Tumor-Promoted Changes in Pediatric Brain Histology Can Be Distinguished from Normal Parenchyma by Desorption Electrospray Ionization Mass Spectrometry Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients and Clinical Data
2.3. Sample Preparation
2.4. DESI-MSI
2.5. Histopathological Analyses and Spectra Annotation
2.6. Statistical Analysis
2.7. Data Modeling
2.8. Collision Induced Dissociation Tandem Mass Spectrometry (CID-MS/MS)
2.9. Immunohistochemistry Staining
2.10. Methylation-Based Molecular Classification of Tumors
3. Results
3.1. 2D Ion Images Obtained by DESI-MSI Consistently Agree with Histological Architecture of the Tissue
3.2. DESI-MSI Data Can Be Used to Distinguish Tumor Tissue from Normal Parenchyma in Pediatric Brain Biopsies
3.3. DESI-MSI Reveals Differences Between the Lipid Profile Found in Low-Grade Tumors Compared to High-Grade Tumors
3.4. Tandem Mass Spectrometry Allowed the Identification of Molecular Species Associated with Tumor Transformation in Pediatric Brain Tissue
3.5. Mass Spectra Profile According to the Expression of Clinically Relevant Phenotype and Proliferation Biomarkers in Pediatric Brain Tumors
3.6. Mass Spectra Profile of Pediatric Brain Tumors According to Its Methylation-Based Classification
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pollack, I.F.; Agnihotri, S.; Broniscer, A. Childhood Brain Tumors: Current Management, Biological Insights, and Future Directions. J. Neurosurg. Pediatr. 2019, 23, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.H.D.; Aquilina, K. Surgical Approaches in Pediatric Neuro-Oncology. Cancer Metastasis Rev. 2019, 38, 723–747. [Google Scholar] [CrossRef] [PubMed]
- Adesina, A.M. Frozen Section Diagnosis of Pediatric Brain Tumors. Surg. Pathol. Clin. 2010, 3, 769–796. [Google Scholar] [CrossRef] [PubMed]
- Jaafar, H. Intra-Operative Frozen Section Consultation: Concepts, Applications and Limitations. Malays. J. Med. Sci. 2006, 13, 4–12. [Google Scholar]
- Gal, A.A. The 100-Year Anniversary of the Description of the Frozen Section Procedure. JAMA 2005, 294, 3135. [Google Scholar] [CrossRef]
- Mat Zin, A.A.; Zulkarnain, S. Diagnostic Accuracy of Cytology Smear and Frozen Section in Glioma. Asian Pac. J. Cancer Prev. 2019, 20, 321–325. [Google Scholar] [CrossRef]
- Brainard, J.A.; Prayson, R.A.; Barnett, G.H. Frozen Section Evaluation of Stereotactic Brain Biopsies: Diagnostic Yield at the Stereotactic Target Position in 188 Cases. Arch. Pathol. Lab. Med. 1997, 121, 481–484. [Google Scholar]
- Kobayashi, K.; Ando, K.; Ito, K.; Tsushima, M.; Morozumi, M.; Tanaka, S.; Machino, M.; Ota, K.; Ishiguro, N.; Imagama, S. Accuracy of Intraoperative Pathological Diagnosis Using Frozen Sections of Spinal Cord Lesions. Clin. Neurol. Neurosurg. 2018, 167, 117–121. [Google Scholar] [CrossRef]
- Uematsu, Y.; Owai, Y.; Okita, R.; Tanaka, Y.; Itakura, T. The Usefulness and Problem of Intraoperative Rapid Diagnosis in Surgical Neuropathology. Brain Tumor Pathol. 2007, 24, 47–52. [Google Scholar] [CrossRef]
- Plesec, T.P.; Prayson, R.A. Frozen Section Discrepancy in the Evaluation of Central Nervous System Tumors. Arch. Pathol. Lab. Med. 2007, 131, 1532–1540. [Google Scholar] [CrossRef]
- Nouri Obeidat, F.; Adnan Awad, H.; Talal Mansour, A.; Hussein Hajeer, M.; Asem Al-jalabi, M.; Emad Abudalu, L. Accuracy of Frozen-Section Diagnosis of Brain Tumors: An 11-Year Experience from a Tertiary Care Center. Turk. Neurosurg. 2018, 29, 242–246. [Google Scholar] [CrossRef]
- Tofte, K.; Berger, C.; Torp, S.; Solheim, O. The Diagnostic Properties of Frozen Sections in Suspected Intracranial Tumors: A Study of 578 Consecutive Cases. Surg. Neurol. Int. 2014, 5, 170. [Google Scholar] [CrossRef]
- Molendijk, J.; Robinson, H.; Djuric, Z.; Hill, M.M. Lipid Mechanisms in Hallmarks of Cancer. Mol. Omics 2020, 16, 6–18. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Stiban, J.; Perera, M. Very Long Chain Ceramides Interfere with C16-Ceramide-Induced Channel Formation: A Plausible Mechanism for Regulating the Initiation of Intrinsic Apoptosis. Biochim. Biophys. Acta (BBA)-Biomembr. 2015, 1848, 561–567. [Google Scholar] [CrossRef]
- Sutphen, R.; Xu, Y.; Wilbanks, G.D.; Fiorica, J.; Grendys, E.C.; LaPolla, J.P.; Arango, H.; Hoffman, M.S.; Martino, M.; Wakeley, K.; et al. Lysophospholipids Are Potential Biomarkers of Ovarian Cancer. Cancer Epidemiol. Biomark. Prev. 2004, 13, 1185–1191. [Google Scholar] [CrossRef]
- Lin, L.; Ding, Y.; Wang, Y.; Wang, Z.; Yin, X.; Yan, G.; Zhang, L.; Yang, P.; Shen, H. Functional Lipidomics: Palmitic Acid Impairs Hepatocellular Carcinoma Development by Modulating Membrane Fluidity and Glucose Metabolism. Hepatology 2017, 66, 432–448. [Google Scholar] [CrossRef]
- Giskeødegård, G.F.; Hansen, A.F.; Bertilsson, H.; Gonzalez, S.V.; Kristiansen, K.A.; Bruheim, P.; Mjøs, S.A.; Angelsen, A.; Bathen, T.F.; Tessem, M.-B. Metabolic Markers in Blood Can Separate Prostate Cancer from Benign Prostatic Hyperplasia. Br. J. Cancer 2015, 113, 1712–1719. [Google Scholar] [CrossRef]
- Abuhusain, H.J.; Matin, A.; Qiao, Q.; Shen, H.; Kain, N.; Day, B.W.; Stringer, B.W.; Daniels, B.; Laaksonen, M.A.; Teo, C.; et al. A Metabolic Shift Favoring Sphingosine 1-Phosphate at the Expense of Ceramide Controls Glioblastoma Angiogenesis. J. Biol. Chem. 2013, 288, 37355–37364. [Google Scholar] [CrossRef]
- Nagahashi, M.; Tsuchida, J.; Moro, K.; Hasegawa, M.; Tatsuda, K.; Woelfel, I.A.; Takabe, K.; Wakai, T. High Levels of Sphingolipids in Human Breast Cancer. J. Surg. Res. 2016, 204, 435–444. [Google Scholar] [CrossRef]
- Yan, F.; Zhao, H.; Zeng, Y. Lipidomics: A Promising Cancer Biomarker. Clin. Transl. Med. 2018, 7, 21. [Google Scholar] [CrossRef]
- Zhang, J.; Sans, M.; Garza, K.Y.; Eberlin, L.S. Mass spectrometry technologies to advance care for cancer patients in clinical and intraoperative use. Mass Spectrom. Rev. 2021, 40, 692–720. [Google Scholar] [CrossRef]
- King, M.E.; Lin, M.; Spradlin, M.; Eberlin, L.S. Advances and Emerging Medical Applications of Direct Mass Spectrometry Technologies for Tissue Analysis. Annu. Rev. Anal. Chem. 2023, 16, 1–25. [Google Scholar] [CrossRef]
- Rankin-Turner, S.; Sears, P.; Heaney, L.M. Applications of Ambient Ionization Mass Spectrometry in 2022: An Annual Review. Anal. Sci. Adv. 2023, 4, 133–153. [Google Scholar] [CrossRef]
- Takáts, Z.; Wiseman, J.M.; Gologan, B.; Cooks, R.G. Mass Spectrometry Sampling Under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471–473. [Google Scholar] [CrossRef]
- Morato, N.M.; Cooks, R.G. Desorption Electrospray Ionization Mass Spectrometry: 20 Years. Acc. Chem. Res. 2023, 56, 2526–2536. [Google Scholar] [CrossRef]
- Tzafetas, M.; Mitra, A.; Paraskevaidi, M.; Bodai, Z.; Kalliala, I.; Bowden, S.; Lathouras, K.; Rosini, F.; Szasz, M.; Savage, A.; et al. The Intelligent Knife (IKnife) and Its Intraoperative Diagnostic Advantage for the Treatment of Cervical Disease. Proc. Natl. Acad. Sci. USA 2020, 117, 7338–7346. [Google Scholar] [CrossRef]
- Van Hese, L.; De Vleeschouwer, S.; Theys, T.; Larivière, E.; Solie, L.; Sciot, R.; Siegel, T.P.; Rex, S.; Heeren, R.M.A.; Cuypers, E. Towards Real-Time Intraoperative Tissue Interrogation for REIMS-Guided Glioma Surgery. J. Mass Spectrom. Adv. Clin. Lab. 2022, 24, 80–89. [Google Scholar] [CrossRef]
- Ogrinc, N.; Kruszewski, A.; Chaillou, P.; Saudemont, P.; Lagadec, C.; Salzet, M.; Duriez, C.; Fournier, I. Robot-Assisted SpiderMass for In Vivo Real-Time Topography Mass Spectrometry Imaging. Anal. Chem. 2021, 93, 14383–14391. [Google Scholar] [CrossRef]
- Ogrinc, N.; Attencourt, C.; Colin, E.; Boudahi, A.; Tebbakha, R.; Salzet, M.; Testelin, S.; Dakpé, S.; Fournier, I. Mass Spectrometry-Based Differentiation of Oral Tongue Squamous Cell Carcinoma and Nontumor Regions With the SpiderMass Technology. Front. Oral Health 2022, 3, 827360. [Google Scholar] [CrossRef]
- DeHoog, R.J.; King, M.E.; Keating, M.F.; Zhang, J.; Sans, M.; Feider, C.L.; Garza, K.Y.; Bensussan, A.; Krieger, A.; Lin, J.Q.; et al. Intraoperative Identification of Thyroid and Parathyroid Tissues During Human Endocrine Surgery Using the MasSpec Pen. JAMA Surg. 2023, 158, 1050. [Google Scholar] [CrossRef]
- Garza, K.Y.; King, M.E.; Nagi, C.; DeHoog, R.J.; Zhang, J.; Sans, M.; Krieger, A.; Feider, C.L.; Bensussan, A.V.; Keating, M.F.; et al. Intraoperative Evaluation of Breast Tissues During Breast Cancer Operations Using the MasSpec Pen. JAMA Netw. Open 2024, 7, e242684. [Google Scholar] [CrossRef]
- Challen, B.; Cramer, R. Advances in Ionisation Techniques for Mass Spectrometry-based Omics Research. Proteomics 2022, 22, e2100394. [Google Scholar] [CrossRef]
- Woolman, M.; Kuzan-Fischer, C.M.; Ferry, I.; Kiyota, T.; Luu, B.; Wu, M.; Munoz, D.G.; Das, S.; Aman, A.; Taylor, M.D.; et al. Picosecond Infrared Laser Desorption Mass Spectrometry Identifies Medulloblastoma Subgroups on Intrasurgical Timescales. Cancer Res. 2019, 79, 2426–2434. [Google Scholar] [CrossRef]
- Woolman, M.; Kiyota, T.; Belgadi, S.A.; Fujita, N.; Fiorante, A.; Ramaswamy, V.; Daniels, C.; Rutka, J.T.; McIntosh, C.; Munoz, D.G.; et al. Lipidomic-Based Approach to 10 s Classification of Major Pediatric Brain Cancer Types with Picosecond Infrared Laser Mass Spectrometry. Anal. Chem. 2024, 96, 1019–1028. [Google Scholar] [CrossRef]
- Eberlin, L.S.; Liu, X.; Ferreira, C.R.; Santagata, S.; Agar, N.Y.R.; Cooks, R.G. Desorption Electrospray Ionization Then MALDI Mass Spectrometry Imaging of Lipid and Protein Distributions in Single Tissue Sections. Anal. Chem. 2011, 83, 8366–8371. [Google Scholar] [CrossRef]
- Fenn, J.B.; Mann, M.; Meng, C.K.; Wong, S.F.; Whitehouse, C.M. Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science 1989, 246, 64–71. [Google Scholar] [CrossRef]
- Banerjee, S.; Mazumdar, S. Electrospray Ionization Mass Spectrometry: A Technique to Access the Information beyond the Molecular Weight of the Analyte. Int. J. Anal. Chem. 2012, 2012, 282574. [Google Scholar] [CrossRef]
- Banerjee, S.; Zare, R.N.; Tibshirani, R.J.; Kunder, C.A.; Nolley, R.; Fan, R.; Brooks, J.D.; Sonn, G.A. Diagnosis of Prostate Cancer by Desorption Electrospray Ionization Mass Spectrometric Imaging of Small Metabolites and Lipids. Proc. Natl. Acad. Sci. USA 2017, 114, 3334–3339. [Google Scholar] [CrossRef]
- Wu, C.; Dill, A.L.; Eberlin, L.S.; Cooks, R.G.; Ifa, D.R. Mass Spectrometry Imaging under Ambient Conditions. Mass Spectrom. Rev. 2013, 32, 218–243. [Google Scholar] [CrossRef]
- Nagai, K.; Uranbileg, B.; Chen, Z.; Fujioka, A.; Yamazaki, T.; Matsumoto, Y.; Tsukamoto, H.; Ikeda, H.; Yatomi, Y.; Chiba, H.; et al. Identification of Novel Biomarkers of Hepatocellular Carcinoma by High-definition Mass Spectrometry: Ultrahigh-performance Liquid Chromatography Quadrupole Time-of-flight Mass Spectrometry and Desorption Electrospray Ionization Mass Spectrometry Imaging. Rapid Commun. Mass Spectrom. 2020, 34, e8551. [Google Scholar] [CrossRef]
- Porcari, A.M.; Zhang, J.; Garza, K.Y.; Rodrigues-Peres, R.M.; Lin, J.Q.; Young, J.H.; Tibshirani, R.; Nagi, C.; Paiva, G.R.; Carter, S.A.; et al. Multicenter Study Using Desorption-Electrospray-Ionization-Mass-Spectrometry Imaging for Breast-Cancer Diagnosis. Anal. Chem. 2018, 90, 11324–11332. [Google Scholar] [CrossRef]
- Dill, A.L.; Eberlin, L.S.; Zheng, C.; Costa, A.B.; Ifa, D.R.; Cheng, L.; Masterson, T.A.; Koch, M.O.; Vitek, O.; Cooks, R.G. Multivariate Statistical Differentiation of Renal Cell Carcinomas Based on Lipidomic Analysis by Ambient Ionization Imaging Mass Spectrometry. Anal. Bioanal. Chem. 2010, 398, 2969–2978. [Google Scholar] [CrossRef]
- Eberlin, L.S.; Dill, A.L.; Costa, A.B.; Ifa, D.R.; Cheng, L.; Masterson, T.; Koch, M.; Ratliff, T.L.; Cooks, R.G. Cholesterol Sulfate Imaging in Human Prostate Cancer Tissue by Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2010, 82, 3430–3434. [Google Scholar] [CrossRef]
- Dill, A.L.; Eberlin, L.S.; Costa, A.B.; Zheng, C.; Ifa, D.R.; Cheng, L.; Masterson, T.A.; Koch, M.O.; Vitek, O.; Cooks, R.G. Multivariate Statistical Identification of Human Bladder Carcinomas Using Ambient Ionization Imaging Mass Spectrometry. Chem.—A Eur. J. 2011, 17, 2897–2902. [Google Scholar] [CrossRef]
- Eberlin, L.S.; Tibshirani, R.J.; Zhang, J.; Longacre, T.A.; Berry, G.J.; Bingham, D.B.; Norton, J.A.; Zare, R.N.; Poultsides, G.A. Molecular Assessment of Surgical-Resection Margins of Gastric Cancer by Mass-Spectrometric Imaging. Proc. Natl. Acad. Sci. USA 2014, 111, 2436–2441. [Google Scholar] [CrossRef]
- Eberlin, L.S.; Margulis, K.; Planell-Mendez, I.; Zare, R.N.; Tibshirani, R.; Longacre, T.A.; Jalali, M.; Norton, J.A.; Poultsides, G.A. Pancreatic Cancer Surgical Resection Margins: Molecular Assessment by Mass Spectrometry Imaging. PLoS Med. 2016, 13, e1002108. [Google Scholar] [CrossRef]
- DeHoog, R.J.; Zhang, J.; Alore, E.; Lin, J.Q.; Yu, W.; Woody, S.; Almendariz, C.; Lin, M.; Engelsman, A.F.; Sidhu, S.B.; et al. Preoperative Metabolic Classification of Thyroid Nodules Using Mass Spectrometry Imaging of Fine-Needle Aspiration Biopsies. Proc. Natl. Acad. Sci. USA 2019, 116, 21401–21408. [Google Scholar] [CrossRef]
- Bensussan, A.V.; Lin, J.; Guo, C.; Katz, R.; Krishnamurthy, S.; Cressman, E.; Eberlin, L.S. Distinguishing Non-Small Cell Lung Cancer Subtypes in Fine Needle Aspiration Biopsies by Desorption Electrospray Ionization Mass Spectrometry Imaging. Clin. Chem. 2020, 66, 1424–1433. [Google Scholar] [CrossRef]
- Gerbig, S.; Golf, O.; Balog, J.; Denes, J.; Baranyai, Z.; Zarand, A.; Raso, E.; Timar, J.; Takats, Z. Analysis of Colorectal Adenocarcinoma Tissue by Desorption Electrospray Ionization Mass Spectrometric Imaging. Anal. Bioanal. Chem. 2012, 403, 2315–2325. [Google Scholar] [CrossRef]
- Jarmusch, A.K.; Pirro, V.; Baird, Z.; Hattab, E.M.; Cohen-Gadol, A.A.; Cooks, R.G. Lipid and Metabolite Profiles of Human Brain Tumors by Desorption Electrospray Ionization-MS. Proc. Natl. Acad. Sci. USA 2016, 113, 1486–1491. [Google Scholar] [CrossRef]
- Pirro, V.; Alfaro, C.M.; Jarmusch, A.K.; Hattab, E.M.; Cohen-Gadol, A.A.; Cooks, R.G. Intraoperative Assessment of Tumor Margins during Glioma Resection by Desorption Electrospray Ionization-Mass Spectrometry. Proc. Natl. Acad. Sci. USA 2017, 114, 6700–6705. [Google Scholar] [CrossRef]
- Pirro, V.; Jarmusch, A.K.; Alfaro, C.M.; Hattab, E.M.; Cohen-Gadol, A.A.; Cooks, R.G. Utility of Neurological Smears for Intrasurgical Brain Cancer Diagnostics and Tumour Cell Percentage by DESI-MS. Analyst 2017, 142, 449–454. [Google Scholar] [CrossRef]
- Jarmusch, A.K.; Alfaro, C.M.; Pirro, V.; Hattab, E.M.; Cohen-Gadol, A.A.; Cooks, R.G. Differential Lipid Profiles of Normal Human Brain Matter and Gliomas by Positive and Negative Mode Desorption Electrospray Ionization—Mass Spectrometry Imaging. PLoS ONE 2016, 11, e0163180. [Google Scholar] [CrossRef]
- Brown, H.M.; Alfaro, C.M.; Pirro, V.; Dey, M.; Hattab, E.M.; Cohen-Gadol, A.A.; Cooks, R.G. Intraoperative Mass Spectrometry Platform for IDH Mutation Status Prediction, Glioma Diagnosis, and Estimation of Tumor Cell Infiltration. J. Appl. Lab. Med. 2021, 6, 902–916. [Google Scholar] [CrossRef]
- Eberlin, L.S.; Norton, I.; Dill, A.L.; Golby, A.J.; Ligon, K.L.; Santagata, S.; Cooks, R.G.; Agar, N.Y.R. Classifying Human Brain Tumors by Lipid Imaging with Mass Spectrometry. Cancer Res. 2012, 72, 645–654. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef]
- Eberlin, L.S. DESI-MS Imaging of Lipids and Metabolites from Biological Samples. In Mass Spectrometry in Metabolomics: Methods and Protocols; Humana Press: New York, NY, USA, 2014; pp. 299–311. [Google Scholar]
- Xia, J.; Wishart, D.S. Web-Based Inference of Biological Patterns, Functions and Pathways from Metabolomic Data Using MetaboAnalyst. Nat. Protoc. 2011, 6, 743–760. [Google Scholar] [CrossRef]
- van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, Scaling, and Transformations: Improving the Biological Information Content of Metabolomics Data. BMC Genom. 2006, 7, 142. [Google Scholar] [CrossRef]
- Li, B.; Tang, J.; Yang, Q.; Cui, X.; Li, S.; Chen, S.; Cao, Q.; Xue, W.; Chen, N.; Zhu, F. Performance Evaluation and Online Realization of Data-Driven Normalization Methods Used in LC/MS Based Untargeted Metabolomics Analysis. Sci. Rep. 2016, 6, 38881. [Google Scholar] [CrossRef]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the Gap between Raw Spectra and Functional Insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Kultima, K.; Nilsson, A.; Scholz, B.; Rossbach, U.L.; Fälth, M.; Andrén, P.E. Development and Evaluation of Normalization Methods for Label-Free Relative Quantification of Endogenous Peptides. Mol. Cell. Proteom. 2009, 8, 2285–2295. [Google Scholar] [CrossRef]
- Tibshirani, R. The Lasso Method for Variable Selection in the Cox Model. Stat. Med. 1997, 16, 385–395. [Google Scholar] [CrossRef]
- Fahy, E.; Sud, M.; Cotter, D.; Subramaniam, S. LIPID MAPS Online Tools for Lipid Research. Nucleic Acids Res. 2007, 35, W606–W612. [Google Scholar] [CrossRef]
- Capper, D.; Jones, D.T.W.; Sill, M.; Hovestadt, V.; Schrimpf, D.; Sturm, D.; Koelsche, C.; Sahm, F.; Chavez, L.; Reuss, D.E.; et al. DNA Methylation-Based Classification of Central Nervous System Tumours. Nature 2018, 555, 469–474. [Google Scholar] [CrossRef]
- Wu, Z.; Abdullaev, Z.; Pratt, D.; Chung, H.-J.; Skarshaug, S.; Zgonc, V.; Perry, C.; Pack, S.; Saidkhodjaeva, L.; Nagaraj, S.; et al. Impact of the Methylation Classifier and Ancillary Methods on CNS Tumor Diagnostics. Neuro-Oncology 2022, 24, 571–581. [Google Scholar] [CrossRef]
- Shankar, V.; Tibshirani, R.; Zare, R.N. MassExplorer: A Computational Tool for Analyzing Desorption Electrospray Ionization Mass Spectrometry Data. Bioinformatics 2021, 37, 3688–3690. [Google Scholar] [CrossRef]
- Margulis, K.; Chiou, A.S.; Aasi, S.Z.; Tibshirani, R.J.; Tang, J.Y.; Zare, R.N. Distinguishing Malignant from Benign Microscopic Skin Lesions Using Desorption Electrospray Ionization Mass Spectrometry Imaging. Proc. Natl. Acad. Sci. USA 2018, 115, 6347–6352. [Google Scholar] [CrossRef]
- Yang, X.; Song, X.; Zhang, X.; Shankar, V.; Wang, S.; Yang, Y.; Chen, S.; Zhang, L.; Ni, Y.; Zare, R.N.; et al. In Situ DESI-MSI Lipidomic Profiles of Mucosal Margin of Oral Squamous Cell Carcinoma. EBioMedicine 2021, 70, 103529. [Google Scholar] [CrossRef]
- Kind, T.; Tsugawa, H.; Cajka, T.; Ma, Y.; Lai, Z.; Mehta, S.S.; Wohlgemuth, G.; Barupal, D.K.; Showalter, M.R.; Arita, M.; et al. Identification of Small Molecules Using Accurate Mass MS/MS Search. Mass Spectrom. Rev. 2018, 37, 513–532. [Google Scholar] [CrossRef] [PubMed]
- Duraiyan, J.; Govindarajan, R.; Kaliyappan, K.; Palanisamy, M. Applications of Immunohistochemistry. J. Pharm. Bioallied Sci. 2012, 4, 307. [Google Scholar] [CrossRef]
- Capper, D.; Stichel, D.; Sahm, F.; Jones, D.T.W.; Schrimpf, D.; Sill, M.; Schmid, S.; Hovestadt, V.; Reuss, D.E.; Koelsche, C.; et al. Practical Implementation of DNA Methylation and Copy-Number-Based CNS Tumor Diagnostics: The Heidelberg Experience. Acta Neuropathol. 2018, 136, 181–210. [Google Scholar] [CrossRef] [PubMed]
- Giussani, C.; Trezza, A.; Ricciuti, V.; Di Cristofori, A.; Held, A.; Isella, V.; Massimino, M. Intraoperative MRI versus Intraoperative Ultrasound in Pediatric Brain Tumor Surgery: Is Expensive Better than Cheap? A Review of the Literature. Child’s Nerv. Syst. 2022, 38, 1445–1454. [Google Scholar] [CrossRef]
- Santagata, S.; Eberlin, L.S.; Norton, I.; Calligaris, D.; Feldman, D.R.; Ide, J.L.; Liu, X.; Wiley, J.S.; Vestal, M.L.; Ramkissoon, S.H.; et al. Intraoperative Mass Spectrometry Mapping of an Onco-Metabolite to Guide Brain Tumor Surgery. Proc. Natl. Acad. Sci. USA 2014, 111, 11121–11126. [Google Scholar] [CrossRef]
- Clark, A.R.; Calligaris, D.; Regan, M.S.; Pomeranz Krummel, D.; Agar, J.N.; Kallay, L.; MacDonald, T.; Schniederjan, M.; Santagata, S.; Pomeroy, S.L.; et al. Rapid Discrimination of Pediatric Brain Tumors by Mass Spectrometry Imaging. J. Neuro-Oncol. 2018, 140, 269–279. [Google Scholar] [CrossRef]
- Woolman, M.; Ferry, I.; Kuzan-Fischer, C.M.; Wu, M.; Zou, J.; Kiyota, T.; Isik, S.; Dara, D.; Aman, A.; Das, S.; et al. Rapid Determination of Medulloblastoma Subgroup Affiliation with Mass Spectrometry Using a Handheld Picosecond Infrared Laser Desorption Probe. Chem. Sci. 2017, 8, 6508–6519. [Google Scholar] [CrossRef]
- Kattner, P.; Strobel, H.; Khoshnevis, N.; Grunert, M.; Bartholomae, S.; Pruss, M.; Fitzel, R.; Halatsch, M.-E.; Schilberg, K.; Siegelin, M.D.; et al. Compare and Contrast: Pediatric Cancer versus Adult Malignancies. Cancer Metastasis Rev. 2019, 38, 673–682. [Google Scholar] [CrossRef]
- Kerian, K.S.; Jarmusch, A.K.; Pirro, V.; Koch, M.O.; Masterson, T.A.; Cheng, L.; Cooks, R.G. Differentiation of Prostate Cancer from Normal Tissue in Radical Prostatectomy Specimens by Desorption Electrospray Ionization and Touch Spray Ionization Mass Spectrometry. Analyst 2015, 140, 1090–1098. [Google Scholar] [CrossRef]
- Henderson, F.; Jones, E.; Denbigh, J.; Christie, L.; Chapman, R.; Hoyes, E.; Claude, E.; Williams, K.J.; Roncaroli, F.; McMahon, A. 3D DESI-MS Lipid Imaging in a Xenograft Model of Glioblastoma: A Proof of Principle. Sci. Rep. 2020, 10, 16512. [Google Scholar] [CrossRef]
Training set performance | Pathology | DESI-MSI prediction | Agreement | |
Normal | non-Normal | |||
Normal | 1285 | 146 | 90% | |
non-Normal | 830 | 23,413 | 97% | |
Overall Accuracy: 96.3% | ||||
Validation set performance | Pathology | DESI-MSI prediction | Agreement | |
Normal | non-Normal | |||
Normal | 364 | 124 | 75% | |
non-Normal | 493 | 9753 | 95% | |
Overall Accuracy: 94.2% |
Feature (Nominal m/z) | MS/MS Matched Fragments (Delta) | Putative Lipid Assignment | Proposed Formula | Exact m/z | Lasso Weight | |
---|---|---|---|---|---|---|
Features associated with tumor-promoted changes | 794 | PC(34:1) | C42H82ClNO8P | 794.5472 | 0.118 | |
744.55 (0.48) | ||||||
506.33 (0.91) | ||||||
480.31 (0.11) | ||||||
722 | 436.25 (0.02) | PE(35:5) or PE(P-36:4) | C40H70NO8P or C41H74NO7P | 722.4766 | 0.077 | |
303.23 (0.07) | ||||||
259.24 (0.23) | ||||||
760 | 673.48 (0.11) | PS(34:1) | C40H76NO10P | 760.5129 | 0.073 | |
281.25 (0.04) | ||||||
255.23 (0.09) | ||||||
Features associated with histologically normal brain parenchyma | 834 | 747.50 (0.17) | PS(40:6) | C46H78NO10P | 834.5285 | −0.282 |
419.26 (0.26) | ||||||
283.26 (0.04) | ||||||
835 | PI(34:1) | C43H81O13P | 835.5342 | −0.236 | ||
579.29 (0.07) | ||||||
553.28 (0.12) | ||||||
417.24 (0.22) | ||||||
391.23 (0.13) | ||||||
281.25 (0.01) | ||||||
255.23 (0.06) | ||||||
241.01 (0.03) |
Methylation Classes | N. Patients |
---|---|
Low grade glioma, pilocytic astrocytoma subtype | 20 |
Atypical teratoid rhabdoid tumor | 4 |
Choroid plexus tumor, subtype pediatric B | 4 |
Posterior fossa ependymoma, subtype A | 4 |
Medulloblastoma, Group 4 subtype | 4 |
Medulloblastoma, SHH subtype | 4 |
Control tissue, cerebellum | 3 |
Schwannoma | 3 |
Total | 46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seidinger, A.L.; Silva, F.L.T.; Euzébio, M.F.; Krieger, A.C.; Meidanis, J.; Gutierrez, J.M.; Bezerra, T.M.S.; Queiroz, L.; Silva, A.A.R.; Hoffmann, I.L.; et al. Tumor-Promoted Changes in Pediatric Brain Histology Can Be Distinguished from Normal Parenchyma by Desorption Electrospray Ionization Mass Spectrometry Imaging. Biomedicines 2024, 12, 2593. https://doi.org/10.3390/biomedicines12112593
Seidinger AL, Silva FLT, Euzébio MF, Krieger AC, Meidanis J, Gutierrez JM, Bezerra TMS, Queiroz L, Silva AAR, Hoffmann IL, et al. Tumor-Promoted Changes in Pediatric Brain Histology Can Be Distinguished from Normal Parenchyma by Desorption Electrospray Ionization Mass Spectrometry Imaging. Biomedicines. 2024; 12(11):2593. https://doi.org/10.3390/biomedicines12112593
Chicago/Turabian StyleSeidinger, Ana L., Felipe L. T. Silva, Mayara F. Euzébio, Anna C. Krieger, João Meidanis, Junier M. Gutierrez, Thais M. S. Bezerra, Luciano Queiroz, Alex A. Rosini. Silva, Iva L. Hoffmann, and et al. 2024. "Tumor-Promoted Changes in Pediatric Brain Histology Can Be Distinguished from Normal Parenchyma by Desorption Electrospray Ionization Mass Spectrometry Imaging" Biomedicines 12, no. 11: 2593. https://doi.org/10.3390/biomedicines12112593
APA StyleSeidinger, A. L., Silva, F. L. T., Euzébio, M. F., Krieger, A. C., Meidanis, J., Gutierrez, J. M., Bezerra, T. M. S., Queiroz, L., Silva, A. A. R., Hoffmann, I. L., Daiggi, C. M. M., Tedeschi, H., Eberlin, M. N., Eberlin, L. S., Yunes, J. A., Porcari, A. M., & Cardinalli, I. A. (2024). Tumor-Promoted Changes in Pediatric Brain Histology Can Be Distinguished from Normal Parenchyma by Desorption Electrospray Ionization Mass Spectrometry Imaging. Biomedicines, 12(11), 2593. https://doi.org/10.3390/biomedicines12112593