Neurocognitive and Neuropsychiatric Implications of Fibrosing Interstitial Lung Diseases
Abstract
:1. Introduction
2. Methodology
3. Epidemiology of ILDs
4. Diagnosis and Classification of Interstitial Lung Diseases
5. The Spectrum of Neurological Impairment in Fibrosing ILDs
6. Pathogenesis of Neurological Damage in Fibrosing ILD
7. Neurological Impairment in the Most Common Types of Fibrosing ILD
7.1. Neurological Dysfunction in IPF
7.1.1. Cognitive Impairment in IPF
7.1.2. Anxiety and Depression in IPF
7.1.3. Quality of Life (QOL) in IPF
7.2. Neurological Dysfunction in Sarcoidosis
7.3. Neurological Dysfunction in Fibrosing Hypersensitivity Pneumonitis
7.4. Neurological Dysfunction in Connective Tissue Diseases
7.4.1. Neurologic Impairment in Systemic Lupus Erythematosus (SLE)
7.4.2. Neurologic Impairment in Rheumatoid Arthritis
7.4.3. Neurologic Impairment in Scleroderma
7.4.4. Neurologic Impairment in Sjogren’s Syndrome
7.4.5. Neurologic Impairment in Polymyositis and Dermatomyositis
7.5. Neurological Dysfunction in Vasculitis
7.6. Neurologic Impairment in NSIP and Unclassifiable ILDs
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Selman, M.; Pardo, A.; Wells, A.U. Usual interstitial pneumonia as a stand-alone diagnostic entity: The case for a paradigm shift? Lancet Respir. Med. 2023, 11, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.K.; Martinez, F.J.; Walsh, S.L.F.; Thannickal, V.J.; Prasse, A.; Schlenker-Herceg, R.; Goeldner, R.G.; Clerisme-Beaty, E.; Tetzlaff, K.; Cottin, V.; et al. The natural history of progressive fibrosing interstitial lung diseases. Eur. Respir. J. 2020, 55, 2000085. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Remy-Jardin, M.; Richeldi, L.; Thomson, C.C.; Inoue, Y.; Johkoh, T.; Kreuter, M.; Lynch, D.A.; Maher, T.M.; Martinez, F.J.; et al. Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2022, 205, E18–E47. [Google Scholar] [CrossRef] [PubMed]
- Margaritopoulos, G.A.; Antoniou, K.M.; Wells, A.U. Comorbidities in interstitial lung diseases. Eur. Respir. Rev. 2017, 26, 160027. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.E.; Randhawa, S.; Corte, T.J.; Moodley, Y. Idiopathic Pulmonary Fibrosis and the Elderly: Diagnosis and Management Considerations. Drugs Aging 2016, 33, 321–334. [Google Scholar] [CrossRef]
- Hyldgaard, C.; Hilberg, O.; Bendstrup, E. How does comorbidity influence survival in idiopathic pulmonary fibrosis? Respir. Med. 2014, 108, 647–653. [Google Scholar] [CrossRef]
- Kreuter, M.; Ehlers-Tenenbaum, S.; Palmowski, K.; Bruhwyler, J.; Oltmanns, U.; Muley, T.; Heussel, C.P.; Warth, A.; Kolb, M.; Herth, F.J. Impact of Comorbidities on Mortality in Patients with Idiopathic Pulmonary Fibrosis. PLoS ONE 2016, 11, e0151425. [Google Scholar] [CrossRef]
- Giannouli, V.; Markopoulou, A.; Kiosseoglou, G.; Kosmidis, M.H. Neuropsychological functioning in patients with interstitial lung disease. Appl. Neuropsychol. Adult 2022, 29, 1290–1295. [Google Scholar] [CrossRef]
- Antonelli-Incalzi, R.; Corsonello, A.; Trojano, L.; Acanfora, D.; Spada, A.; Izzo, O.; Rengo, F. Correlation between cognitive impairment and dependence in hypoxemic COPD. J. Clin. Exp. Neuropsychol. 2008, 30, 141–150. [Google Scholar] [CrossRef]
- Tudorache, V.; Traila, D.; Marc, M.; Oancea, C.; Manolescu, D.; Tudorache, E.; Timar, B.; Albai, A.; Fira-Mladinescu, O. Impact of moderate to severe obstructive sleep apnea on the cognition in idiopathic pulmonary fibrosis. PLoS ONE 2019, 14, e0211455. [Google Scholar] [CrossRef]
- Kaul, B.; Cottin, V.; Collard, H.R.; Valenzuela, C. Variability in Global Prevalence of Interstitial Lung Disease. Front. Med. 2021, 8, 751181. [Google Scholar] [CrossRef] [PubMed]
- Hanada, M.; Tanaka, T.; Kozu, R.; Ishimatsu, Y.; Sakamoto, N.; Orchanian-Cheff, A.; Rozenberg, D.; Reid, W.D. The interplay of physical and cognitive function in rehabilitation of interstitial lung disease patients: A narrative review. J. Thorac. Dis. 2023, 15, 4503–4521. [Google Scholar] [CrossRef] [PubMed]
- Hilberg, O.; Hoffmann-Vold, A.M.; Smith, V.; Bouros, D.; Kilpeläinen, M.; Guiot, J.; Morais, A.; Clemente, S.; Daniil, Z.; Papakosta, D.; et al. Epidemiology of interstitial lung diseases and their progressive-fibrosing behaviour in six European countries. ERJ Open Res. 2022, 8, 00597–02021. [Google Scholar] [CrossRef] [PubMed]
- Jeganathan, N.; Sathananthan, M. The prevalence and burden of interstitial lung diseases in the USA. ERJ Open Res. 2022, 8, 00630–02021. [Google Scholar] [CrossRef] [PubMed]
- Khor, Y.H.; Ng, Y.; Barnes, H.; Goh, N.S.L.; McDonald, C.F.; Holland, A.E. Prognosis of idiopathic pulmonary fibrosis without anti-fibrotic therapy: A systematic review. Eur. Respir. Rev. 2020, 29, 190158. [Google Scholar] [CrossRef]
- Zurkova, M.; Kriegova, E.; Kolek, V.; Lostakova, V.; Sterclova, M.; Bartos, V.; Doubkova, M.; Binkova, I.; Svoboda, M.; Strenkova, J.; et al. Effect of pirfenidone on lung function decline and survival: 5-yr experience from a real-life IPF cohort from the Czech EMPIRE registry. Respir. Res. 2019, 20, 16. [Google Scholar] [CrossRef]
- Guler, S.A.; Ellison, K.; Algamdi, M.; Collard, H.R.; Ryerson, C.J. Heterogeneity in Unclassifiable Interstitial Lung Disease. A Systematic Review and Meta-Analysis. Ann. Am. Thorac. Soc. 2018, 15, 854–863. [Google Scholar] [CrossRef]
- Raimundo, K.; Solomon, J.J.; Olson, A.L.; Kong, A.M.; Cole, A.L.; Fischer, A.; Swigris, J.J. Rheumatoid Arthritis–Interstitial Lung Disease in the United States: Prevalence, Incidence, and Healthcare Costs and Mortality. J. Rheumatol. 2019, 46, 360–369. [Google Scholar] [CrossRef]
- Palm, O.; Garen, T.; Berge Enger, T.; Jensen, J.L.; Lund, M.B.; Aalokken, T.M.; Gran, J.T. Clinical pulmonary involvement in primary Sjogren’s syndrome: Prevalence, quality of life and mortality--a retrospective study based on registry data. Rheumatology 2013, 52, 173–179. [Google Scholar] [CrossRef]
- Bouros, D.; Wells, A.U.; Nicholson, A.G.; Colby, T.V.; Polychronopoulos, V.; Pantelidis, P.; Haslam, P.L.; Vassilakis, D.A.; Black, C.M.; du Bois, R.M. Histopathologic Subsets of Fibrosing Alveolitis in Patients with Systemic Sclerosis and Their Relationship to Outcome. Am. J. Respir. Crit. Care Med. 2002, 165, 1581–1586. [Google Scholar] [CrossRef]
- Park, I.N.; Jegal, Y.; Kim, D.S.; Do, K.H.; Yoo, B.; Shim, T.S.; Lim, C.M.; Lee, S.D.; Koh, Y.; Kim, W.S.; et al. Clinical course and lung function change of idiopathic nonspecific interstitial pneumonia. Eur. Respir. J. 2009, 33, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Adegunsoye, A.; Ryerson, C.J. Diagnostic Classification of Interstitial Lung Disease in Clinical Practice. Clin. Chest Med. 2021, 42, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Oancea, C.; Fira-Mlădinescu, O.; Tudorache, V. Tratat de Pneumologie Pentru Medicii Rezidenți; Victor Babeş: Timisoara, Romania, 2021; pp. 333–356. [Google Scholar]
- Pardo, A.; Selman, M. The Interplay of the Genetic Architecture, Aging, and Environmental Factors in the Pathogenesis of Idiopathic Pulmonary Fibrosis. Am. J. Respir. Cell Mol. Biol. 2021, 64, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Crews, W.D.; Jefferson, A.L.; Bolduc, T.; Elliott, J.B.; Ferro, N.M.; Broshek, D.K.; Barth, J.T.; Robbins, M.K. Neuropsychological dysfunction in patients suffering from end-stage chronic obstructive pulmonary disease. Arch. Clin. Neuropsychol. 2001, 16, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Dodd, J.W.; Getov, S.V.; Jones, P.W. Cognitive function in COPD. Eur. Respir. J. 2010, 35, 913–922. [Google Scholar] [CrossRef]
- Hung, W.W.; Wisnivesky, J.P.; Siu, A.L.; Ross, J.S. Cognitive Decline among Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2009, 180, 134–137. [Google Scholar] [CrossRef]
- Ortapamuk, H.; Naldoken, S. Brain perfusion abnormalities in chronic obstructive pulmonary disease: Comparison with cognitive impairment. Ann. Nucl. Med. 2006, 20, 99–106. [Google Scholar] [CrossRef]
- Orth, M.; Kotterba, S.; Duchna, K.; Widdig, W.; Rasche, K.; Schultze-Werninghaus, G.; Duchna, H.W. Kognitive Defizite bei Patienten mit chronisch-obstruktiver Atemwegserkrankung (COPD). Pneumologie 2006, 60, 593–599. [Google Scholar] [CrossRef]
- Stuss, D.T.; Peterkin, I.; Guzman, D.A.; Guzman, C.; Troyer, A.K. Chronic obstructive pulmonary disease: Effects of hypoxia on neurological and neuropsychological measures. J. Clin. Exp. Neuropsychol. 1997, 19, 515–524. [Google Scholar] [CrossRef]
- Liesker, J.J.W.; Postma, D.S.; Beukema, R.J.; ten Hacken, N.H.T.; van der Molen, T.; Riemersma, R.A.; van Zomeren, E.H.; Kerstjens, H.A. Cognitive performance in patients with COPD. Respir. Med. 2004, 98, 351–356. [Google Scholar] [CrossRef]
- Bors, M.; Tomic, R.; Perlman, D.M.; Kim, H.J.; Whelan, T.P.M. Cognitive function in idiopathic pulmonary fibrosis. Chron. Respir. Dis. 2015, 12, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Elfferich, M.D.; Nelemans, P.J.; Ponds, R.W.; De Vries, J.; Wijnen, P.A.; Drent, M. Everyday cognitive failure in sarcoidosis: The prevalence and the effect of anti-TNF-α treatment. Respiration 2010, 80, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Ryerson, C.J.; Arean, P.A.; Berkeley, J.; Carrieri-Kohlman, V.L.; Pantilat, S.Z.; Landefeld, C.S.; Collard, H.R. Depression is a common and chronic comorbidity in patients with interstitial lung disease. Respirology 2012, 17, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, T.W.; Grutters, J.C. Towards Treatable Traits for Pulmonary Fibrosis. J. Pers. Med. 2022, 12, 1275. [Google Scholar] [CrossRef] [PubMed]
- Areza-Fegyveres, R.; Kairalla, R.A.; Carvalho, C.R.R.; Nitrini, R. Cognition and chronic hypoxia in pulmonary diseases. Dement. Neuropsychol. 2010, 4, 14–22. [Google Scholar] [CrossRef]
- Verma, S.; Cardenas-Garcia, J.; Mohapatra, P.R.; Talwar, A. Depression in pulmonary arterial hypertension and interstitial lung diseases. N. Am. J. Med. Sci. 2014, 6, 240–249. [Google Scholar]
- Tudorache, E.; Marc, M.; Traila, D.; Manolescu, D. Cognitive Impairment in Chronic Lung Diseases. In An Overview and Management of Multiple Chronic Conditions; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Sharp, C.; Adamali, H.; Millar, A.; Dodd, J. P274 Cognitive function in idiopathic pulmonary fibrosis. Thorax 2016, 71 (Suppl. S3), A237. [Google Scholar] [CrossRef]
- Schmidt, R.; Schmidt, H.; Curb, J.D.; Masaki, K.; White, L.R.; Launer, L.J. Early inflammation and dementia: A 25-year follow-up of the Honolulu-Asia aging study. Ann. Neurol. 2002, 52, 168–174. [Google Scholar] [CrossRef]
- Jiang, R.; Burke, G.L.; Enright, P.L.; Newman, A.B.; Margolis, H.G.; Cushman, M.; Tracy, R.P.; Wang, Y.; Kronmal, R.A.; Barr, R.G. Inflammatory Markers and Longitudinal Lung Function Decline in the Elderly. Am. J. Epidemiol. 2008, 168, 602–610. [Google Scholar] [CrossRef]
- Raux, M.; Straus, C.; Redolfi, S.; Morelot-Panzini, C.; Couturier, A.; Hug, F.; Similowski, T. Electroencephalographic evidence for pre-motor cortex activation during inspiratory loading in humans. J. Physiol. 2007, 578, 569–578. [Google Scholar] [CrossRef]
- De Vries, J.; Seebregts, A.; Drent, M. Assessing health status and quality of life in idiopathic pulmonary fibrosis: Which measure should be used? Respir. Med. 2000, 94, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, A.A.; Ali, M.A.; Smith, R.P. Depression in patients with idiopathic pulmonary fibrosis. Chron. Respir. Dis. 2013, 10, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Bloem, A.E.M.; Houben-Wilke, S.; Mostard, R.L.M.; Stoot, N.; Janssen, D.J.A.; Franssen, F.M.E.; Custers, J.W.H.; Spruit, M.A. Respiratory and non-respiratory symptoms in patients with IPF or sarcoidosis and controls. Heart Lung 2023, 61, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Choi, S.M.; Lee, Y.J.; Cho, Y.J.; Yoon HIl Lee, J.H.; Lee, C.T.; Park, J.S. Clinical impact of depression and anxiety in patients with idiopathic pulmonary fibrosis. PLoS ONE 2017, 12, e0184300. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, T.; Taniguchi, H.; Ando, M.; Kondoh, Y.; Kimura, T.; Kataoka, K.; Nishimura, K.; Nishiyama, O.; Sakamoto, K.; Hasegawa, Y. Depression is significantly associated with the health status in patients with idiopathic pulmonary fibrosis. Intern. Med. 2017, 56, 1637–1644. [Google Scholar] [CrossRef]
- Shanmugam, G.; Bhutani, S.; Khan, D.A.; Brown, E.S. Psychiatric Considerations in Pulmonary Disease. Psychiatr. Clin. N. Am. 2007, 30, 761–780. [Google Scholar] [CrossRef]
- De Vries, J.; Kessels, B.L.J.; Drent, M. Quality of life of idiopathic pulmonary fibrosis patients. Eur. Respir. J. 2001, 17, 954–961. [Google Scholar] [CrossRef]
- De Vries, J.; Drent, M. Quality of life and health status in interstitial lung diseases. Curr. Opin. Pulm. Med. 2006, 12, 354–358. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, H.J.; Kim, S.; Kim, Y.J.; Kim, H.C. Epidemiology and comorbidities in idiopathic pulmonary fibrosis: A nationwide cohort study. BMC Pulm. Med. 2023, 23, 54. [Google Scholar] [CrossRef]
- Voortman, M.; De Vries, J.; Hendriks, C.M.R.; Elfferich, M.D.P.; Wijnen, P.A.H.M.; Drent, M. Everyday cognitive failure in patients suffering from neurosarcoidosis. Sarcoidosis Vasc. Diffus. Lung Dis. 2019, 36, 2–10. [Google Scholar]
- Omcikus, M.; Vucinic, V.; Filipovic, S.; Videnovic, J. Cognitive failure in sarcoidosis. Eur. Respir. J. 2014, 44, 460. [Google Scholar]
- Borson, S.; Randall Curtis, J. Examining the Link between Sarcoidosis and Depression. Am. J. Respir. Crit. Care Med. 2001, 163, 306–308. [Google Scholar] [CrossRef] [PubMed]
- Hoitsma, E.; Faber, C.G.; Drent, M.; Sharma, O.P. Neurosarcoidosis: A clinical dilemma. Lancet Neurol. 2004, 3, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Hoth, K.F.; Simmering, J.; Croghan, A.; Hamzeh, N.Y. Cognitive Difficulties and Health-Related Quality of Life in Sarcoidosis: An Analysis of the GRADS Cohort. J. Clin. Med. 2022, 11, 3594. [Google Scholar] [CrossRef] [PubMed]
- Wirnsberger, R.M.; de Vries, J.; Breteler, M.H.M.; van Heck, G.L.; Wouters, E.F.M.; Drent, M. Evaluation of quality of life in sarcoidosis patients. Respir. Med. 1998, 92, 750–756. [Google Scholar] [CrossRef]
- De Vries, J.; Van Heck, G.L.; Drent, M. Gender Differences in Sarcoidosis: Symptoms, Quality of Life, and Medical Consumption. Women Health 2000, 30, 99–114. [Google Scholar] [CrossRef]
- Chang, B.; Steimel, J.; Moller, D.R.; Baughman, R.P.; Judson, M.A.; Yeager, H.; Teirstein, A.S.; Rossman, M.D.; Rand, C.S. Depression in Sarcoidosis. Am. J. Respir. Crit. Care Med. 2001, 163, 329–334. [Google Scholar] [CrossRef]
- Lubin, M.; Chen, H.; Elicker, B.; Jones, K.D.; Collard, H.R.; Lee, J.S. A Comparison of Health-Related Quality of Life in Idiopathic Pulmonary Fibrosis and Chronic Hypersensitivity Pneumonitis. Chest 2014, 145, 1333–1338. [Google Scholar] [CrossRef]
- Aronson, K.I.; Ali, M.; Reshetynak, E.; Kaner, R.J.; Martinez, F.J.; Safford, M.M.; Pinheiro, L.C. Establishing content-validity of a disease-specific health-related quality of life instrument for patients with chronic hypersensitivity pneumonitis. J. Patient Rep. Outcomes 2021, 5, 9. [Google Scholar] [CrossRef]
- Barbosa, B.J.A.P.; Cardozo, F.A.M.; Ferraz, J.F.F.M.; Rays, J.; Kanegae, M.Y.; Takayasu, V. Severe cognitive dysfunction and shrinking lung syndrome in systemic lupus erythematous. Autops. Case Rep. 2014, 4, 63–69. [Google Scholar] [CrossRef]
- Hanly, J.G.; Urowitz, M.B.; Sanchez-Guerrero, J.; Bae, S.C.; Gordon, C.; Wallace, D.J.; Isenberg, D.; Alarcón, G.S.; Clarke, A.; Bernatsky, S.; et al. Neuropsychiatric events at the time of diagnosis of systemic lupus erythematosus: An international inception cohort study. Arthritis Rheum. 2007, 56, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Brey, R.L.; Holliday, S.L.; Saklad, A.R.; Navarrete, M.G.; Hermosillo–Romo, D.; Stallworth, C.L.; Valdez, C.R.; Escalante, A.; del Rincón, I.; Gronseth, G.; et al. Neuropsychiatric syndromes in lupus. Neurology 2002, 58, 1214–1220. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.H.; Corzillius, M.; Bae, S.C.; Lew, R.A.; Fortin, P.R.; Gordon, C.; Isenberg, D.; Alarcón, G.S.; Straaton, K.V.; Denburg, J. The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis Rheum. 1999, 42, 599–608. [Google Scholar] [PubMed]
- Kozora, E.; Hanly, J.G.; Lapteva, L.; Filley, C.M. Cognitive dysfunction in systemic lupus erythematosus: Past, present, and future. Arthritis Rheum. 2008, 58, 3286–3298. [Google Scholar] [CrossRef] [PubMed]
- Bertsias, G.K.; Boumpas, D.T. Pathogenesis, diagnosis and management of neuropsychiatric SLE manifestations. Nat. Rev. Rheumatol. 2010, 6, 358–367. [Google Scholar] [CrossRef]
- McLaurin, E.Y.; Holliday, S.L.; Williams, P.; Brey, R.L. Predictors of cognitive dysfunction in patients with systemic lupus erythematosus. Neurology 2005, 64, 297–303. [Google Scholar] [CrossRef]
- Kozora, E.; Ellison, M.C.; West, S. Reliability and validity of the proposed American College of Rheumatology neuropsychological battery for systemic lupus erythematosus. Arthritis Care Res. 2004, 51, 810–818. [Google Scholar] [CrossRef]
- Reeves, D.; Kane, R.; Winter, K. Automated Neuropsychological Assessment Metrics (ANAM V3. 11a/96) User’s Manual: Clinical and Neurotoxicology Subset (Report No. NCRF-SR-96-01); National Cognitive Foundation: San Diego, CA, USA, 1996. [Google Scholar]
- Tomietto, P.; Annese, V.; D’agostini, S.; Venturini, P.; La Torre, G.; De Vita, S.; Ferraccioli, G.F. General and specific factors associated with severity of cognitive impairment in systemic lupus erythematosus. Arthritis Care Res. 2007, 57, 1461–1472. [Google Scholar] [CrossRef]
- Ainiala, H.; Dastidar, P.; Loukkola, J.; Lehtimäki, T.; Korpela, M.; Peltola, J.; Hietaharju, A. Cerebral MRI abnormalities and their association with neuropsychiatric manifestations in SLE: A population-based study. Scand. J. Rheumatol. 2005, 34, 376–382. [Google Scholar] [CrossRef]
- Kaushik, P.; Solomon, D.H.; Greenberg, J.D.; Anderson, J.T.; Reed, G.; Pala, O.; Sumbul-Yuksel, B.; Kadam, P.; Kremer, J.M. Subcutaneous nodules are associated with cardiovascular events in patients with rheumatoid arthritis: Results from a large US registry. Clin. Rheumatol. 2015, 34, 1697–1704. [Google Scholar] [CrossRef]
- O’Dwyer, D.N.; Armstrong, M.E.; Cooke, G.; Dodd, J.D.; Veale, D.J.; Donnelly, S.C. Rheumatoid Arthritis (RA) associated interstitial lung disease (ILD). Eur. J. Intern. Med. 2013, 24, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, J.; Muscoli, C.; Gliozzi, M.; Musolino, V.; Carresi, C.; Paone, S.; Ilari, S.; Mollace, R.; Palma, E.; Mollace, V. Endothelial dysfunction and extra-articular neurological manifestations in rheumatoid arthritis. Biomolecules 2021, 11, 81. [Google Scholar] [CrossRef] [PubMed]
- Kao, A.H.; Greco, C.M.; Gharib, S.L.; Beers, S.R. Neurocognitive Function in Systemic Autoimmune and Rheumatic Diseases. In Handbook of Medical Neuropsychology; Springer International Publishing: Cham, Switzerland, 2019; pp. 463–483. [Google Scholar]
- Bartolini, M.; Candela, M.; Brugni, M.; Catena, L.; Mari, F.; Pomponio, G.; Provinciali, L.; Danieli, G. Are behaviour and motor performances of rheumatoid arthritis patients influenced by subclinical cognitive impairments? A clinical and neuroimaging study. Clin. Exp. Rheumatol. 2002, 20, 491–497. [Google Scholar] [PubMed]
- Kobayashi, T.; Takai, N.; Tada, R.; Shoda, H.; Kida, T.; Ikeda, T.; Ozaki, T.; Makino, S. A case of scleritis associated rheumatoid arthritis accompanying an intraocular elevated lesion. BMC Ophthalmol. 2018, 18, 129. [Google Scholar] [CrossRef] [PubMed]
- Lezak, M.D. Neuropsychological Assessment; Oxford University Press: New York, NY, USA, 2004. [Google Scholar]
- Hietarinta, M.; Lassila, O.; Hietaharju, A. Association of Anti-UIRNP-and Anti-Scl-70-antibodies with Neurological Manifestations in Systemic Sclerosis (Scleroderma). Scand. J. Rheumatol. 1994, 23, 64–67. [Google Scholar] [CrossRef]
- Giuliodori, G.; Fraticelli, P.; Bartolini, M.; Cagnetti, C.; Baruffaldi, R.; Rocchi, M.B.L.; Provinciali, L.; Gabrielli, A.; Silvestrini, M. Cognitive and cerebral hemodynamic impairment in scleroderma patients. Eur. J. Neurol. 2009, 16, 1285–1290. [Google Scholar] [CrossRef]
- Amaral, T.N.; Peres, F.A.; Lapa, A.T.; Marques-Neto, J.F.; Appenzeller, S. Neurologic involvement in scleroderma: A systematic review. Semin. Arthritis Rheum. 2013, 43, 335–347. [Google Scholar] [CrossRef]
- Sène, D.; Cacoub, P.; Authier, F.J.; Haroche, J.; Créange, A.; Saadoun, D.; Amoura, Z.; Guillausseau, P.J.; Lefaucheur, J.P. Sjögren Syndrome-Associated Small Fiber Neuropathy. Medicine 2013, 92, e10–e18. [Google Scholar] [CrossRef]
- Berlit, P. Neuropsychiatric disease in collagen vascular diseases and vasculitis. J. Neurol. 2007, 254 (Suppl. S2), II87–II89. [Google Scholar] [CrossRef]
- Orman, B.; Sterin-Borda, L.; De Couto Pita, A.; Reina, S.; Borda, E. Anti-brain cholinergic auto antibodies from primary Sjögren syndrome sera modify simultaneously cerebral nitric oxide and prostaglandin biosynthesis. Int. Immunopharmacol. 2007, 7, 1535–1543. [Google Scholar] [CrossRef]
- Epstein, L.C.; Masse, G.; Harmatz, J.S.; Scott, T.M.; Papas, A.S.; Greenblatt, D.J. Characterization of cognitive dysfunction in Sjögren’s syndrome patients. Clin. Rheumatol. 2014, 33, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Indart, S.; Hugon, J.; Guillausseau, P.J.; Gilbert, A.; Dumurgier, J.; Paquet, C.; Sène, D. Impact of pain on cognitive functions in primary Sjögren syndrome with small fiber neuropathy: 10 cases and a literature review. Medicine 2017, 96, e6384. [Google Scholar] [CrossRef] [PubMed]
- Basu, N.; Jones, G.T.; Fluck, N.; MacDonald, A.G.; Pang, D.; Dospinescu, P.; Reid, D.M.; Macfarlane, G.J. Fatigue: A principal contributor to impaired quality of life in ANCA-associated vasculitis. Rheumatology 2010, 49, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Abularrage, C.J.; Slidell, M.B.; Sidawy, A.N.; Kreishman, P.; Amdur, R.L.; Arora, S. Quality of life of patients with Takayasu’s arteritis. J. Vasc. Surg. 2008, 47, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Bernabe, E.; Marcenes, W.; Mather, J.; Phillips, C.; Fortune, F. Impact of Behcet’s syndrome on health-related quality of life: Influence of the type and number of symptoms. Rheumatology 2010, 49, 2165–2171. [Google Scholar] [CrossRef]
- Mayor, H.; Reidy, J. The role of pain, perseverative cognition and goal adjustment in vasculitis-associated fatigue. J. Health Psychol. 2018, 23, 1299–1308. [Google Scholar] [CrossRef]
- Brown, K.K. Pulmonary Vasculitis. Proc. Am. Thorac. Soc. 2006, 3, 48–57. [Google Scholar] [CrossRef]
- Greco, A.; Marinelli, C.; Fusconi, M.; Macri, G.F.; Gallo, A.; De Virgilio, A.; Zambetti, G.; de Vincentiis, M. Clinic manifestations in granulomatosis with polyangiitis. Int. J. Immunopathol. Pharmacol. 2016, 29, 151–159. [Google Scholar] [CrossRef]
- Prior, T.S.; Hyldgaard, C.; Torrisi, S.E.; Kronborg-White, S.; Ganter, C.; Bendstrup, E.; Kreuter, M. Comorbidities in unclassifiable interstitial lung disease. Respir. Res. 2022, 23, 59. [Google Scholar] [CrossRef]
- Callahan, C.M. Documentation and Evaluation of Cognitive Impairment in Elderly Primary Care Patients. Ann. Intern. Med. 1995, 122, 422–429. [Google Scholar] [CrossRef]
- Edwards, G.D.; Polgar, O.; Patel, S.; Barker, R.E.; Walsh, J.A.; Harvey, J.; Man, W.D.; Nolan, C.M. Mood disorder in idiopathic pulmonary fibrosis: Response to pulmonary rehabilitation. ERJ Open Res. 2023, 9, 00585-2022. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Ji, J.; Pei, Z.; Luo, Z.; Fang, S.; Liu, X.; Lei, Y.; Yan, H.; Guo, L. Anxiety and depression status in patients with idiopathic pulmonary fibrosis and outcomes of nintedanib treatment: An observational study. Ann. Med. 2024, 56, 2323097. [Google Scholar] [CrossRef] [PubMed]
- Deniz, S.; Şahin, H.; Yalnız, E. Does the severity of interstitial lung disease affect the gains from pulmonary rehabilitation? Clin. Respir. J. 2018, 12, 2141–2150. [Google Scholar] [CrossRef] [PubMed]
Neurologic Involvement | Cognitive Impairment | Cognitive Impairment Pathogenesis | Anxiety | Depression | Quality of Life | |
---|---|---|---|---|---|---|
Idiopathic pulmonary fibrosis (IPF) | Prevalence: unknown; Cognitive impairment | Most affected domains: understanding, recalling, working memory, language, and visuospatial skills [10,32] | Aging, smoking status, hypoxemia, anxiety, and depression [10]. | up to 60%, [44,45,46] | 24.3–49.2% [44,45,46] | ↓ due to lack of independence and poor physical health |
Sarcoidosis | Prevalence: unknown; Most common: cognitive impairment, hypothalamus, cranial nerves, and pituitary gland evolvement [33,43,55]. | Prevalence: up to 33% [8,33,53] | Small-fiber neuropathy and fatigue [52], disease duration [33]. | up to 60% [59] | + [59] | ↓ due to sleep disorders, fatigue, reduction in mobility, in the activities of daily life, in working capacity, depression [43,57] |
Systemic lupus erythematosus | Prevalence: 14 to 80% of patients [63,64]; Most common: cognitive dysfunction, headache, cerebrovascular accident, psychosis, epilepsy, myelopathy [65,71,72]. | Prevalence: approximately 5%. Most affected domains: verbal fluency, visual skills, memory, attention, and executive function [69,70]. | Rupture of the hematoencephalic barrier, the vascular and neuronal damage due to the abnormal production of cytokines and autoantibodies [62]. | + [66] | + [66] | ↓ [12,13,14,15,16] |
Rheumatoid arthritis | Prevalence: up to 20% of patients; Most common: cognitive impairment, sensory–motor and distal sensory neuropathies, multiple mononeuritis, and other neuropathies [75,76]. | Prevalence: up to 40%. Most affected domains: memory, attention, executive function, visuospatial planning, verbal fluency [77]. | Vascular ischemia leads to neuronal demyelination and axonal degeneration [77]. | + [75,79] | + [75,79] | ↓↓ [50,78] |
Scleroderma | Prevalence: 1–40% of patients [80]; Most common: cognitive impairment, headaches, and seizures [82]. | Prevalence: 8.47%. Most affected domains: problem-solving, visual–spatial abilities Tends to progress to dementia [81]. | Positive anti-Scl70 and anti-U1 ribonucleoprotein antibodies, alteration of cerebral perfusion [80]. | up to 73.15% [82] | up to 23.95% [82] | - |
Sjogren’s syndrome | Prevalence: up to 20% of patients [83]; Most common: cognitive impairment, transverse myelitis, cranial neuropathies, myopathy, painful small-fiber neuropathy, peripheral neuropathies [84]. | Prevalence: 11–100% [84]. Most affected domains: memory, executive function, slowness, shifting capacity disorder, incapacity to resist cognitive conflict, programming capacity disorder, verbal fluency, attention, difficulty concentrating [85,86,87]. | Anti-muscarinic acetylcholine receptor (mAChR) autoantibodies, neuroinflammation [85]. | - | - | |
Vasculitis | Prevalence: unknown; Most common: headaches, cerebrovascular accidents, convulsions, meningitis, spinal cord injuries, motor and sensory peripheral neuropathies, cranial nerve paralysis, brain mass injuries, sensorineural hearing loss [84,93]. | Stress–fatigue link [91]. | - | - | Severe fatigue decreases [89,90,91] | |
Nonspecific interstitial pneumonia (NSIP) and unclassifiable ILDs | Prevalence: unknown | Most affected domains: visual and verbal memory, working memory, and visual perception [8] | Tachycardia, hypoxemia, reduced effort capacity [8] | + [94] | + [94] | |
Hypersensitivity pneumonitis, dermatomyositis, polymyositis | Prevalence: unknown | - | - | - | ↓ [60,61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vastag, Z.; Tudorache, E.; Traila, D.; Fira-Mladinescu, O.; Marc, M.S.; Oancea, C.; Rosca, E.C. Neurocognitive and Neuropsychiatric Implications of Fibrosing Interstitial Lung Diseases. Biomedicines 2024, 12, 2572. https://doi.org/10.3390/biomedicines12112572
Vastag Z, Tudorache E, Traila D, Fira-Mladinescu O, Marc MS, Oancea C, Rosca EC. Neurocognitive and Neuropsychiatric Implications of Fibrosing Interstitial Lung Diseases. Biomedicines. 2024; 12(11):2572. https://doi.org/10.3390/biomedicines12112572
Chicago/Turabian StyleVastag, Zsolt, Emanuela Tudorache, Daniel Traila, Ovidiu Fira-Mladinescu, Monica Steluta Marc, Cristian Oancea, and Elena Cecilia Rosca. 2024. "Neurocognitive and Neuropsychiatric Implications of Fibrosing Interstitial Lung Diseases" Biomedicines 12, no. 11: 2572. https://doi.org/10.3390/biomedicines12112572
APA StyleVastag, Z., Tudorache, E., Traila, D., Fira-Mladinescu, O., Marc, M. S., Oancea, C., & Rosca, E. C. (2024). Neurocognitive and Neuropsychiatric Implications of Fibrosing Interstitial Lung Diseases. Biomedicines, 12(11), 2572. https://doi.org/10.3390/biomedicines12112572