A Review of Limbic System-Associated Membrane Protein in Tumorigenesis
Abstract
:1. Introduction
2. History of LSAMP Research
3. Renal Cell Carcinoma
4. Prostatic Adenocarcinoma
5. Lung Adenocarcinoma
6. Osteosarcoma
7. Neuroblastoma
8. Acute Myeloid Leukemia
9. Ovarian Epithelial Carcinoma
10. Discussion
11. Conclusions
12. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, E.M.; Srinivas, S.; Adra, N.; An, Y.; Barocas, D.; Bitting, R.; Bryce, A.; Chapin, B.; Cheng, H.H.; D’Amico, A.V.; et al. Prostate Cancer, Version 4.2023, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Canc. Netw. 2023, 21, 1067–1096. [Google Scholar] [CrossRef] [PubMed]
- Petrovics, G.; Li, H.; Stümpel, T.; Tan, S.-H.; Young, D.; Katta, S.; Li, Q.; Ying, K.; Klocke, B.; Ravindranath, L.; et al. A novel genomic alteration of LSAMP associates with aggressive prostate cancer in African American men. EBioMedicine 2015, 2, 1957–1964. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Ko, M.; Hoge, A.C.; Luu, K.; Liu, Y.; Russell, M.L.; Hannon, W.W.; Zhang, Z.; Carrot-Zhang, J.; Beroukhim, R.; et al. Patterns of structural variation define prostate cancer across disease states. J. Clin. Investig. 2022, 7, 161370. [Google Scholar] [CrossRef]
- Heinla, I.; Leidmaa, E.; Kongi, K.; Pennert, A.; Innos, J.; Nurk, K.; Tekko, T.; Singh, K.; Vanaveski, T.; Reimets, R.; et al. Gene expression patterns and environmental enrichment-induced effects in the hippo-campi of mice suggest importance of Lsamp in plasticity. Front. Neurosci. 2015, 9, 205. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Wu, K.-L.; Chang, Y.-Y.; Liu, Y.-W.; Huang, Y.-C.; Jian, S.-F.; Lin, Y.-S.; Tsai, P.-H.; Hung, J.-Y.; Tsai, Y.-M.; et al. The Downregulation of LSAMP Expression Promotes Lung Cancer Progression and Is Associated with Poor Survival Prognosis. J. Pers. Med. 2021, 11, 578. [Google Scholar] [CrossRef]
- Bregin, A.; Kaare, M.; Jagomäe, T.; Karis, K.; Singh, K.; Laugus, K.; Innos, J.; Leidmaa, E.; Heinla, I.; Visnapuu, T. Expression and impact of Lsamp neural adhesion molecule in the serotonergic neuro-transmission system. Pharmacol. Biochem. Behav. 2020, 198, 173017. [Google Scholar] [CrossRef]
- Venkannagari, H.; Kasper, J.M.; Misra, A.; Rush, S.A.; Fan, S.; Lee, H.; Sun, H.; Seshadrinathan, S.; Machius, M.; Hommel, J.D.; et al. Highly Conserved Molecular Features in IgLONs Contrast Their Distinct Struc-tural and Biological Outcomes. J. Mol. Biol. 2020, 432, 5287–5303. [Google Scholar] [CrossRef] [PubMed]
- Vanaveski, T.; Singh, K.; Narvik, J.; Eskla, K.-L.; Visnapuu, T.; Heinla, I.; Jayaram, M.; Innos, J.; Lilleväli, K.; Philips, M.-A.; et al. Promoter-Specific Expression and Genomic Structure of IgLON Family Genes in Mouse. Front. Neurosci. 2017, 11, 38. [Google Scholar] [CrossRef]
- Singh, K.; Lilleväli, K.; Gilbert, S.F.; Bregin, A.; Narvik, J.; Jayaram, M.; Rahi, M.; Innos, J.; Kaasik, A.; Vasar, E.; et al. The combined impact of IgLON family proteins Lsamp and Neurotrimin on developing neurons and behavioral profiles in mouse. Brain Res. Bull. 2018, 140, 5–18. [Google Scholar] [CrossRef]
- Innos, J.; Leidmaa, E.; Philips, M.A.; Sütt, S.; Alttoa, A.; Harro, J.; Kõks, S.; Vasar, E. Lsamp−/− mice display lower sensitivity to amphetamine and have elevated 5-HT turno-ver. Biochem. Biophys. Res. Commun. 2013, 430, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Must, A.; Tasa, G.; Lang, A.; Vasar, E.; Kõks, S.; Maron, E.; Väli, M. Association of limbic system-associated membrane protein (LSAMP) to male completed suicide. BMC Med. Genet. 2008, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Sokolowski, M.; Wasserman, J.; Wasserman, D. Polygenic associations of neurodevelopmental genes in suicide attempt. Mol. Psychiatry 2016, 21, 1381–1390. [Google Scholar] [CrossRef] [PubMed]
- Kresse, S.H.; Ohnstad, H.O.; Paulsen, E.B.; Bjerkehagen, B.; Szuhai, K.; Serra, M.; Schaefer, K.; Myklebost, O.; Meza-Zepeda, L.A. LSAMP, a novel candidate tumor suppressor gene in human osteosarcomas, identified by array comparative genomic hybridization. Genes Chromosom. Cancer 2009, 48, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Pasic, I.; Shlien, A.; Durbin, A.D.; Stavropoulos, D.J.; Baskin, B.; Ray, P.N.; Novokmet, A.; Malkin, D. Recurrent focal copy-number changes and loss of heterozygosity implicate two noncoding RNAs and one tumor suppressor gene at chromosome 3q13.31 in osteosarcoma. Cancer Res. 2010, 70, 160–171. [Google Scholar] [CrossRef]
- Yen, C.C.; Chen, W.M.; Chen, T.H.; Chen, W.Y.; Chen, P.C.; Chiou, H.J.; Hung, G.Y.; Wu, H.T.; Wei, C.J.; Shiau, C.Y.; et al. Identification of chromosomal aberrations associated with disease progression and a novel 3q13.31 deletion involving LSAMP gene in osteosarcoma. Int. J. Oncol. 2009, 35, 775–788. [Google Scholar]
- Banyard, J.; Bielenberg, D.R. The role of EMT and MET in cancer dissemination. Connect. Tissue Res. 2015, 56, 403–413. [Google Scholar] [CrossRef]
- Chen, J.; Lui, W.O.; Vos, M.D.; Clark, G.J.; Takahashi, M.; Schoumans, J.; Khoo, S.K.; Petillo, D.; Lavery, T.; Sugimura, J.; et al. The t(1;3) breakpoint-spanning genes LSAMP and NORE1 are in-volved in clear cell renal cell carcinomas. Cancer Cell 2003, 4, 405–413. [Google Scholar] [CrossRef]
- Ntougkos, E.; Rush, R.; Scott, D.; Frankenberg, T.; Gabra, H.; Smyth, J.F.; Sellar, G.C. The IgLON family in epithelial ovarian cancer: Expression profiles and clinicopatho-logic correlates. Clin. Cancer Res. 2005, 11, 5764–5768. [Google Scholar] [CrossRef]
- Kühn, M.W.M.; Radtke, I.; Bullinger, L.; Goorha, S.; Cheng, J.; Edelmann, J.; Gohlke, J.; Su, X.; Paschka, P.; Pounds, S.; et al. High-resolution genomic profiling of adult and pediatric core-binding factor acute myeloid leukemia reveals new recurrent genomic alterations. Blood 2012, 119, e67–e75. [Google Scholar] [CrossRef]
- Barøy, T.; Kresse, S.H.; Skårn, M.; Stabell, M.; Castro, R.; Lauvrak, S.; Llombart-Bosch, A.; Myklebost, O.; A Meza-Zepeda, L. Reexpression of LSAMP inhibits tumor growth in a preclinical osteosarcoma model. Mol. Cancer 2014, 13, 93. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yuan, Y.; Lu, K.H.; Zhang, L. Identification of recurrent focal copy number variations and their putative targeted driver genes in ovarian cancer. BMC Bioinform. 2016, 17, 222. [Google Scholar] [CrossRef]
- Babcock, K.; Sreenath, T.; Xavier, C.P.; Rosner, I.L.; Srivastava, S.; Dobi, A.; Tan, S.-H. Abstract 5305: Reexpression of LSAMP, a gene frequently deleted in African American prostate cancers, suppresses tumor growth and β-catenin activity. Cancer Res. 2019, 79 (Suppl. S13), 5305. [Google Scholar] [CrossRef]
- Martinez-Monleon, A.; Gaarder, J.; Djos, A.; Kogner, P.; Fransson, S. Identification of recurrent 3q13.31 chromosomal rearrangement indicates LSAMP as a tumor suppressor gene in neuroblastoma. Int. J. Oncol. 2023, 62, 1. [Google Scholar] [CrossRef] [PubMed]
- Bratslavsky, G.; Mendhiratta, N.; Daneshvar, M.; Brugarolas, J.; Ball, M.W.; Metwalli, A.; Nathanson, K.L.; Pierorazio, P.M.; Boris, R.S.; Singer, E.A.; et al. Genetic risk assessment for hereditary renal cell carcinoma: Clinical consensus statement. Cancer 2021, 127, 3957–3966. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.K.; Alvarez, R.D.; Bakkum-Gamez, J.N.; Barroilhet, L.; Behbakht, K.; Berchuck, A.; Berek, J.S.; Chen, L.M.; Cristea, M.; DeRosa, M.; et al. NCCN Guidelines® Insights: Ovarian Cancer, Version 3.2022. J. National. Compr. Cancer Netw. 2022, 20, 972–980. [Google Scholar] [CrossRef]
- Bodmer, D.; Hurk, W.v.D.; van Groningen, J.J.M.; Eleveld, M.J.; Martens, G.J.M.; Weterman, M.A.J.; van Kessel, A.G. Understanding familial and non-familial renal cell cancer. Hum. Mol. Genet. 2002, 11, 2489–2498. [Google Scholar] [CrossRef]
- Gong, T.; Jaratlerdsiri, W.; Jiang, J.; Willet, C.; Chew, T.; Patrick, S.M.; Lyons, R.J.; Haynes, A.M.; Pasqualim, G.; Brum, I.S.; et al. Genome-wide interrogation of structural variation reveals novel African-specific pros-tate cancer oncogenic drivers. Genome Med. 2022, 14, 100. [Google Scholar] [CrossRef]
- Antony, J.; Zanini, E.; Birtley, J.R.; Gabra, H.; Recchi, C. Emerging roles for the GPI-anchored tumor suppressor OPCML in cancers. Cancer Gene Ther. 2021, 28, 18–26. [Google Scholar] [CrossRef]
- Götz, R. Inter-cellular adhesion disruption and the RAS/RAF and beta-catenin signalling in lung cancer progression. Cancer Cell Int. 2008, 8, 7. [Google Scholar] [CrossRef]
- Pavlakis, E.; Neumann, M.; Merle, N.; Wieboldt, R.; Wanzel, M.; Ponath, V.; von Strandmann, E.P.; Elmshäuser, S.; Stiewe, T. Mutant p53-ENTPD5 control of the calnexin/calreticulin cycle: A druggable target for inhibiting integrin-α5-driven metastasis. J. Exp. Clin. Cancer Res. 2023, 42, 203. [Google Scholar] [CrossRef] [PubMed]
- Velling, T.; Nilsson, S.; Stefansson, A.; Johansson, S. beta1-Integrins induce phosphorylation of Akt on serine 473 independently of focal ad-hesion kinase and Src family kinases. EMBO Rep. 2004, 5, 901–905. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Kim, J.-H.; Oh, S.; Lee, D.Y. Metabolome-Wide Reprogramming Modulated by Wnt/β-Catenin Signaling Pathway. J. Microbiol. Biotechnol. 2023, 33, 114–122. [Google Scholar] [CrossRef]
- Chi, J.T.; Lin, P.H.; Tolstikov, V.; Howard, L.; Chen, E.Y.; Bussberg, V.; Greenwood, B.; Narain, N.R.; Kiebish, M.A.; Freedland, S.J. Serum metabolomic analysis of men on a low-carbohydrate diet for biochemically recur-rent prostate cancer reveals the potential role of ketogenesis to slow tumor growth: A secondary analysis of the CAPS2 diet trial. Prostate Cancer Prostatic Dis. 2022, 25, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Feleke, M.; Feng, W.; Rothzerg, E.; Song, D.; Wei, Q.; Kõks, S.; Wood, D.; Liu, Y.; Xu, J. Single-cell RNA-seq identification of four differentially expressed survival-related genes by a TARGET: Osteosarcoma database analysis. Exp. Biol. Med. 2022, 247, 921–930. [Google Scholar] [CrossRef]
- Kroeger, P.T., Jr.; Drapkin, R. Pathogenesis and heterogeneity of ovarian cancer. Curr. Opin. Obstet. Gynecol. 2017, 29, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Nik, N.N.; Vang, R.; Shih, I.M.; Kurman, R.J. Origin and pathogenesis of pelvic (ovarian, tubal, and primary peritoneal) serous car-cinoma. Annu. Rev. Pathol. 2014, 9, 27–45. [Google Scholar] [CrossRef]
- Auersperg, N.; Wong, A.S.; Choi, K.C.; Kang, S.K.; Leung, P.C. Ovarian surface epithelium: Biology, endocrinology, and pathology. Endocr. Rev. 2001, 22, 255–288. [Google Scholar]
- McKie, A.B.; Vaughan, S.; Zanini, E.; Okon, I.S.; Louis, L.; de Sousa, C.; Greene, M.I.; Wang, Q.; Agarwal, R.; Shaposhnikov, D.; et al. The OPCML tumor suppressor functions as a cell surface repressor-adaptor, nega-tively regulating receptor tyrosine kinases in epithelial ovarian cancer. Cancer Discov. 2012, 2, 156–171. [Google Scholar] [CrossRef]
- Fang, D.; Hawke, D.; Zheng, Y.; Xia, Y.; Meisenhelder, J.; Nika, H.; Mills, G.B.; Kobayashi, R.; Hunter, T.; Lu, Z. Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J. Biol. Chem. 2007, 282, 11221–11229. [Google Scholar] [CrossRef]
- Papa, S.; Choy, P.M.; Bubici, C. The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene 2019, 38, 2223–2240. [Google Scholar] [CrossRef] [PubMed]
- Ariss, M.M.; Terry, A.R.; Islam, A.B.; Hay, N.; Frolov, M.V. Amalgam regulates the receptor tyrosine kinase pathway through Sprouty in glial cell development in the Drosophila larval brain. J. Cell Sci. 2020, 133, jcs250837. [Google Scholar] [CrossRef] [PubMed]
- Farouk, F.S.; Viqar, O.A.; Sheikh, Z.; Castro, G.; Barengo, N.C. The Association between Race and Survival among Pediatric Patients with Neuro-blastoma in the US between 1973 and 2015. Int. J. Environ. Res. Public Health 2020, 17, 5119. [Google Scholar] [CrossRef]
- Alaiwi, S.A.; Nassar, A.H.; Adib, E.; Groha, S.M.; Akl, E.W.; McGregor, B.A.; Esplin, E.D.; Yang, S.; Hatchell, K.; Fusaro, V.; et al. Trans-ethnic variation in germline variants of patients with renal cell carcinoma. Cell Rep. 2021, 34, 108926. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Seegobin, K.; Heng, F.; Zhou, K.; Chen, R.; Qin, H.; Manochakian, R.; Zhao, Y.; Lou, Y. Genomic landscape of lung adenocarcinomas in different races. Front. Oncol. 2022, 12, 946625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hansen, H.M.; Semmes, E.C.; Gonzalez-Maya, J.; Morimoto, L.; Wei, Q.; Eward, W.C.; DeWitt, S.B.; Hurst, J.H.; Metayer, C.; et al. Common genetic variation and risk of osteosarcoma in a multi-ethnic pediatric and ad-olescent population. Bone 2020, 130, 115070. [Google Scholar] [CrossRef]
- Conneely, S.E.; McAtee, C.L.; Gupta, R.; Lubega, J.; Scheurer, M.E.; Rau, R.E. Association of race and ethnicity with clinical phenotype, genetics, and survival in pediatric acute myeloid leukemia. Blood Adv. 2021, 5, 4992–5001. [Google Scholar] [CrossRef]
- Sarink, D.; Wu, A.H.; Le Marchand, L.; White, K.K.; Park, S.-Y.; Setiawan, V.W.; Hernandez, B.Y.; Wilkens, L.R.; Merritt, M.A. Racial/Ethnic Differences in Ovarian Cancer Risk: Results from the Multiethnic Cohort Study. Cancer Epidemiol. Biomark. Prev. 2020, 29, 2019–2025. [Google Scholar] [CrossRef]
Study Objectives | Study Methods | Authors | Cancer Type | Findings |
---|---|---|---|---|
Investigate t(1;3) breakpoint-spanning gene LSAMP | FISH, Southern blot, Northern blot, expression plasmids | Chen et al., 2003 [18] | RCC |
|
Determine IgLON expression in tumor samples | RT-PCR | Ntougkos et al., 2005 [19] | Ovarian |
|
Identify LSAMP by array comparative genomic hybridization | Array CGH, FISH, RT-PCR | Kresse et al., 2009 [14] | Osteosarcoma |
|
Investigate recurrent focal CN Changes and LOH at Chromosome 3q13.31 | CN analysis, RT-qPCR, FISH | Pasic et al., 2010 [15] | Osteosarcoma |
|
Genomic profiling of CBF-AML | SNP array, CN-LOH analysis, FISH | Kühn et al., 2012 [20] | AML |
|
Investigate LSAMP expression in tumor growth | qPCR, Western blot, CN assay, immunofluorescence confocal microscopy, flow cytometry | Barøy et al., 2014 [21] | Osteosarcoma |
|
Investigate association of LSAMP with aggressive AA prostate cancer | WGS, SNP array, FISH analysis | Petrovics et al., 2015 [3] | Prostate |
|
Identify recurrent focal CNVs and putative targeted driver genes | CNV analysis | Zhang et al., 2016 [22] | Ovarian |
|
Investigate role of LSAMP in tumor growth, RTK expression, and EMT mechanism of metastasis | FISH analysis, RT-qPCR, Western blot, IF assay, TOP/FOP Flash assays, ECM-cell adhesion assays, cell-cell adhesion assays, MTT assays | Babcock et al., 2019 [23] | Prostate |
|
Investigate LSAMP downregulation and survival prognosis | NGS, shRNA knockdown | Chang et al., 2021 [6] | Lung |
|
Identify LSAMP as tumor suppressor gene | WGS, SNP array, Sanger sequencing analysis, shRNA knockdown | Martinez-Monleon et al., 2023 [24] | Neuroblastoma |
|
Type of Cancer | Type of LSAMP Change |
---|---|
Clear cell renal cell carcinoma | Methylation |
Prostatic adenocarcinoma | Deletion, duplication, methylation |
Lung adenocarcinoma | Methylation |
Osteosarcoma | Deletion, methylation |
Neuroblastoma | Deletion, duplication, translocation |
CBF-AML | Deletion |
Ovarian epithelial | Deletion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinopole, K.W.; Babcock, K.; Dobi, A.; Petrovics, G. A Review of Limbic System-Associated Membrane Protein in Tumorigenesis. Biomedicines 2024, 12, 2590. https://doi.org/10.3390/biomedicines12112590
Sinopole KW, Babcock K, Dobi A, Petrovics G. A Review of Limbic System-Associated Membrane Protein in Tumorigenesis. Biomedicines. 2024; 12(11):2590. https://doi.org/10.3390/biomedicines12112590
Chicago/Turabian StyleSinopole, Kayleigh Wittmann, Kevin Babcock, Albert Dobi, and Gyorgy Petrovics. 2024. "A Review of Limbic System-Associated Membrane Protein in Tumorigenesis" Biomedicines 12, no. 11: 2590. https://doi.org/10.3390/biomedicines12112590
APA StyleSinopole, K. W., Babcock, K., Dobi, A., & Petrovics, G. (2024). A Review of Limbic System-Associated Membrane Protein in Tumorigenesis. Biomedicines, 12(11), 2590. https://doi.org/10.3390/biomedicines12112590