; Kehrwald-Balsimelli, B.; Bianca Viana, B.L.A.; Matuda, F.S.; Nicolau, L.A.D.; et al. Cardiotoxic Effects Produced by Omeprazole and Methylene Blue in an Animal Model of Cardiac Ischemia and Reperfusion and Potential Implications for the Pharmacological Strategy for Vasoplegic Syndrome. Biomedicines 2024, 12, 582. [Google Scholar] [CrossRef]
- Lenglet, S.; Mach, F.; Montecucco, F. Methylene blue: Potential use of an antique molecule in vasoplegic syndrome during cardiac surgery. Expert Rev. Cardiovasc. Ther. 2011, 9, 1519–1525. [Google Scholar] [CrossRef]
- Wolin, M.S.; Cherry, P.D.; Rodenburg, J.M.; Messina, E.J.; Kaley, G.A. Methylene blue inhibits vasodilation of skeletal muscle arterioles to acetylcholine and nitric oxide via the extracellular generation of superoxide anion. J. Pharmacol. Exp. Ther. 1990, 254, 872–876. [Google Scholar]
- Martin, W.; Villani, G.M.; Jothianandan, D.E.; Furchgott, R.F. Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J. Pharmacol. Exp. Ther. 1985, 232, 708–716. [Google Scholar] [PubMed]
- Tsai, S.C.; Adamik, R.; Manganiello, V.C.; Vaughan, M. Regulation of activity of purified guanylate cyclase from liver that is unresponsive to nitric oxide. Biochem. J. 1983, 215, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Kelner, M.J.; Bagnell, R.; Hale, B.; Alexander, N.M. Potential of methylene blue to block oxygen radical generation in reperfusion injury. Basic Life Sci. 1988, 49, 895–898. [Google Scholar] [PubMed]
- Salaris, S.C.; Babbs, C.F.; Voorhees, W.D., 3rd. Methylene blue as an inhibitor of superoxide generation by xanthine oxidase. A potential new drug for the attenuation of ischemia/reperfusion injury. Biochem. Pharmacol. 1991, 42, 499–506. [Google Scholar] [CrossRef]
- Guo, R.; Tang, W.; Liu, Y. Protective effect and mechanism of methylene blue on myocardial injury in rats with sépsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue 2024, 36, 624–629. [Google Scholar]
- Tian, W.F.; Zeng, S.; Sheng, Q.; Chen, J.L.; Weng, P.; Zhang, X.T.; Yuan, J.J.; Pang, Q.F.; Wang, Z.Q. Methylene blue protects the isolated rat lungs from ischemia-reperfusion injury by attenuating mitochondrial oxidative damage. Lung 2018, 196, 73–82. [Google Scholar] [CrossRef]
- Abreu, M.M.; Pazetti, R.; Almeida, F.M.; Correia, A.T.; Parra, E.R.; Silva, L.P.; Vieira, R.P.; Pêgo-Fernades, P.M.; Jatene, F.B. Methylene blue attenuates ischemia-reperfusion injury in lung transplantation. J. Surg. Res. 2014, 192, 635–641. [Google Scholar] [CrossRef]
- Semenas, E.; Nozari, A.; Sharma, H.S.; Basu, S.; Rubertsson, S.; Wiklund, L. Sex differences in cerebral injury after severe haemorrhage and ventricular fibrillation in pigs. Acta Anaesthesiol. Scand. 2010, 54, 343–353. [Google Scholar] [CrossRef]
- Koelzow, H.; Gedney, J.A.; Baumann, J.; Snook, N.J.; Bellamy, M.C. The effect of methylene blue on the hemodynamic changes during ischemia reperfusion injury in orthotopic liver transplantation. Anesth. Analg. 2002, 94, 824–829. [Google Scholar] [CrossRef]
- Tavares, J.G.P.; Errante, P.R.; Govato, T.C.P.; Vasques, Ê.R.; Ferraz, R.R.N.; Taha, M.O.; Menezes-Rodrigues, F.S.; Caricati-Neto, A. Cardioprotective effect of preconditioning is more efficient than postconditioning in rats submitted to cardiac ischemia and reperfusion. Acta Cir. Bras. 2018, 33, 588–596. [Google Scholar] [CrossRef]
- Menezes-Rodrigues, F.S.; Errante, P.R.; Ferreira, R.M.; Tavares, J.G.P.; Paula, L.; Araújo, E.A.; Govato, T.C.P.; Tikazawa, E.H.; Reis, M.C.M.; Luna-Filho, B.; et al. Cardioprotective effect of lipstatin derivative orlistat on normotensive rats submitted to cardiac ischemia and reperfusion. Acta Cir. Bras. 2018, 33, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Menezes-Rodrigues, F.S.; Errante, P.R.; Araújo, E.A.; Fernandes, M.P.P.; da Silva, M.M.; Pires-Oliveira, M.; Scorza, C.A.; Scorza, F.A.; Taha, M.O.; Caricati-Neto, A. Cardioprotection stimulated by resveratrol and grape products prevents lethal cardiac arrhythmias in an animal model of ischemia and reperfusion. Acta Cir. Bras. 2021, 36, e360306. [Google Scholar] [CrossRef] [PubMed]
- Menezes-Rodrigues, F.S.; Errante, P.R.; Tavares, J.G.P.; Ferraz, R.R.N.; Gomes, J.G.; Taha, M.O.; Scorza, C.A.; Scorza, F.A.; Caricati-Neto, A. Pharmacological modulation of β-adrenoceptors as a new strategy for therapy of myocardial dysfunction induced by ischemia and reperfusion. Acta Cir. Bras. 2019, 34, e201900505. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Woollard, A.C.; Wolff, S.P. Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA assay and an iodometric method. Lipids 1991, 26, 853–856. [Google Scholar] [CrossRef]
- Nourooz-Zadeh, J.; Rahimi, A.; Tajaddini-Sarmadi, J.; Tritschler, H.; Rosen, P.; Halliwell, B.; Betteridge, D.J. Relationships between plasma measures of oxidative stress and metabolic control in NIDDM. Diabetologia 1997, 40, 647–653. [Google Scholar] [CrossRef]
- Ortoleva, J.; Dalia, A.A.; Pisano, D.V.; Shapeton, A. Diagnosis and Management of Vasoplegia in Temporary Mechanical Circulatory Support: A Narrative Review. J. Cardiothorac. Vasc. Anesth. 2024, 38, 1378–1389. [Google Scholar] [CrossRef]
- Evora, P.R. Methylene blue is a guanylate cyclase inhibitor that does not interfere with nitric oxide synthesis. Tex. Heart Inst. J. 2016, 43, 103. [Google Scholar] [CrossRef]
- Miki, N.; Kawabe, Y.; Kuriyama, K. Activation of cerebral guanylate cyclase by nitric oxide. Biochem. Biophys. Res. Commun. 1977, 75, 851–856. [Google Scholar] [CrossRef]
- Evora, P.R.B.; Soares, R.O.S.; Bassetto, S.; Martins, M.A.; Silva, F.L.D.S.; Basile, A.F. After Thirty Years, We Still Cannot Understand Why Methylene Blue Is Not a Reference to Treat Vasoplegic Syndrome in Cardiac Surgery. Braz. J. Cardiovasc. Surg. 2021, 36, 406–411. [Google Scholar] [CrossRef]
- Pabla, R.; Bland-Ward, P.; Moore, P.K.; Curtis, M.J. An endogenous protectant effect of cardiac cyclic GMP against reperfusion-induced ventricular fibrillation in the rat heart. Br. J. Pharmacol. 1995, 116, 2923–2930. [Google Scholar] [CrossRef]
- McCartney, S.L.; Duce, L.; Ghadimi, K. Intraoperative vasoplegia: Methylene blue to the rescue! Curr. Opin. Anaesthesiol. 2018, 31, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.M.; Elsherbeny, A.G.; Almehizia, R.A. Methylene blue for vasoplegic syndrome postcardiac surgery. Indian J. Crit. Care Med. 2018, 22, 168–173. [Google Scholar] [CrossRef]
- Huang, C.; Cui, Y.; Ji, L.; Zhang, W.; Li, R.; Ma, L.; Xing, W.; Zhou, H.; Chen, B.; Yu, J.; et al. Catalpol decreases peroxynitrite formation and consequently exerts cardioprotective effects against ischemia/reperfusion insult. Pharm. Biol. 2013, 51, 463–473. [Google Scholar] [CrossRef]
- Hossne, N.A.; Miranda, M.; Monteiro, M.R.; Branco, J.N.; Vargas, G.F.; Pestana, J.O.; Gomes, W.J. Cardiopulmonary bypass increases the risk of vasoplegic syndrome after coronary artery bypass grafting in patients with dialysis-dependent chronic renal failure. Rev. Bras. Cir. Cardiovasc. 2015, 30, 482–488. [Google Scholar]
- Micleusc, A.; Sharma, H.S.; Martijin, C.; Wiklund, L. Methylene blue protects the cortical blood-brain barrier against ischemia reperfusion-induced disruptions. Crit. Care Med. 2010, 38, 2199–2206. [Google Scholar] [CrossRef]
- Judenherc-Haouzi, A.; Zhang, X.Q.; Sonobe, T.; Song, J.; Rannals, M.D.; Wang, J.; Tubbs, N.; Cheung, J.Y.; Haouzi, P. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R1030–R1044. [Google Scholar] [CrossRef]
- Wang, Y.G.; Rechenmacher, C.E.; Lipsius, S.L. Nitric oxide signaling mediates stimulation of L-type Ca2+ current elicited by withdrawal of acetylcholine in cat atrial myocytes. J. Gen. Physiol. 1998, 111, 113–125. [Google Scholar] [CrossRef]
- Kumar, R.; Namiki, T.; Joyner, R.W. Effects of cGMP on L-type calcium current of adult and newborn rabbit ventricular cells. Cardiovasc. Res. 1997, 33, 573–582. [Google Scholar] [CrossRef]
- Krejcí, A.; Michal, P.; Jakubík, J.; Rícný, J.; Dolezal, V. Regulation of signal transduction at M2 muscarinic receptor. Physiol. Res. 2004, 53, S131–S140. [Google Scholar] [CrossRef]
- Abi-Gerges, N.; Eschenhagen, T.; Hove-Madsen, L.; Fischmeister, R.; Mery, P.F. Methylene blue is a muscarinic antagonist in cardiac myocytes. Mol. Pharmacol. 1997, 52, 482–490. [Google Scholar] [CrossRef]
- Yamamoto, S.; Miyamoto, A.; Kawana, S.; Namiki, A.; Ohshika, H. Role of nitric oxide production through M2-cholinergic receptors in cultured rat ventricular myocytes. Biochem. Biophys. Res. Commun. 1998, 251, 791–795. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Yu, B.P. Alterations in mitochondrial membrane fluidity by lipid peroxidation products. Free Rad. Biol. Med. 1994, 17, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Li, W.; Poteet, E.C.; Xie, L.; Tan, C.; Yan, L.J.; Ju, X.; Liu, R.; Qian, H.; Marvin, M.A.; et al. Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J. Biol. Chem. 2011, 286, 16504–16515. [Google Scholar] [CrossRef] [PubMed]
- Cheung, J.Y.; Wang, J.; Zhang, X.Q.; Song, J.; Tomar, D.; Madesh, M.; Judenherc-Haouzi, A.; Haouzi, P. Methylene blue counteracts cyanide cardiotoxicity: Cellular mechanisms. J. Appl. Physiol. 2018, 124, 1164–1176. [Google Scholar] [CrossRef]
- Ozal, E.; Kuralay, E.; Yildirim, V.; Kilic, S.; Bolcal, C.; Kücükarslan, N.; Gunay, C.; Demirkilic, U.; Tatar, H. Preoperative methylene blue administration in patients at high risk for vasoplegic syndrome during cardiac surgery. Ann. Thorac. Surg. 2005, 79, 1615–1619. [Google Scholar] [CrossRef]
- Juffermans, N.P.; Vervloet, M.G.; Daemen-Gubbels, C.R.; Binnekade, J.M.; de Jong, M.; Groeneveld, A.B. A dose-finding study of methylene blue to inhibit nitric oxide actions in the hemodynamics of human septic shock. Nitric Oxide 2010, 22, 275–280. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes Junior, H.J.; de Araújo, E.A.; Machado Junior, J.A.; Lutz Motta, F.M.; Guarize, G.F.; Cheng, L.C.; Tantray, J.; Medeiros, J.V.R.; Nicolau, L.A.D.; Barbosa, A.H.P.; et al. Cardiotoxic and Cardioprotective Effects of Methylene Blue in the Animal Model of Cardiac Ischemia and Reperfusion. Biomedicines 2024, 12, 2575. https://doi.org/10.3390/biomedicines12112575
Fernandes Junior HJ, de Araújo EA, Machado Junior JA, Lutz Motta FM, Guarize GF, Cheng LC, Tantray J, Medeiros JVR, Nicolau LAD, Barbosa AHP, et al. Cardiotoxic and Cardioprotective Effects of Methylene Blue in the Animal Model of Cardiac Ischemia and Reperfusion. Biomedicines. 2024; 12(11):2575. https://doi.org/10.3390/biomedicines12112575
Chicago/Turabian StyleFernandes Junior, Hezio Jadir, Erisvaldo Amarante de Araújo, José Antônio Machado Junior, Fabio Marinho Lutz Motta, Gabriela Ferrazzano Guarize, Lucas Chen Cheng, Junaid Tantray, Jand Venes Rolim Medeiros, Lucas Antonio Duarte Nicolau, Adriano Henrique Pereira Barbosa, and et al. 2024. "Cardiotoxic and Cardioprotective Effects of Methylene Blue in the Animal Model of Cardiac Ischemia and Reperfusion" Biomedicines 12, no. 11: 2575. https://doi.org/10.3390/biomedicines12112575
APA StyleFernandes Junior, H. J., de Araújo, E. A., Machado Junior, J. A., Lutz Motta, F. M., Guarize, G. F., Cheng, L. C., Tantray, J., Medeiros, J. V. R., Nicolau, L. A. D., Barbosa, A. H. P., Caixeta, A., Rocco, I. S., Guizilini, S., Pires-Oliveira, M., Taha, M. O., Caricati-Neto, A., Gomes, W. J., Tallo, F. S., & Menezes-Rodrigues, F. S. (2024). Cardiotoxic and Cardioprotective Effects of Methylene Blue in the Animal Model of Cardiac Ischemia and Reperfusion. Biomedicines, 12(11), 2575. https://doi.org/10.3390/biomedicines12112575