Tbp and Hprt1 Are Appropriate Reference Genes for Splenic Neutrophils Isolated from Healthy or Tumor-Bearing Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice
2.2. Tumor Strains
2.3. Tumor Transplantation and Design of Animal Experiments
2.4. Bone Marrow Cell (BMC) Isolation
2.5. Splenocyte Suspension Preparation
2.6. Neutrophil Isolation
2.7. RNA Isolation
2.8. Primer Design
2.9. cDNA Preparation and RT-qPCR
2.10. Gene Expression Stability Analysis
2.11. Validation of Selected Reference Genes
2.12. Data Analysis
3. Results
3.1. Experimental Design
3.2. Histological Analysis of the Primary Tumor Node and Organs with Metastasis
3.3. Gene Expression Profile of Selected Reference Genes
3.4. Gene Stability Analysis
3.4.1. BestKeeper Results
3.4.2. NormFinder Results
3.4.3. ΔCt Results
3.4.4. geNorm Results
3.4.5. Comprehensive Ranking of Reference Genes
3.5. RT-qPCR Normalization Using Different Reference Genes
4. Discussion
5. Conclusions
Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Russo, M.; Nastasi, C. Targeting the Tumor Microenvironment: A Close Up of Tumor-Associated Macrophages and Neutrophils. Front. Oncol. 2022, 12, 871513. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Li, C.; Wang, Z.; Xu, Y.; Shao, S.; Shao, F.; Wang, H.; Liu, J. Neutrophils in Cancer: Dual Roles through Intercellular Interactions. Oncogene 2024, 43, 1163–1177. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Pan, B.; Shi, H.; Yi, Y.; Zheng, X.; Ma, H.; Zhao, M.; Zhang, Z.; Cheng, L.; Huang, Y.; et al. Neutrophils’ Dual Role in Cancer: From Tumor Progression to Immunotherapeutic Potential. Int. Immunopharmacol. 2024, 140, 112788. [Google Scholar] [CrossRef] [PubMed]
- Sounbuli, K.; Mironova, N.; Alekseeva, L. Diverse Neutrophil Functions in Cancer and Promising Neutrophil-Based Cancer Therapies. Int. J. Mol. Sci. 2022, 23, 15827. [Google Scholar] [CrossRef]
- Alekseeva, L.; Mironova, N. Role of Cell-Free DNA and Deoxyribonucleases in Tumor Progression. Int. J. Mol. Sci. 2021, 22, 12246. [Google Scholar] [CrossRef]
- Fang, Q.; Stehr, A.M.; Naschberger, E.; Knopf, J.; Herrmann, M.; Stürzl, M. No NETs No TIME: Crosstalk between Neutrophil Extracellular Traps and the Tumor Immune Microenvironment. Front. Immunol. 2022, 13, 1075260. [Google Scholar] [CrossRef]
- Volkov, D.V.; Tetz, G.V.; Rubtsov, Y.P.; Stepanov, A.V.; Gabibov, A.G. Neutrophil Extracellular Traps (NETs): Opportunities for Targeted Therapy. Acta Naturae 2021, 13, 15–23. [Google Scholar] [CrossRef]
- Hirschhorn, D.; Budhu, S.; Kraehenbuehl, L.; Gigoux, M.; Schröder, D.; Chow, A.; Ricca, J.M.; Gasmi, B.; De Henau, O.; Mangarin, L.M.B.; et al. T Cell Immunotherapies Engage Neutrophils to Eliminate Tumor Antigen Escape Variants. Cell 2023, 186, 1432–1447.e17. [Google Scholar] [CrossRef]
- Gungabeesoon, J.; Gort-Freitas, N.A.; Kiss, M.; Bolli, E.; Messemaker, M.; Siwicki, M.; Hicham, M.; Bill, R.; Koch, P.; Cianciaruso, C.; et al. A Neutrophil Response Linked to Tumor Control in Immunotherapy. Cell 2023, 186, 1448–1464.e20. [Google Scholar] [CrossRef]
- De Filippo, K.; Rankin, S.M. The Secretive Life of Neutrophils Revealed by Intravital Microscopy. Front. Cell Dev. Biol. 2020, 8, 1236. [Google Scholar] [CrossRef]
- Luan, Y.; Hu, J.; Wang, Q.; Wang, X.; Li, W.; Qu, R.; Yang, C.; Rajendran, B.K.; Zhou, H.; Liu, P.; et al. Wnt5 Controls Splenic Myelopoiesis and Neutrophil Functional Ambivalency during DSS-Induced Colitis. Cell Rep. 2024, 43, 113934. [Google Scholar] [CrossRef] [PubMed]
- Akbar, N.; Braithwaite, A.T.; Corr, E.M.; Koelwyn, G.J.; van Solingen, C.; Cochain, C.; Saliba, A.E.; Corbin, A.; Pezzolla, D.; Jørgensen, M.M.; et al. Rapid Neutrophil Mobilization by VCAM-1+ Endothelial Cell-Derived Extracellular Vesicles. Cardiovasc. Res. 2023, 119, 236–251. [Google Scholar] [CrossRef]
- Jhunjhunwala, S.; Alvarez, D.; Aresta-DaSilva, S.; Tang, K.; Tang, B.C.; Greiner, D.L.; Newburger, P.E.; von Andrian, U.H.; Langer, R.; Anderson, D.G. Splenic Progenitors Aid in Maintaining High Neutrophil Numbers at Sites of Sterile Chronic Inflammation. J. Leukoc. Biol. 2016, 100, 253–260. [Google Scholar] [CrossRef]
- Sounbuli, K.; Alekseeva, L.A.; Markov, O.V.; Mironova, N.L. A Comparative Study of Different Protocols for Isolation of Murine Neutrophils from Bone Marrow and Spleen. Int. J. Mol. Sci. 2023, 24, 17273. [Google Scholar] [CrossRef]
- Maali, Y.; Molina, M.F.; Khedr, O.; Abdelnabi, M.N.; Dion, J.; Hassan, G.S.; Shoukry, N.H. Two Transcriptionally and Functionally Distinct Waves of Neutrophils during Mouse Acute Liver Injury. Hepatol. Commun. 2024, 8, e0459. [Google Scholar] [CrossRef] [PubMed]
- Kesteman, N.; Vansanten, G.; Pajak, B.; Goyert, S.M.; Moser, M. Injection of Lipopolysaccharide Induces the Migration of Splenic Neutrophils to the T Cell Area of the White Pulp: Role of CD14 and CXC Chemokines. J. Leukoc. Biol. 2008, 83, 640–647. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Mu, Y.; Feng, J.; Zhou, Y.; Zhang, X.; Zhu, M.; Zhang, C.; Jing, G.; Kong, G.; Lu, S.; et al. Splenic CD101+ Neutrophil Enhances Immune Suppression Which Promotes Hepatocellular Carcinoma Progression. HPB 2023, 25, S381. [Google Scholar] [CrossRef]
- Meinderts, S.M.; Oldenborg, P.A.; Beuger, B.M.; Klei, T.R.L.; Johansson, J.; Kuijpers, T.W.; Matozaki, T.; Huisman, E.J.; de Haas, M.; van den Berg, T.K.; et al. Human and Murine Splenic Neutrophils Are Potent Phagocytes of IgG-Opsonized Red Blood Cells. Blood Adv. 2017, 1, 875–886. [Google Scholar] [CrossRef]
- Christoffersson, G.; Phillipson, M. The Neutrophil: One Cell on Many Missions or Many Cells with Different Agendas? Cell Tissue Res. 2018, 371, 415–423. [Google Scholar] [CrossRef]
- Juzenaite, G.; Secklehner, J.; Vuononvirta, J.; Helbawi, Y.; Mackey, J.B.G.; Dean, C.; Harker, J.A.; Carlin, L.M.; Rankin, S.; De Filippo, K. Lung Marginated and Splenic Murine Resident Neutrophils Constitute Pioneers in Tissue-Defense During Systemic E. Coli Challenge. Front. Immunol. 2021, 12, 597595. [Google Scholar] [CrossRef]
- Alshetaiwi, H.; Pervolarakis, N.; McIntyre, L.L.; Ma, D.; Nguyen, Q.; Rath, J.A.; Nee, K.; Hernandez, G.; Evans, K.; Torosian, L.; et al. Defining the Emergence of Myeloid-Derived Suppressor Cells in Breast Cancer Using Single-Cell Transcriptomics. Sci. Immunol. 2020, 5, eaay6017. [Google Scholar] [CrossRef] [PubMed]
- Gätjen, M.; Brand, F.; Grau, M.; Gerlach, K.; Kettritz, R.; Westermann, J.; Anagnostopoulos, I.; Lenz, P.; Lenz, G.; Höpken, U.E.; et al. Splenic Marginal Zone Granulocytes Acquire an Accentuated Neutrophil B-Cell Helper Phenotype in Chronic Lymphocytic Leukemia. Cancer Res. 2016, 76, 5253–5265. [Google Scholar] [CrossRef] [PubMed]
- Cortez-Retamozo, V.; Etzrodt, M.; Newton, A.; Rauch, P.J.; Chudnovskiy, A.; Berger, C.; Ryan, R.J.H.; Iwamoto, Y.; Marinelli, B.; Gorbatov, R.; et al. Origins of Tumor-Associated Macrophages and Neutrophils. Proc. Natl. Acad. Sci. USA 2012, 109, 2491–2496. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, M.; Sun, J.; Li, X.; Shi, H.; Wang, X.; Liu, B.; Zhang, T.; Jiang, X.; Lin, L.; et al. Glycolytic Neutrophils Accrued in the Spleen Compromise Anti-Tumour T Cell Immunity in Breast Cancer. Nat. Metab. 2023, 5, 1408–1422. [Google Scholar] [CrossRef] [PubMed]
- Thellin, O.; Zorzi, W.; Lakaye, B.; De Borman, B.; Coumans, B.; Hennen, G.; Grisar, T.; Igout, A.; Heinen, E. Housekeeping Genes as Internal Standards: Use and Limits. J. Biotechnol. 1999, 75, 291–295. [Google Scholar] [CrossRef]
- Joshi, C.J.; Ke, W.; Drangowska-Way, A.; O’Rourke, E.J.; Lewis, N.E. What Are Housekeeping Genes? PLoS Comput. Biol. 2022, 18, e1010295. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Geigges, M.; Gubser, P.M.; Unterstab, G.; Lecoultre, Y.; Paro, R.; Hess, C. Reference Genes for Expression Studies in Human CD8+ Naïve and Effector Memory T Cells under Resting and Activating Conditions. Sci. Rep. 2020, 10, 9411. [Google Scholar] [CrossRef]
- Hendriks-Balk, M.C.; Michel, M.C.; Alewijnse, A.E. Pitfalls in the Normalization of Real-Time Polymerase Chain Reaction Data. Basic Res. Cardiol. 2007, 102, 195. [Google Scholar] [CrossRef]
- Kim, S.; Park, J.Y.; Lee, H.W.; Bae, S.U.; Kim, K.E.; Byun, S.J.; Seo, I. YWHAZ and TBP Are Potential Reference Gene Candidates for QPCR Analysis of Response to Radiation Therapy in Colorectal Cancer. Sci. Rep. 2023, 13, 12902. [Google Scholar] [CrossRef]
- Foquet, B.; Song, H. There Is No Magic Bullet: The Importance of Testing Reference Gene Stability in RT-QPCR Experiments across Multiple Closely Related Species. PeerJ 2020, 8, e9618. [Google Scholar] [CrossRef] [PubMed]
- Garratt, L.W. Current Understanding of the Neutrophil Transcriptome in Health and Disease. Cells 2021, 10, 2406. [Google Scholar] [CrossRef]
- Yuan, M.; Hu, X.; Xing, W.; Wu, X.; Pu, C.; Guo, W.; Zhu, X.; Yao, M.; Ao, L.; Li, Z.; et al. B2M Is a Biomarker Associated with Immune Infiltration in High Altitude Pulmonary Edema. Comb. Chem. High Throughput Screen. 2024, 27, 168–185. [Google Scholar] [CrossRef]
- Xie, F.; Wang, J.; Zhang, B. RefFinder: A Web-Based Tool for Comprehensively Analyzing and Identifying Reference Genes. Funct. Integr. Genom. 2023, 23, 125. [Google Scholar] [CrossRef]
- Teixeira, E.B.; Khayat, A.S.; Assumpção, P.P.; Casseb, S.M.; Moreira-Nunes, C.A.; Moreira, F.C. EndoGeneAnalyzer: A Tool for Selection and Validation of Reference Genes. PLoS ONE 2024, 19, e0299993. [Google Scholar] [CrossRef] [PubMed]
- de Souza, M.R.; Araújo, I.P.; da Costa Arruda, W.; Lima, A.A.; Ságio, S.A.; Chalfun-Junior, A.; Barreto, H.G. RGeasy: A Reference Gene Analysis Tool for Gene Expression Studies via RT-QPCR. BMC Genom. 2024, 25, 907. [Google Scholar] [CrossRef] [PubMed]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of Stable Housekeeping Genes, Differentially Regulated Target Genes and Sample Integrity: BestKeeper—Excel-Based Tool Using Pair-Wise Correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate Normalization of Real-Time Quantitative RT-PCR Data by Geometric Averaging of Multiple Internal Control Genes. Genome Biol. 2002, 3, 1–12. [Google Scholar] [CrossRef]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of Housekeeping Genes for Gene Expression Studies in Human Reticulocytes Using Real-Time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef]
- Kouadjo, K.E.; Nishida, Y.; Cadrin-Girard, J.F.; Yoshioka, M.; St-Amand, J. Housekeeping and Tissue-Specific Genes in Mouse Tissues. BMC Genom. 2007, 8, 127. [Google Scholar] [CrossRef] [PubMed]
- Vorachek, W.R.; Bobe, G.; Hall, J.A. Reference Gene Selection for Quantitative PCR Studies in Bovine Neutrophils. Adv. Biosci. Biotechnol. 2013, 4, 6–14. [Google Scholar] [CrossRef]
- Crookenden, M.A.; Walker, C.G.; Kuhn-Sherlock, B.; Murray, A.; Dukkipati, V.S.R.; Heiser, A.; Roche, J.R. Technical Note: Evaluation of Endogenous Control Gene Expression in Bovine Neutrophils by Reverse-Transcription Quantitative PCR Using Microfluidics Gene Expression Arrays. J. Dairy Sci. 2017, 100, 6763–6771. [Google Scholar] [CrossRef] [PubMed]
- Vorachek, W.R.; Hugejiletu; Bobe, G.; Hall, J.A. Reference Gene Selection for Quantitative PCR Studies in Sheep Neutrophils. Int. J. Mol. Sci. 2013, 14, 11484–11495. [Google Scholar] [CrossRef]
- De Ketelaere, A.; Goossens, K.; Peelman, L.; Burvenich, C. Technical Note: Validation of Internal Control Genes for Gene Expression Analysis in Bovine Polymorphonuclear Leukocytes. J. Dairy Sci. 2006, 89, 4066–4069. [Google Scholar] [CrossRef] [PubMed]
- Ledderose, C.; Heyn, J.; Limbeck, E.; Kreth, S. Selection of Reliable Reference Genes for Quantitative Real-Time PCR in Human T Cells and Neutrophils. BMC Res. Notes 2011, 4, 427. [Google Scholar] [CrossRef]
- Zhang, X.; Ding, L.; Sandford, A.J. Selection of Reference Genes for Gene Expression Studies in Human Neutrophils by Real-Time PCR. BMC Mol. Biol. 2005, 6, 4. [Google Scholar] [CrossRef]
- Sinha, D.K.; Smith, C.M. Selection of Reference Genes for Expression Analysis in Diuraphisnoxia (Hemiptera: Aphididae) Fed on Resistant and Susceptible Wheat Plants. Sci. Rep. 2014, 4, 5059. [Google Scholar] [CrossRef]
- Fragoulis, A.; Biller, K.; Fragoulis, S.; Lex, D.; Uhlig, S.; Reiss, L.K. Reference Gene Selection for Gene Expression Analyses in Mouse Models of Acute Lung Injury. Int. J. Mol. Sci. 2021, 22, 7853. [Google Scholar] [CrossRef]
- Pérez-Gómez, J.M.; Porcel-Pastrana, F.; De La Luz-Borrero, M.; Montero-Hidalgo, A.J.; Gómez-Gómez, E.; Herrera-Martínez, A.D.; Guzmán-Ruiz, R.; Malagón, M.M.; Gahete, M.D.; Luque, R.M. LRP10, PGK1 and RPLP0: Best Reference Genes in Periprostatic Adipose Tissue under Obesity and Prostate Cancer Conditions. Int. J. Mol. Sci. 2023, 24, 15140. [Google Scholar] [CrossRef]
- Zuker, M. Mfold Web Server for Nucleic Acid Folding and Hybridization Prediction. Nucleic Acids Res. 2003, 31, 3406–3415. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Kozera, B.; Rapacz, M. Reference Genes in Real-Time PCR. J. Appl. Genet. 2013, 54, 391. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.R.; Waldenström, J. With Reference to Reference Genes: A Systematic Review of Endogenous Controls in Gene Expression Studies. PLoS ONE 2015, 10, e0141853. [Google Scholar] [CrossRef]
- Sugiura, K.; Stock, C.C. Studies in a Tumor Spectrum. III. The Effect of Phosphoramides on the Growth of a Variety of Mouse and Rat Tumors. Cancer Res. 1955, 15, 38–51. [Google Scholar]
- Kellar, A.; Egan, C.; Morris, D. Preclinical Murine Models for Lung Cancer: Clinical Trial Applications. Biomed. Res. Int. 2015, 2015, 621324. [Google Scholar] [CrossRef]
- Mironova, N.; Shklyaeva, O.; Andreeva, E.; Popova, N.; Kaledin, V.; Nikolin, V.; Vlassov, V.; Zenkova, M. Animal Model of Drug-Resistant Tumor Progression. Ann. N. Y. Acad. Sci. 2006, 1091, 490–500. [Google Scholar] [CrossRef]
- Alekseeva, L.A.; Sen’kova, A.V.; Zenkova, M.A.; Mironova, N.L. Targeting Circulating SINEs and LINEs with DNase I Provides Metastases Inhibition in Experimental Tumor Models. Mol. Ther. Nucleic Acids 2020, 20, 50–61. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.; Wakem, M.; Dijkman, G.; Alsarraj, M.; Nguyen, M. A Practical Approach to RT-QPCR—Publishing Data That Conform to the MIQE Guidelines. Methods 2010, 50, S1–S5. [Google Scholar] [CrossRef]
- Sundaram, V.K.; Sampathkumar, N.K.; Massaad, C.; Grenier, J. Optimal Use of Statistical Methods to Validate Reference Gene Stability in Longitudinal Studies. PLoS ONE 2019, 14, e0219440. [Google Scholar] [CrossRef]
- Bunnell, T.M.; Burbach, B.J.; Shimizu, Y.; Ervasti, J.M. β-Actin Specifically Controls Cell Growth, Migration, and the G-Actin Pool. Mol. Biol. Cell 2011, 22, 4047–4058. [Google Scholar] [CrossRef]
- Sprenkeler, E.G.G.; Tool, A.T.J.; Henriet, S.S.V.; van Bruggen, R.; Kuijpers, T.W. Formation of Neutrophil Extracellular Traps Requires Actin Cytoskeleton Rearrangements. Blood 2022, 139, 3166–3180. [Google Scholar] [CrossRef] [PubMed]
- Deniset, J.; Kubes, P. A Protective Role for Splenic Neutrophils against Streptococcus Pneumoniae Infection. J. Immunol. 2015, 194, 125.17. [Google Scholar] [CrossRef]
- Wu, C.; Hua, Q.; Zheng, L. Generation of Myeloid Cells in Cancer: The Spleen Matters. Front. Immunol. 2020, 11, 1126. [Google Scholar] [CrossRef]
- Li, B.; Zhang, S.; Huang, N.; Chen, H.; Wang, P.; Li, J.; Pu, Y.; Yang, J.; Li, Z. Dynamics of the Spleen and Its Significance in a Murine H22 Orthotopic Hepatoma Model. Exp. Biol. Med. 2016, 241, 863. [Google Scholar] [CrossRef] [PubMed]
- Filatova, A.A.; Alekseeva, L.A.; Sen’kova, A.V.; Savin, I.A.; Sounbuli, K.; Zenkova, M.A.; Mironova, N.L. Tumor- and Fibroblast-Derived Cell-Free DNAs Differently Affect the Progression of B16 Melanoma In Vitro and In Vivo. Int. J. Mol. Sci. 2024, 25, 5304. [Google Scholar] [CrossRef]
- Chung, J.Y.F.; Tang, P.C.T.; Chan, M.K.K.; Xue, V.W.; Huang, X.R.; Ng, C.S.H.; Zhang, D.; Leung, K.T.; Wong, C.K.; Lee, T.L.; et al. Smad3 Is Essential for Polarization of Tumor-Associated Neutrophils in Non-Small Cell Lung Carcinoma. Nat. Commun. 2023, 14, 1794. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhu, X.; Friesen, T.J.; Kwak, J.W.; Pisarenko, T.; Mekvanich, S.; Velasco, M.A.; Randolph, T.W.; Kargl, J.; McGarry Houghton, A. Annexin A2/TLR2/MYD88 Pathway Induces Arginase 1 Expression in Tumor-Associated Neutrophils. J. Clin. Investig. 2022, 132, e153643. [Google Scholar] [CrossRef]
- Soorni, A.; Rezvani, M.; Bigdeli, H. Transcriptome-Guided Selection of Stable Reference Genes for Expression Analysis in Spinach. Sci. Rep. 2024, 14, 12113. [Google Scholar] [CrossRef]
- Medina-Lozano, I.; Arnedo, M.S.; Grimplet, J.; Díaz, A. Selection of Novel Reference Genes by RNA-Seq and Their Evaluation for Normalising Real-Time QPCR Expression Data of Anthocyanin-Related Genes in Lettuce and Wild Relatives. Int. J. Mol. Sci. 2023, 24, 3052. [Google Scholar] [CrossRef]
- Pombo, M.A.; Zheng, Y.; Fei, Z.; Martin, G.B.; Rosli, H.G. Use of RNA-Seq Data to Identify and Validate RT-QPCR Reference Genes for Studying the Tomato-Pseudomonas Pathosystem. Sci. Rep. 2017, 7, 44905. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Cong, P.; Tian, Y.; Zhu, Y. Using RNA-Seq Data to Select Reference Genes for Normalizing Gene Expression in Apple Roots. PLoS ONE 2017, 12, e0185288. [Google Scholar] [CrossRef] [PubMed]
- de Brito, M.W.D.; de Carvalho, S.S.; Mota, M.B.d.S.; Mesquita, R.D. RNA-Seq Validation: Software for Selection of Reference and Variable Candidate Genes for RT-QPCR. BMC Genom. 2024, 25, 697. [Google Scholar] [CrossRef] [PubMed]
Gene | Sequences of Primers and Probes, 5′ → 3′ | Amplicon Size, bp | |
---|---|---|---|
Actb | F | TATTGGCAACGAGCGGTTCC | 140 |
R | TGGCATAGAGGTCTTTACGG | ||
P | ((5,6)-ROX)-CCAGCCTTCCTTCTTGGGTATGGAATCC-BHQ2 | ||
Hprt1 | F | CCCCAAAATGGTTAAGGTTGC | 76 |
R | AACAAAGTCTGGCCTGTATCC | ||
P | ((5,6)-ROX)-CTTGCTGGTGAAAAGGACCTCTCGAA-BHQ2 | ||
Gapdh | F | CAAGGAGTAAGAAACCCTGGAC | 109 |
R | GGATGGAAATTGTGAGGGAGAT | ||
P | ((5,6)-ROX)-CCAGCAAGGACACTGAGCAAGAGA-BHQ2 | ||
Sdha | F | CCTACCCGATCACATACTGTTG | 73 |
R | AGTTGTCCTCTTCCATGTTCC | ||
P | ((5,6)-ROX)-CAGAGCAGCATTGATACCTCCCTGT-BHQ2 | ||
Ywhaz | F | GAAGACGGAAGGTGCTGAG | 148 |
R | GACTTTGCTTTCTGGTTGCG | ||
P | ((5,6)-ROX)-AGAGAGAAGATCGAGACGGAGCTGC-BHQ2 | ||
Tbp | F | AAGAAAGGGAGAATCATGGACC | 133 |
R | GAGTAAGTCCTGTGCCGTAAG | ||
P | ((5,6)-ROX)-CCTGAGCATAAGGTGGAAGGCTGTT-BHQ2 | ||
B2m | F | GGTCGCTTCAGTCGTCAG | 150 |
R | TTCAGTATGTTCGGCTTCCC | ||
P | ((5,6)-ROX)-CCCTGGTCTTTCTGGTGCTTGTCT-BHQ2 | ||
Eef2 | F | ACATTCTCACCGACATCACC | 135 |
R | GAACATCAAACCGCACACC | ||
P | ((5,6)-ROX)-GAACATCAAACCGCACACC-BHQ2 | ||
Rpl13a | F | CAAGACCAACGGACTCCTG | 146 |
R | TCTCTAATGTCCCCTCTACCC | ||
P | ((5,6)-ROX)-AAGACTGTTTGCCTCATGCCTGC-BHQ2 | ||
Rack1 | F | AATACTCTGGGTGTCTGCAAG | 146 |
R | TTAGCCAGATTCCACACCTTG | ||
P | ((5,6)-ROX)-ATGGGTGTCTTGTGTCCGCTTCTC-BHQ2 | ||
Arg1 | F | AAGAATGGAAGAGTCAGTGTGG | 132 |
R | GGGAGTGTTGATGTCAGTGTG | ||
P | ((5,6)-FAM)-TCTGGCAGTTGGAAGCATCTCTGG-BHQ1 |
Experimental Group | Mice Strain, n | Source of Neutrophils |
---|---|---|
Healthy | C57Bl, 15 | Bone marrow and spleen |
Healthy | CBA, 15 | Bone marrow and spleen |
LLC | C57Bl, 15 | Spleen |
RLS40High | CBA, 15 * | Spleen |
RLS40Low | CBA, 15 * | Spleen |
Actb | Hprt1 | Gapdh | Sdha | Ywhaz | Tbp | B2m | Eef2 | Rpl13a | Rack1 | |
---|---|---|---|---|---|---|---|---|---|---|
Geo Mean [CP] | 20.21 | 24.48 | 19.03 | 27.93 | 21.94 | 26.23 | 18.07 | 24.36 | 25.26 | 22.63 |
Ar Mean [CP] | 20.23 | 24.48 | 19.05 | 27.96 | 21.97 | 26.24 | 18.08 | 24.39 | 25.28 | 22.65 |
min [CP] | 18.69 | 23.68 | 17.74 | 25.26 | 20.47 | 25.10 | 16.73 | 22.15 | 23.58 | 20.82 |
max [CP] | 21.76 | 25.94 | 21.17 | 30.83 | 23.63 | 28.14 | 19.65 | 27.64 | 27.07 | 24.13 |
SD [±CP] | 0.63 | 0.35 | 0.63 | 1.02 | 0.88 | 0.57 | 0.55 | 0.94 | 0.95 | 0.81 |
CV [% CP] | 3.13 | 1.43 | 3.33 | 3.64 | 3.98 | 2.18 | 3.07 | 3.87 | 3.74 | 3.59 |
Ranking [1–>10] | 4 | 1 | 5 | 10 | 7 | 3 | 2 | 8 | 9 | 6 |
Rank † | BestKeeper | NormFinder | ΔCt Method | geNorm | RefFinder |
---|---|---|---|---|---|
1 | Hprt1 | Tbp | Tbp | Ywhaz/Tbp | Tbp |
2 | B2m | Hprt1 | Hprt1 | Hprt1 | |
3 | Tbp | Gapdh | Ywhaz | Actb | Ywhaz |
4 | Actb | Ywhaz | Gapdh | Gapdh | B2m |
5 | Gapdh | Actb | B2m | Hprt1 | Gapdh |
6 | Rack1 | Eef2 | Actb | B2m | Actb |
7 | Ywhaz | Sdha | Sdha | Sdha | Sdha |
8 | Eef2 | B2m | Eef2 | Eef2 | Eef2 |
9 | Rpl13a | Rpl13a | Rpl13a | Rpl13a | Rack1 |
10 | Sdha | Rack1 | Rack1 | Rack1 | Rpl13a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sounbuli, K.; Alekseeva, L.A.; Sen’kova, A.V.; Savin, I.A.; Zenkova, M.A.; Mironova, N.L. Tbp and Hprt1 Are Appropriate Reference Genes for Splenic Neutrophils Isolated from Healthy or Tumor-Bearing Mice. Biomedicines 2024, 12, 2571. https://doi.org/10.3390/biomedicines12112571
Sounbuli K, Alekseeva LA, Sen’kova AV, Savin IA, Zenkova MA, Mironova NL. Tbp and Hprt1 Are Appropriate Reference Genes for Splenic Neutrophils Isolated from Healthy or Tumor-Bearing Mice. Biomedicines. 2024; 12(11):2571. https://doi.org/10.3390/biomedicines12112571
Chicago/Turabian StyleSounbuli, Khetam, Ludmila A. Alekseeva, Aleksandra V. Sen’kova, Innokenty A. Savin, Marina A. Zenkova, and Nadezhda L. Mironova. 2024. "Tbp and Hprt1 Are Appropriate Reference Genes for Splenic Neutrophils Isolated from Healthy or Tumor-Bearing Mice" Biomedicines 12, no. 11: 2571. https://doi.org/10.3390/biomedicines12112571
APA StyleSounbuli, K., Alekseeva, L. A., Sen’kova, A. V., Savin, I. A., Zenkova, M. A., & Mironova, N. L. (2024). Tbp and Hprt1 Are Appropriate Reference Genes for Splenic Neutrophils Isolated from Healthy or Tumor-Bearing Mice. Biomedicines, 12(11), 2571. https://doi.org/10.3390/biomedicines12112571