Stability of Blood DNA Methylation Across Two Timepoints in Three Cohorts
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Basic Characteristics of the Three Cohorts
3.2. Detecting Probes Under Influence of Genetic Variance
3.3. Difference in Methylation Levels Across Time
3.4. Stability of Probes: Agreement Score for Methylation Levels Across Time
3.5. Connection Between MMAD and ICC
3.6. Hyperstable Probes
3.7. Ontology Analysis of Hyperstable Probes
3.8. Agreement Score for Methylation Levels Across Time
3.9. Similarity in Results from 450k EPIC Arrays
3.10. MMAD and the Level of Methylation and Its Variance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ventham, N.T.; Kennedy, N.A.; Adams, A.T.; Kalla, R.; Heath, S.; O’Leary, K.R.; Drummond, H.; Wilson, D.C.; IBD BIOM Consortium; IBD CHARACTER Consortium; et al. Integrative Epigenome-Wide Analysis Demonstrates That DNA Methylation May Mediate Genetic Risk in Inflammatory Bowel Disease. Nat. Commun. 2016, 7, 13507. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Kalla, R.; Chen, J.; Zhao, J.; Zhou, X.; Adams, A.; Noble, A.; Ventham, N.T.; Wellens, J.; Ho, G.-T.; et al. Altered DNA Methylation within DNMT3A, AHRR, LTA/TNF Loci Mediates the Effect of Smoking on Inflammatory Bowel Disease. Nat. Commun. 2024, 15, 595. [Google Scholar] [CrossRef] [PubMed]
- Noble, A.J.; Nowak, J.K.; Adams, A.T.; Uhlig, H.H.; Satsangi, J. Defining Interactions Between the Genome, Epigenome, and the Environment in Inflammatory Bowel Disease: Progress and Prospects. Gastroenterology 2023, 165, 44–60.e2. [Google Scholar] [CrossRef] [PubMed]
- Friso, S.; Udali, S.; Guarini, P.; Pellegrini, C.; Pattini, P.; Moruzzi, S.; Girelli, D.; Pizzolo, F.; Martinelli, N.; Corrocher, R.; et al. Global DNA Hypomethylation in Peripheral Blood Mononuclear Cells as a Biomarker of Cancer Risk. Cancer Epidemiol. Biomark. Prev. 2013, 22, 348–355. [Google Scholar] [CrossRef]
- Dauksa, A.; Gulbinas, A.; Endzinas, Z.; Oldenburg, J.; El-Maarri, O. DNA Methylation at Selected CpG Sites in Peripheral Blood Leukocytes Is Predictive of Gastric Cancer. Anticancer Res. 2014, 34, 5381–5388. [Google Scholar]
- Van Otterdijk, S.D.; Binder, A.M.; Szic, K.S.v.; Schwald, J.; Michels, K.B. DNA Methylation of Candidate Genes in Peripheral Blood from Patients with Type 2 Diabetes or the Metabolic Syndrome. PLoS ONE 2017, 12, e0180955. [Google Scholar] [CrossRef]
- Willmer, T.; Johnson, R.; Louw, J.; Pheiffer, C. Blood-Based DNA Methylation Biomarkers for Type 2 Diabetes: Potential for Clinical Applications. Front. Endocrinol. 2018, 9, 744. [Google Scholar] [CrossRef]
- Coit, P.; Ortiz-Fernandez, L.; Lewis, E.E.; McCune, W.J.; Maksimowicz-McKinnon, K.; Sawalha, A.H. A Longitudinal and Transancestral Analysis of DNA Methylation Patterns and Disease Activity in Lupus Patients. JCI Insight 2020, 5, e143654. [Google Scholar] [CrossRef]
- Li, Q.S.; Vasanthakumar, A.; Davis, J.W.; Idler, K.B.; Nho, K.; Waring, J.F.; Saykin, A.J.; Alzheimer’s Disease Neuroimaging Initiative (ADNI). Association of Peripheral Blood DNA Methylation Level with Alzheimer’s Disease Progression. Clin. Epigenetics 2021, 13, 191. [Google Scholar] [CrossRef]
- Deng, M.; Su, Y.; Wu, R.; Li, S.; Zhu, Y.; Tang, G.; Shi, X.; Zhou, T.; Zhao, M.; Lu, Q. DNA Methylation Markers in Peripheral Blood for Psoriatic Arthritis. J. Dermatol. Sci. 2022, 108, 39–47. [Google Scholar] [CrossRef]
- Adams, A.T.; Kennedy, N.A.; Hansen, R.; Ventham, N.T.; O’Leary, K.R.; Drummond, H.E.; Noble, C.L.; El-Omar, E.; Russell, R.K.; Wilson, D.C.; et al. Two-Stage Genome-Wide Methylation Profiling in Childhood-Onset Crohn’s Disease Implicates Epigenetic Alterations at the VMP1/MIR21 and HLA Loci. Inflamm. Bowel Dis. 2014, 20, 1784–1793. [Google Scholar] [CrossRef] [PubMed]
- Joustra, V.; Yim, A.Y.F.L.; Hageman, I.; Levin, E.; Adams, A.; Satsangi, J.; de Jonge, W.J.; Henneman, P.; D’Haens, G. Long-Term Temporal Stability of Peripheral Blood DNA Methylation Profiles in Patients With Inflammatory Bowel Disease. Cell. Mol. Gastroenterol. Hepatol. 2023, 15, 869–885. [Google Scholar] [CrossRef] [PubMed]
- Noble, A.; Adams, A.T.; Nayak, K.M.; Kalla, R.; Ventham, N.; Cheng, G.; Ashton, J.J.; Hansen, R.; Croft, N.; Wilson, D.C.; et al. DOP55 High Diagnostic Accuracy of 4-Probe Methylation Biomarkers in Paediatric Inflammatory Bowel Disease by Epigenome-Wide Analysis. J. Crohn’s Colitis 2024, 18, i173–i175. [Google Scholar] [CrossRef]
- Kalla, R.; Adams, A.T.; Nowak, J.K.; Bergemalm, D.; Vatn, S.; Ventham, N.T.; Kennedy, N.A.; Ricanek, P.; Lindstrom, J.; IBD-Character Consortium; et al. Analysis of Systemic Epigenetic Alterations in Inflammatory Bowel Disease: Defining Geographical, Genetic and Immune-Inflammatory Influences on the Circulating Methylome. J. Crohn’s Colitis 2023, 17, 170–184. [Google Scholar] [CrossRef]
- Joustra, V.; Li Yim, A.Y.F.; van Gennep, S.; Hageman, I.; de Waard, T.; Levin, E.; Lauffer, P.; de Jonge, W.; Henneman, P.; Löwenberg, M.; et al. Peripheral Blood DNA Methylation Signatures and Response to Tofacitinib in Moderate-to-Severe Ulcerative Colitis. J. Crohn’s Colitis 2023, 18, 1179–1189. [Google Scholar] [CrossRef]
- Somineni, H.K.; Venkateswaran, S.; Kilaru, V.; Marigorta, U.M.; Mo, A.; Okou, D.T.; Kellermayer, R.; Mondal, K.; Cobb, D.; Walters, T.D.; et al. Blood-Derived DNA Methylation Signatures of Crohn’s Disease and Severity of Intestinal Inflammation. Gastroenterology 2019, 156, 2254–2265.e3. [Google Scholar] [CrossRef]
- Sugden, K.; Hannon, E.J.; Arseneault, L.; Belsky, D.W.; Corcoran, D.L.; Fisher, H.L.; Houts, R.M.; Kandaswamy, R.; Moffitt, T.E.; Poulton, R.; et al. Patterns of Reliability: Assessing the Reproducibility and Integrity of DNA Methylation Measurement. Patterns 2020, 1, 100014. [Google Scholar] [CrossRef]
- Zaimi, I.; Pei, D.; Koestler, D.C.; Marsit, C.J.; De Vivo, I.; Tworoger, S.S.; Shields, A.E.; Kelsey, K.T.; Michaud, D.S. Variation in DNA Methylation of Human Blood over a 1-Year Period Using the Illumina MethylationEPIC Array. Epigenetics 2018, 13, 1056–1071. [Google Scholar] [CrossRef]
- Gao, X.; Liu, H.; Yu, J.; Nie, Y. DNA Methylation Biomarkers for Early Detection of Gastric and Colorectal Cancers. Cancer Biol. Med. 2024, 20, 955. [Google Scholar] [CrossRef]
- Almstrup, K.; Lindhardt Johansen, M.; Busch, A.S.; Hagen, C.P.; Nielsen, J.E.; Petersen, J.H.; Juul, A. Pubertal Development in Healthy Children Is Mirrored by DNA Methylation Patterns in Peripheral Blood. Sci. Rep. 2016, 6, 28657. [Google Scholar] [CrossRef]
- Tan, Q.; Heijmans, B.T.; Hjelmborg, J.V.B.; Soerensen, M.; Christensen, K.; Christiansen, L. Epigenetic Drift in the Aging Genome: A Ten-Year Follow-up in an Elderly Twin Cohort. Int. J. Epidemiol. 2016, 45, 1146–1158. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.; Yaskolka Meir, A.; Bernhart, S.H.; Gepner, Y.; Shelef, I.; Schwarzfuchs, D.; Tsaban, G.; Zelicha, H.; Hopp, L.; Müller, L.; et al. DNA Methylation Signature in Blood Mirrors Successful Weight-Loss during Lifestyle Interventions: The CENTRAL Trial. Genome Med. 2020, 12, 97. [Google Scholar] [CrossRef]
- Touleimat, N.; Tost, J. Complete Pipeline for Infinium® Human Methylation 450K BeadChip Data Processing Using Subset Quantile Normalization for Accurate DNA Methylation Estimation. Epigenomics 2012, 4, 325–341. [Google Scholar] [CrossRef]
- Triche, T.J., Jr.; Weisenberger, D.J.; Van Den Berg, D.; Laird, P.W.; Siegmund, K.D. Low-Level Processing of Illumina Infinium DNA Methylation BeadArrays. Nucleic Acids Res. 2013, 41, e90. [Google Scholar] [CrossRef]
- Aryee, M.J.; Jaffe, A.E.; Corrada-Bravo, H.; Ladd-Acosta, C.; Feinberg, A.P.; Hansen, K.D.; Irizarry, R.A. Minfi: A Flexible and Comprehensive Bioconductor Package for the Analysis of Infinium DNA Methylation Microarrays. Bioinformatics 2014, 30, 1363–1369. [Google Scholar] [CrossRef]
- Fortin, J.-P.; Labbe, A.; Lemire, M.; Zanke, B.W.; Hudson, T.J.; Fertig, E.J.; Greenwood, C.M.; Hansen, K.D. Functional Normalization of 450k Methylation Array Data Improves Replication in Large Cancer Studies. Genome Biol. 2014, 15, 503. [Google Scholar] [CrossRef]
- Andrews, S.V.; Ladd-Acosta, C.; Feinberg, A.P.; Hansen, K.D.; Fallin, M.D. “Gap Hunting” to Characterize Clustered Probe Signals in Illumina Methylation Array Data. Epigenetics Chromatin 2016, 9, 56. [Google Scholar] [CrossRef]
- Gaunt, T.R.; Shihab, H.A.; Hemani, G.; Min, J.L.; Woodward, G.; Lyttleton, O.; Zheng, J.; Duggirala, A.; McArdle, W.L.; Ho, K.; et al. Systematic Identification of Genetic Influences on Methylation across the Human Life Course. Genome Biol. 2016, 17, 61. [Google Scholar] [CrossRef]
- Talens, R.P.; Boomsma, D.I.; Tobi, E.W.; Kremer, D.; Jukema, J.W.; Willemsen, G.; Putter, H.; Slagboom, P.E.; Heijmans, B.T. Variation, Patterns, and Temporal Stability of DNA Methylation: Considerations for Epigenetic Epidemiology. FASEB J. 2010, 24, 3135–3144. [Google Scholar] [CrossRef]
- Byun, H.-M.; Nordio, F.; Coull, B.A.; Tarantini, L.; Hou, L.; Bonzini, M.; Apostoli, P.; Bertazzi, P.A.; Baccarelli, A. Temporal Stability of Epigenetic Markers: Sequence Characteristics and Predictors of Short-Term DNA Methylation Variations. PLoS ONE 2012, 7, e39220. [Google Scholar] [CrossRef]
- Edgar, R.D.; Jones, M.J.; Robinson, W.P.; Kobor, M.S. An Empirically Driven Data Reduction Method on the Human 450K Methylation Array to Remove Tissue Specific Non-Variable CpGs. Clin. Epigenetics 2017, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Apsley, A.T.; Ye, Q.; Etzel, L.; Wolf, S.; Hastings, W.J.; Mattern, B.C.; Siegel, S.R.; Shalev, I. Biological Stability of DNA Methylation Measurements over Varying Intervals of Time and in the Presence of Acute Stress. Epigenetics 2023, 18, 2230686. [Google Scholar] [CrossRef] [PubMed]
- Forest, M.; O’Donnell, K.J.; Voisin, G.; Gaudreau, H.; MacIsaac, J.L.; McEwen, L.M.; Silveira, P.P.; Steiner, M.; Kobor, M.S.; Meaney, M.J.; et al. Agreement in DNA Methylation Levels from the Illumina 450K Array across Batches, Tissues, and Time. Epigenetics 2018, 13, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Taylor, J.A. Reliability of DNA Methylation Measures Using Illumina Methylation BeadChip. Epigenetics 2021, 16, 495–502. [Google Scholar] [CrossRef]
- Bose, M.; Wu, C.; Pankow, J.S.; Demerath, E.W.; Bressler, J.; Fornage, M.; Grove, M.L.; Mosley, T.H.; Hicks, C.; North, K.; et al. Evaluation of Microarray-Based DNA Methylation Measurement Using Technical Replicates: The Atherosclerosis Risk In Communities (ARIC) Study. BMC Bioinform. 2014, 15, 312. [Google Scholar] [CrossRef]
- Wu, L.-H.; Wang, X.-X.; Wang, Y.; Wei, J.; Liang, Z.-R.; Yan, X.; Wang, J. Construction and Validation of a Prognosis Signature Based on the Immune Microenvironment in Gastric Cancer. Front. Surg. 2023, 10, 1088292. [Google Scholar] [CrossRef]
- Wu, C.; Rao, X.; Lin, W. Immune Landscape and a Promising Immune Prognostic Model Associated with TP53 in Early-Stage Lung Adenocarcinoma. Cancer Med. 2021, 10, 806–823. [Google Scholar] [CrossRef]
- Molinero, M.; Gómez, S.; Benítez, I.D.; Vengoechea, J.J.; González, J.; Polanco, D.; Gort-Paniello, C.; Moncusí-Moix, A.; García-Hidalgo, M.C.; Perez-Pons, M.; et al. Multiplex Protein Profiling of Bronchial Aspirates Reveals Disease-, Mortality- and Respiratory Sequelae-Associated Signatures in Critically Ill Patients with ARDS Secondary to SARS-CoV-2 Infection. Front. Immunol. 2022, 13, 942443. [Google Scholar] [CrossRef]
- Grubišić, V.; Perez-Medina, A.L.; Fried, D.E.; Sévigny, J.; Robson, S.C.; Galligan, J.J.; Gulbransen, B.D. NTPDase1 and -2 Are Expressed by Distinct Cellular Compartments in the Mouse Colon and Differentially Impact Colonic Physiology and Function after DSS Colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 317, G314–G332. [Google Scholar] [CrossRef]
- Feldbrügge, L.; Moss, A.C.; Yee, E.U.; Csizmadia, E.; Mitsuhashi, S.; Longhi, M.S.; Sandhu, B.; Stephan, H.; Wu, Y.; Cheifetz, A.S.; et al. Expression of Ecto-Nucleoside Triphosphate Diphosphohydrolases-2 and -3 in the Enteric Nervous System Affects Inflammation in Experimental Colitis and Crohn’s Disease. J. Crohn’s Colitis 2017, 11, 1113–1123. [Google Scholar] [CrossRef]
- Shi, M.; Ye, L.; Zhao, L.; He, L.; Chen, J.; Zhang, J.; Su, Y.; Dong, H.; Liu, J.; Liang, L.; et al. Tumor Derived Exosomal ENTPD2 Impair CD8+ T Cell Function in Colon Cancer through ATP-Adenosine Metabolism Reprogramming. Cell Commun. Signal. 2024, 22, 274. [Google Scholar] [CrossRef] [PubMed]
- Chiu, D.K.-C.; Tse, A.P.-W.; Xu, I.M.-J.; Di Cui, J.; Lai, R.K.-H.; Li, L.L.; Koh, H.-Y.; Tsang, F.H.-C.; Wei, L.L.; Wong, C.-M.; et al. Hypoxia Inducible Factor HIF-1 Promotes Myeloid-Derived Suppressor Cells Accumulation through ENTPD2/CD39L1 in Hepatocellular Carcinoma. Nat. Commun. 2017, 8, 517. [Google Scholar] [CrossRef] [PubMed]
- Petrucelli, N.; Daly, M.B.; Pal, T. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle WA, USA, 1993. [Google Scholar]
- Rizzacasa, B.; Nicolì, V.; Tancredi, C.; Conte, C.; Salehi, L.B.; Carriero, M.L.; Longo, G.; Cirigliano, V.; Lopez, L.I.; Palao, B.; et al. Implementing the Risk Stratification and Clinical Management of Breast Cancer Families Using Polygenic Risk Score Evaluation: A Pilot Study. J. Pers. Med. 2024, 14, 1034. [Google Scholar] [CrossRef] [PubMed]
- Herencia-Ropero, A.; Llop-Guevara, A.; Staniszewska, A.D.; Domènech-Vivó, J.; García-Galea, E.; Moles-Fernández, A.; Pedretti, F.; Domènech, H.; Rodríguez, O.; Guzmán, M.; et al. The PARP1 Selective Inhibitor Saruparib (AZD5305) Elicits Potent and Durable Antitumor Activity in Patient-Derived BRCA1/2-Associated Cancer Models. Genome Med. 2024, 16, 107. [Google Scholar] [CrossRef]
- Oubaddou, Y.; Oukabli, M.; Fenniche, S.; Elktaibi, A.; Elochi, M.R.; Al Bouzidi, A.; Qmichou, Z.; Dakka, N.; Diorio, C.; Richter, A.; et al. BRCA1 Promoter Hypermethylation in Malignant Breast Tumors and in the Histologically Normal Adjacent Tissues to the Tumors: Exploring Its Potential as a Biomarker and Its Clinical Significance in a Translational Approach. Genes 2023, 14, 1680. [Google Scholar] [CrossRef]
- Khayyat, A.; Esmaeil Pour, M.A.; Poursina, O.; Zohouri, S.A.; Jian, P.V.; Patel, N.; Amin, A. Evaluations of Biomarkers CDX1 and CDX2 in Gastric Cancer Prognosis: A Meta-Analysis. Int. J. Mol. Cell. Med. 2024, 13, 1–19. [Google Scholar] [CrossRef]
- Almasi, S.; Haghnazari, L.; Hosseini, S.O.; Rezvani, N. Detection of Caudal Type Homeobox 1 (CDX1) Gene Methylated DNA, as a Stool-Based Diagnostic Biomarker in Colorectal Cancer. J. Genet. 2024, 103, 23. [Google Scholar] [CrossRef]
- Berry, J.L.; Polski, A.; Cavenee, W.K.; Dryja, T.P.; Murphree, A.L.; Gallie, B.L. The RB1 Story: Characterization and Cloning of the First Tumor Suppressor Gene. Genes 2019, 10, 879. [Google Scholar] [CrossRef]
- Jiménez, N.; Garcia de Herreros, M.; Reig, Ò.; Marín-Aguilera, M.; Aversa, C.; Ferrer-Mileo, L.; García-Esteve, S.; Rodríguez-Carunchio, L.; Trias, I.; Font, A.; et al. Development and Independent Validation of a Prognostic Gene Expression Signature Based on RB1, PTEN, and TP53 in Metastatic Hormone-Sensitive Prostate Cancer Patients. Eur. Urol. Oncol. 2024, 7, 954–964. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, W.; Liu, H.; Ding, Y.; Guo, J.; Xiong, S.; Zhai, Z.; Hu, W. Identification of a Novel Lactylation-Related Gene Signature Predicts the Prognosis of Multiple Myeloma and Experiment Verification. Sci. Rep. 2024, 14, 15142. [Google Scholar] [CrossRef]
- Queiroz, L.F.D.; Rosman, F.C.; Rosas, S.L.B.; Souza, H.S.P.D.; Carvalho, M.D.G.D.C. Molecular Monitoring by CDKN2A/p16INK4A and RB1 Gene Methylation in Breast Cancer. Rev. Assoc. Médica Bras. 2024, 70, e20231358. [Google Scholar] [CrossRef]
Probe | cg14024893 | cg27404186 | cg08084154 | cg09894276 | cg27388297 |
---|---|---|---|---|---|
Chromosome | 9 | 2 | 16 | 6 | X |
Coordinate | 139943146 | 242843821 | 2848577 | 169977394 | 52897160 |
Gene | ENTPD2 | (FAM240C) | TESSP1 | WDR27 | XAGE3 |
RefGene Group | Body | None | 1stExon | Body | TSS200 |
Max. MAD from 3 age groups | 0.00941 | 0.00689 | 0.00942 | 0.00851 | 0.00892 |
MAD—children (450k) | 0.00941 | 0.00689 | 0.00825 | 0.00851 | 0.00874 |
MAD—elderly (450k) | 0.00841 | 0.00676 | 0.00916 | 0.00831 | 0.00892 |
MAD—middle-aged (EPIC) | 0.00689 | 0.00647 | 0.00942 | 0.00696 | 0.00674 |
Max. MAD/SD | 0.314 | 0.314 | 0.299 | 0.305 | 0.345 |
Mean SD from 3 age groups | 0.0299 | 0.0219 | 0.0314 | 0.0278 | 0.0258 |
Min. ICC from 3 age groups | 0.917 | 0.915 | 0.913 | 0.906 | 0.897 |
ICC—children (95%CI) | 0.917 (0.86–0.952) | 0.916 (0.858–0.951) | 0.95 (0.914–0.971) | 0.915 (0.857–0.951) | 0.919 (0.862–0.953) |
ICC—elderly (95%CI) | 0.923 (0.885–0.948) | 0.916 (0.876–0.944) | 0.915 (0.874–0.943) | 0.906 (0.861–0.937) | 0.898 (0.849–0.932) |
ICC—middle-aged (95%CI) | 0.958 (0.941–0.971) | 0.927 (0.896–0.949) | 0.914 (0.879–0.939) | 0.945 (0.922–0.961) | 0.941 (0.917–0.959) |
Min. paired t-test p from 3 age groups | 0.129 | 0.0701 | 0.176 | 0.457 | 0.323 |
Paired t-test p—children | 0.214 | 0.270 | 0.176 | 0.457 | 0.323 |
Paired t-test p—elderly | 0.129 | 0.208 | 0.724 | 0.643 | 0.894 |
Paired t-test p—middle-aged | 0.260 | 0.0701 | 0.350 | 0.492 | 0.774 |
Probe design type | I | I | I | I | I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danielewski, M.; Walkowiak, J.; Wielgus, K.; Nowak, J.K. Stability of Blood DNA Methylation Across Two Timepoints in Three Cohorts. Biomedicines 2024, 12, 2557. https://doi.org/10.3390/biomedicines12112557
Danielewski M, Walkowiak J, Wielgus K, Nowak JK. Stability of Blood DNA Methylation Across Two Timepoints in Three Cohorts. Biomedicines. 2024; 12(11):2557. https://doi.org/10.3390/biomedicines12112557
Chicago/Turabian StyleDanielewski, Mikołaj, Jarosław Walkowiak, Karolina Wielgus, and Jan Krzysztof Nowak. 2024. "Stability of Blood DNA Methylation Across Two Timepoints in Three Cohorts" Biomedicines 12, no. 11: 2557. https://doi.org/10.3390/biomedicines12112557
APA StyleDanielewski, M., Walkowiak, J., Wielgus, K., & Nowak, J. K. (2024). Stability of Blood DNA Methylation Across Two Timepoints in Three Cohorts. Biomedicines, 12(11), 2557. https://doi.org/10.3390/biomedicines12112557