Role of the Egr2 Promoter Antisense RNA in Modulating the Schwann Cell Chromatin Landscape
Abstract
:1. Introduction
2. Materials and Methods
2.1. RNA-seq
2.2. ATAC-seq
2.3. Lentiviral Expression of the AS-RNA
2.4. RNA Immunoprecipitation (RIP)
2.5. Chromatin Immunoprecipitation (ChIP)
2.6. Hi-C Capture Method
2.7. Significant and Differential Loop Analysis
2.8. Identification of Clusters of cis-Regulatory Elements (COREs)
2.9. Annotation/Identification of CORE–Promoter Loops
2.10. Genome Wide Differential TF Activity at Promoter Sites
2.11. Site-Specific TF Footprint/Binding Predictions
2.12. Site-Specific TF Binding Predictions at Regulatory Elements
2.13. Identification of TADs
2.14. Intra and Inter TAD Loops Localization
2.15. Identification of A/B Compartments
2.16. Software & Data Availability
2.17. Plasmid Availability
3. Results
3.1. Neuregulin-ErbB2/3 Regulate YY1 Phospho-Ser184 Expression and Binding of YY1 to the Egr2-AS
3.2. Expression of the Egr2-AS Results in Transcriptomic Changes in Schwann Cells
3.3. The Egr2-AS Inhibits EGR2 and Activates C-JUN Expression in SCs
3.4. The Egr2-AS Interacts with EZH2 and WDR5 to Enable Targeting of H3K27me3 and H3K4me3 at Egr2 and C-JUN Promoters
3.5. The Egr2-AS Induces Chromatin Remodeling and Increased Binding of the AP-1/JUN Family of TFs
3.6. Expression of the Egr2-AS Results in Genome Reorganization and a Gain in Stable Loops Associated With Genes Enriched for AP-1 TF Network and NOTCH 1 Signaling
3.7. Integrated 3D Genome Reconstruction Reveals Clusters of cis-Regulatory Elements (CORES) and Associated Promoters
3.8. Expression of the Egr2-AS Induces Regulatory Changes Between the mTOR Promoter and Its cis-Regulatory Elements
3.9. The Egr2-AS Induces Changes at the mTOR Interdomain Regulatory Hub
4. Discussion
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duman, M.; Martinez-Moreno, M.; Jacob, C.; Tapinos, N. Functions of Histone Modifications and Histone Modifiers in Schwann Cells. Glia 2020, 68, 1584–1595. [Google Scholar] [CrossRef] [PubMed]
- Michailov, G.V.; Sereda, M.W.; Brinkmann, B.G.; Fischer, T.M.; Haug, B.; Birchmeier, C.; Role, L.; Lai, C.; Schwab, M.H.; Nave, K.-A. Axonal Neuregulin-1 Regulates Myelin Sheath Thickness. Science 2004, 304, 700–703. [Google Scholar] [CrossRef] [PubMed]
- Nave, K.-A.; Salzer, J.L. Axonal Regulation of Myelination by Neuregulin 1. Curr. Opin. Neurobiol. 2006, 16, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Taveggia, C.; Zanazzi, G.; Petrylak, A.; Yano, H.; Rosenbluth, J.; Einheber, S.; Xu, X.; Esper, R.M.; Loeb, J.A.; Shrager, P.; et al. Neuregulin-1 Type III Determines the Ensheathment Fate of Axons. Neuron 2005, 47, 681–694. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Kim, J.Y.; Dupree, J.; Tewari, A.; Melendez-Vasquez, C.; Svaren, J.; Casaccia, P. Yy1 as a Molecular Link between Neuregulin and Transcriptional Modulation of Peripheral Myelination. Nat. Neurosci. 2010, 13, 1472–1480. [Google Scholar] [CrossRef]
- Newbern, J.M.; Li, X.; Shoemaker, S.E.; Zhou, J.; Zhong, J.; Wu, Y.; Bonder, D.; Hollenback, S.; Coppola, G.; Geschwind, D.H.; et al. Specific Functions for ERK/MAPK Signaling during PNS Development. Neuron 2011, 69, 91–105. [Google Scholar] [CrossRef]
- Jang, S.-W.; LeBlanc, S.E.; Roopra, A.; Wrabetz, L.; Svaren, J. In Vivo Detection of Egr2 Binding to Target Genes during Peripheral Nerve Myelination. J. Neurochem. 2006, 98, 1678–1687. [Google Scholar] [CrossRef]
- Jang, S.-W.; Srinivasan, R.; Jones, E.A.; Sun, G.; Keles, S.; Krueger, C.; Chang, L.-W.; Nagarajan, R.; Svaren, J. Locus-Wide Identification of EGR2/Krox20 Regulatory Targets in Myelin Genes. J. Neurochem. 2010, 115, 1409–1420. [Google Scholar] [CrossRef]
- Le, N.; Nagarajan, R.; Wang, J.Y.T.; Araki, T.; Schmidt, R.E.; Milbrandt, J. Analysis of Congenital Hypomyelinating Egr2Lo/Lo Nerves Identifies Sox2 as an Inhibitor of Schwann Cell Differentiation and Myelination. Proc. Natl. Acad. Sci. USA 2005, 102, 2596–2601. [Google Scholar] [CrossRef]
- LeBlanc, S.E.; Jang, S.-W.; Ward, R.M.; Wrabetz, L.; Svaren, J. Direct Regulation of Myelin Protein Zero Expression by the Egr2 Transactivator. J. Biol. Chem. 2006, 281, 5453–5460. [Google Scholar] [CrossRef]
- Svaren, J.; Meijer, D. The Molecular Machinery of Myelin Gene Transcription in Schwann Cells. Glia 2008, 56, 1541–1551. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Moreno, M.; O’Shea, T.M.; Zepecki, J.P.; Olaru, A.; Ness, J.K.; Langer, R.; Tapinos, N. Regulation of Peripheral Myelination through Transcriptional Buffering of Egr2 by an Antisense Long Non-Coding RNA. Cell Rep. 2017, 20, 1950–1963. [Google Scholar] [CrossRef] [PubMed]
- Jessen, K.R.; Mirsky, R.; Arthur-Farraj, P. The Role of Cell Plasticity in Tissue Repair: Adaptive Cellular Reprogramming. Dev. Cell 2015, 34, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Stassart, R.M.; Fledrich, R.; Velanac, V.; Brinkmann, B.G.; Schwab, M.H.; Meijer, D.; Sereda, M.W.; Nave, K.-A. A Role for Schwann Cell-Derived Neuregulin-1 in Remyelination. Nat. Neurosci. 2013, 16, 48–54. [Google Scholar] [CrossRef]
- Khalil, A.M.; Guttman, M.; Huarte, M.; Garber, M.; Raj, A.; Morales, D.R.; Thomas, K.; Presser, A.; Bernstein, B.E.; van Oudenaarden, A.; et al. Many Human Large Intergenic Noncoding RNAs Associate with Chromatin-Modifying Complexes and Affect Gene Expression. Proc. Natl. Acad. Sci. USA 2009, 106, 11667–11672. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and Quantifying Mammalian Transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Palazzo, A.F.; Lee, E.S. Non-Coding RNA: What Is Functional and What Is Junk? Front. Genet. 2015, 6, 2. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-Based Genome Alignment and Genotyping with HISAT2 and HISAT-Genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Jessen, K.R.; Mirsky, R.; Lloyd, A.C. Schwann Cells: Development and Role in Nerve Repair. Cold Spring Harb. Perspect. Biol. 2015, 7, a020487. [Google Scholar] [CrossRef]
- Lee, B.T.; Barber, G.P.; Benet-Pagès, A.; Casper, J.; Clawson, H.; Diekhans, M.; Fischer, C.; Gonzalez, J.N.; Hinrichs, A.S.; Lee, C.M.; et al. The UCSC Genome Browser Database: 2022 Update. Nucleic Acids Res. 2022, 50, D1115–D1122. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Kucukural, A.; Yukselen, O.; Ozata, D.M.; Moore, M.J.; Garber, M. DEBrowser: Interactive Differential Expression Analysis and Visualization Tool for Count Data. BMC Genom. 2019, 20, 6. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Ackermann, A.M.; Wang, Z.; Schug, J.; Naji, A.; Kaestner, K.H. Integration of ATAC-Seq and RNA-Seq Identifies Human Alpha Cell and Beta Cell Signature Genes. Mol. Metab. 2016, 5, 233–244. [Google Scholar] [CrossRef]
- Picard Tools—By Broad Institute. Available online: https://broadinstitute.github.io/picard/ (accessed on 9 October 2024).
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Quinlan, A.R.; Hall, I.M. BEDTools: A Flexible Suite of Utilities for Comparing Genomic Features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, T.; Meyer, C.A.; Eeckhoute, J.; Johnson, D.S.; Bernstein, B.E.; Nusbaum, C.; Myers, R.M.; Brown, M.; Li, W.; et al. Model-Based Analysis of ChIP-Seq (MACS). Genome Biol. 2008, 9, R137. [Google Scholar] [CrossRef]
- Oza, B.; Frangou, E.; Smith, B.; Bryant, H.; Kaplan, R.; Choodari-Oskooei, B.; Powles, T.; Stewart, G.D.; Albiges, L.; Bex, A.; et al. RAMPART: A Phase III Multi-Arm Multi-Stage Trial of Adjuvant Checkpoint Inhibitors in Patients with Resected Primary Renal Cell Carcinoma (RCC) at High or Intermediate Risk of Relapse. Contemp. Clin. Trials 2021, 108, 106482. [Google Scholar] [CrossRef]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A Comprehensive Gene Set Enrichment Analysis Web Server 2016 Update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef]
- BSgenome.Rnorvegicus.UCSC.Rn6. Available online: http://bioconductor.org/packages/BSgenome.Rnorvegicus.UCSC.rn6/ (accessed on 9 October 2024).
- TxDb.Rnorvegicus.UCSC.Rn6.refGene. Available online: http://bioconductor.org/packages/TxDb.Rnorvegicus.UCSC.rn6.refGene/ (accessed on 9 October 2024).
- Durand, N.C.; Shamim, M.S.; Machol, I.; Rao, S.S.P.; Huntley, M.H.; Lander, E.S.; Aiden, E.L. Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. Cell Syst. 2016, 3, 95–98. [Google Scholar] [CrossRef]
- Sahin, M.; Wong, W.; Zhan, Y.; Van Deynze, K.; Koche, R.; Leslie, C.S. HiC-DC+ Enables Systematic 3D Interaction Calls and Differential Analysis for Hi-C and HiChIP. Nat. Commun. 2021, 12, 3366. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.-T.; Corces, V.G. CTCF: An Architectural Protein Bridging Genome Topology and Function. Nat. Rev. Genet. 2014, 15, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Org.Rn.Eg.Db. Available online: http://bioconductor.org/packages/org.Rn.eg.db/ (accessed on 9 October 2024).
- Ross-Innes, C.S.; Stark, R.; Teschendorff, A.E.; Holmes, K.A.; Ali, H.R.; Dunning, M.J.; Brown, G.D.; Gojis, O.; Ellis, I.O.; Green, A.R.; et al. Differential Oestrogen Receptor Binding Is Associated with Clinical Outcome in Breast Cancer. Nature 2012, 481, 389–393. [Google Scholar] [CrossRef] [PubMed]
- soGGi. Available online: http://bioconductor.org/packages/soGGi/ (accessed on 9 October 2024).
- Liao, Y.; Smyth, G.K.; Shi, W. The R Package Rsubread Is Easier, Faster, Cheaper and Better for Alignment and Quantification of RNA Sequencing Reads. Nucleic Acids Res. 2019, 47, e47. [Google Scholar] [CrossRef]
- soGGi: Visualise ChIP-Seq, MNase-Seq and Motif Occurrence as Aggregate Plots Summarised over Grouped Genomic Intervals Version 1.22.0 from Bioconductor. Available online: https://rdrr.io/bioc/soGGi/ (accessed on 9 October 2024).
- Yu, G.; Wang, L.-G.; He, Q.-Y. ChIPseeker: An R/Bioconductor Package for ChIP Peak Annotation, Comparison and Visualization. Bioinformatics 2015, 31, 2382–2383. [Google Scholar] [CrossRef]
- Ij, T.; Ma, A.; Rd, D. Detecting Differential Transcription Factor Activity from ATAC-Seq Data. Molecules 2018, 23, 1136. [Google Scholar] [CrossRef]
- Bentsen, M.; Goymann, P.; Schultheis, H.; Klee, K.; Petrova, A.; Wiegandt, R.; Fust, A.; Preussner, J.; Kuenne, C.; Braun, T.; et al. ATAC-Seq Footprinting Unravels Kinetics of Transcription Factor Binding during Zygotic Genome Activation. Nat. Commun. 2020, 11, 4267. [Google Scholar] [CrossRef]
- Fornes, O.; Castro-Mondragon, J.A.; Khan, A.; van der Lee, R.; Zhang, X.; Richmond, P.A.; Modi, B.P.; Correard, S.; Gheorghe, M.; Baranašić, D.; et al. JASPAR 2020: Update of the Open-Access Database of Transcription Factor Binding Profiles. Nucleic Acids Res. 2020, 48, D87–D92. [Google Scholar] [CrossRef]
- Castro-Mondragon, J.A.; Riudavets-Puig, R.; Rauluseviciute, I.; Lemma, R.B.; Turchi, L.; Blanc-Mathieu, R.; Lucas, J.; Boddie, P.; Khan, A.; Manosalva Pérez, N.; et al. JASPAR 2022: The 9th Release of the Open-Access Database of Transcription Factor Binding Profiles. Nucleic Acids Res. 2022, 50, D165–D173. [Google Scholar] [CrossRef]
- An, L.; Yang, T.; Yang, J.; Nuebler, J.; Xiang, G.; Hardison, R.C.; Li, Q.; Zhang, Y. OnTAD: Hierarchical Domain Structure Reveals the Divergence of Activity among TADs and Boundaries. Genome Biol. 2019, 20, 282. [Google Scholar] [CrossRef]
- Kramer, N.E.; Davis, E.S.; Wenger, C.D.; Deoudes, E.M.; Parker, S.M.; Love, M.I.; Phanstiel, D.H. Plotgardener: Cultivating Precise Multi-Panel Figures in R. Bioinformatics 2022, 38, 2042–2045. [Google Scholar] [CrossRef] [PubMed]
- Arthur-Farraj, P.J.; Latouche, M.; Wilton, D.K.; Quintes, S.; Chabrol, E.; Banerjee, A.; Woodhoo, A.; Jenkins, B.; Rahman, M.; Turmaine, M.; et al. C-Jun Reprograms Schwann Cells of Injured Nerves to Generate a Repair Cell Essential for Regeneration. Neuron 2012, 75, 633–647. [Google Scholar] [CrossRef] [PubMed]
- Cockerill, P.N. Structure and Function of Active Chromatin and DNase I Hypersensitive Sites. FEBS J. 2011, 278, 2182–2210. [Google Scholar] [CrossRef] [PubMed]
- Gaulton, K.J.; Nammo, T.; Pasquali, L.; Simon, J.M.; Giresi, P.G.; Fogarty, M.P.; Panhuis, T.M.; Mieczkowski, P.; Secchi, A.; Bosco, D.; et al. A Map of Open Chromatin in Human Pancreatic Islets. Nat. Genet. 2010, 42, 255–259. [Google Scholar] [CrossRef]
- Madani Tonekaboni, S.A.; Mazrooei, P.; Kofia, V.; Haibe-Kains, B.; Lupien, M. Identifying Clusters of Cis-Regulatory Elements Underpinning TAD Structures and Lineage-Specific Regulatory Networks. Genome Res. 2019, 29, 1733–1743. [Google Scholar] [CrossRef]
- Song, L.; Zhang, Z.; Grasfeder, L.L.; Boyle, A.P.; Giresi, P.G.; Lee, B.-K.; Sheffield, N.C.; Gräf, S.; Huss, M.; Keefe, D.; et al. Open Chromatin Defined by DNaseI and FAIRE Identifies Regulatory Elements That Shape Cell-Type Identity. Genome Res. 2011, 21, 1757–1767. [Google Scholar] [CrossRef]
- Beirowski, B.; Wong, K.M.; Babetto, E.; Milbrandt, J. mTORC1 Promotes Proliferation of Immature Schwann Cells and Myelin Growth of Differentiated Schwann Cells. Proc. Natl. Acad. Sci. USA 2017, 114, E4261–E4270. [Google Scholar] [CrossRef]
- Akhade, V.S.; Pal, D.; Kanduri, C. Long Noncoding RNA: Genome Organization and Mechanism of Action. Adv. Exp. Med. Biol. 2017, 1008, 47–74. [Google Scholar] [CrossRef]
- Rinn, J.L.; Chang, H.Y. Genome Regulation by Long Noncoding RNAs. Annu. Rev. Biochem. 2012, 81, 145–166. [Google Scholar] [CrossRef]
- Greenwald, W.W.; Li, H.; Benaglio, P.; Jakubosky, D.; Matsui, H.; Schmitt, A.; Selvaraj, S.; D’Antonio, M.; D’Antonio-Chronowska, A.; Smith, E.N.; et al. Subtle Changes in Chromatin Loop Contact Propensity Are Associated with Differential Gene Regulation and Expression. Nat. Commun. 2019, 10, 1054. [Google Scholar] [CrossRef]
- Dowen, J.M.; Fan, Z.P.; Hnisz, D.; Ren, G.; Abraham, B.J.; Zhang, L.N.; Weintraub, A.S.; Schujiers, J.; Lee, T.I.; Zhao, K.; et al. Control of Cell Identity Genes Occurs in Insulated Neighborhoods in Mammalian Chromosomes. Cell 2014, 159, 374–387. [Google Scholar] [CrossRef] [PubMed]
- Phanstiel, D.H.; Van Bortle, K.; Spacek, D.; Hess, G.T.; Shamim, M.S.; Machol, I.; Love, M.I.; Aiden, E.L.; Bassik, M.C.; Snyder, M.P. Static and Dynamic DNA Loops Form AP-1-Bound Activation Hubs during Macrophage Development. Mol. Cell 2017, 67, 1037–1048.e6. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.D.; Hu, M.; Jung, I.; Xu, Z.; Qiu, Y.; Tan, C.L.; Li, Y.; Lin, S.; Lin, Y.; Barr, C.L.; et al. A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the Human Genome. Cell Rep. 2016, 17, 2042–2059. [Google Scholar] [CrossRef] [PubMed]
- Fraser, J.; Ferrai, C.; Chiariello, A.M.; Schueler, M.; Rito, T.; Laudanno, G.; Barbieri, M.; Moore, B.L.; Kraemer, D.C.; Aitken, S.; et al. Hierarchical Folding and Reorganization of Chromosomes Are Linked to Transcriptional Changes in Cellular Differentiation. Mol. Syst. Biol. 2015, 11, 825. [Google Scholar] [CrossRef] [PubMed]
- Norrmén, C.; Suter, U. Akt/mTOR Signalling in Myelination. Biochem. Soc. Trans. 2013, 41, 944–950. [Google Scholar] [CrossRef]
- Norrmén, C.; Figlia, G.; Lebrun-Julien, F.; Pereira, J.A.; Trötzmüller, M.; Köfeler, H.C.; Rantanen, V.; Wessig, C.; van Deijk, A.-L.F.; Smit, A.B.; et al. mTORC1 Controls PNS Myelination along the mTORC1-RXRγ-SREBP-Lipid Biosynthesis Axis in Schwann Cells. Cell Rep. 2014, 9, 646–660. [Google Scholar] [CrossRef]
- Norrmén, C.; Figlia, G.; Pfistner, P.; Pereira, J.A.; Bachofner, S.; Suter, U. mTORC1 Is Transiently Reactivated in Injured Nerves to Promote C-Jun Elevation and Schwann Cell Dedifferentiation. J. Neurosci. 2018, 38, 4811–4828. [Google Scholar] [CrossRef]
- Oudelaar, A.M.; Higgs, D.R. The Relationship between Genome Structure and Function. Nat. Rev. Genet. 2021, 22, 154–168. [Google Scholar] [CrossRef]
- Oudelaar, A.M.; Davies, J.O.J.; Hanssen, L.L.P.; Telenius, J.M.; Schwessinger, R.; Liu, Y.; Brown, J.M.; Downes, D.J.; Chiariello, A.M.; Bianco, S.; et al. Single-Allele Chromatin Interactions Identify Regulatory Hubs in Dynamic Compartmentalized Domains. Nat. Genet. 2018, 50, 1744–1751. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez Moreno, M.; Karambizi, D.; Hwang, H.; Fregoso, K.; Michles, M.J.; Fajardo, E.; Fiser, A.; Tapinos, N. Role of the Egr2 Promoter Antisense RNA in Modulating the Schwann Cell Chromatin Landscape. Biomedicines 2024, 12, 2594. https://doi.org/10.3390/biomedicines12112594
Martinez Moreno M, Karambizi D, Hwang H, Fregoso K, Michles MJ, Fajardo E, Fiser A, Tapinos N. Role of the Egr2 Promoter Antisense RNA in Modulating the Schwann Cell Chromatin Landscape. Biomedicines. 2024; 12(11):2594. https://doi.org/10.3390/biomedicines12112594
Chicago/Turabian StyleMartinez Moreno, Margot, David Karambizi, Hyeyeon Hwang, Kristen Fregoso, Madison J. Michles, Eduardo Fajardo, Andras Fiser, and Nikos Tapinos. 2024. "Role of the Egr2 Promoter Antisense RNA in Modulating the Schwann Cell Chromatin Landscape" Biomedicines 12, no. 11: 2594. https://doi.org/10.3390/biomedicines12112594
APA StyleMartinez Moreno, M., Karambizi, D., Hwang, H., Fregoso, K., Michles, M. J., Fajardo, E., Fiser, A., & Tapinos, N. (2024). Role of the Egr2 Promoter Antisense RNA in Modulating the Schwann Cell Chromatin Landscape. Biomedicines, 12(11), 2594. https://doi.org/10.3390/biomedicines12112594