Possible Potentiating Effects of Combined Administration of Alcohol, Caffeine, and Nicotine on In Vivo Dopamine Release in Addiction-Related Circuits Within the CNS of Rats
Abstract
:1. Introduction
2. Methods
2.1. Animals and Treatments
2.2. Microdialysis Procedure
2.3. Experimental Design
2.4. HPLC Conditions
2.5. Data Analysis
3. Results
3.1. Effects of Single Administration of Caffeine, Nicotine, or Ethanol on Dopamine, DOPAC, and HVA Levels
3.2. Effects of Administration of Different Combinations of Psychoactive Substances on Dopaminergic Neurotransmission
3.2.1. Effects of Co-Administration of Caffeine + Nicotine or Caffeine + Nicotine + Ethanol on Dopamine Levels in the NAcc
3.2.2. Effects of Co-Administration of Caffeine + Nicotine or Caffeine + Nicotine + Ethanol on Dopamine Levels in the PFC
3.2.3. Effects of Co-Administration of Caffeine + Nicotine or Caffeine + Nicotine + Ethanol on Dopamine Levels in the Dorsal Striatum
3.2.4. Effects of Co-Administration of Caffeine + Nicotine or Caffeine + Nicotine + Ethanol on DOPAC and HVA Levels
4. Discussion
4.1. Effects of Caffeine and Nicotine Combination
4.2. Effects of Caffeine, Nicotine, and Ethanol Combination
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Connor, J.P.; Gullo, M.J.; White, A.; Kelly, A.B. Polysubstance use: Diagnostic challenges, patterns of use and health. Curr. Opin. Psychiatry 2014, 27, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Vera, B.D.V.; Musso, E.; Caneto, F.; Godoy, J.C.; Calderón, F.F. Patrones de policonsumo simultáneo de sustancias: Efectos positivos y negativos experimentados y estrategias de reducción de daños empleadas. Health Addict./Salud Drog. 2022, 22, 268–287. [Google Scholar] [CrossRef]
- Kelly, A.B.; Evans-Whipp, T.J.; Smith, R.; Chan GC, K.; Toumbourou, J.W.; Patton, G.C.; Hemphill, S.A.; Hall, W.D.; Catalano, R.F. A longitudinal study of the association of adolescent polydrug use, alcohol use and high school non-completion. Addiction 2015, 110, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.M.; Cadigan, J.M.; Patrick, M.E. Differences in reporting of perceived acute effects of alcohol use, marijuana use, and simultaneous alcohol and marijuana use. Drug Alcohol. Depend. 2017, 180, 391–394. [Google Scholar] [CrossRef]
- Shevlin, M.; McElroy, E.; Murphy, J.; Hyland, P.; Vallieres, F.; Elklit, A.; Christoffersen, M. Cannabis and psychosis: The impact of polydrug use. Drugs Alcohol Today 2017, 17, 186–194. [Google Scholar] [CrossRef]
- Crummy, E.A.; O’Neal, T.J.; Baskin, B.M.; Ferguson, S.M. One Is Not Enough: Understanding and Modeling Polysubstance Use. Front. Neurosci. 2020, 14, 569. [Google Scholar] [CrossRef]
- Feltenstein, M.W.; See, R.E. The neurocircuitry of addiction: An overview. Br. J. Pharmacol. 2008, 154, 261–274. [Google Scholar] [CrossRef]
- Rogers, R.D.; Ramnani, N.; Mackay, C.; Wilson, J.L.; Jezzard, P.; Carter, C.S.; Smith, S.M. Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. Biol. Psychiatry 2004, 55, 594–602. [Google Scholar] [CrossRef]
- Rushworth, M.F.S.; Noonan, M.P.; Boorman, E.D.; Walton, M.E.; Behrens, T.E. Frontal cortex and reward-guided learning and decision-making. Neuron 2011, 70, 1054–1069. [Google Scholar] [CrossRef]
- Crocq, M.-A. Alcohol, nicotine, caffeine, and mental disorders. Dialogues Clin. Neurosci. 2003, 5, 175–185. [Google Scholar] [CrossRef]
- Daly, J.W.; Fredholm, B.B. Caffeine—An atypical drug of dependence. Drug Alcohol Depend. 1998, 51, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Gardner, E.L. Introduction: Addiction and Brain Reward and Anti-Reward Pathways. Adv. Psychosom. Med. 2011, 30, 22–60. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Michaelides, M.; Baler, R. The Neuroscience of Drug Reward and Addiction. Physiol. Rev. 2019, 99, 2115–2140. [Google Scholar] [CrossRef] [PubMed]
- Hauser, T.U.; Eldar, E.; Dolan, R.J. Separate mesocortical and mesolimbic pathways encode effort and reward learning signals. Proc. Natl. Acad. Sci. USA 2017, 114, E7395–E7404. [Google Scholar] [CrossRef]
- Reynolds, L.M.; Flores, C. Mesocorticolimbic Dopamine Pathways Across Adolescence: Diversity in Development. Front. Neural Circuits 2021, 15, 735625. [Google Scholar] [CrossRef]
- Lobo, M.K.; Nestler, E. The Striatal Balancing Act in Drug Addiction: Distinct Roles of Direct and Indirect Pathway Medium Spiny Neurons. Front. Neuroanat. 2021, 5, 41. [Google Scholar] [CrossRef]
- Yager, L.M.; Garcia, A.F.; Wunsch, A.M.; Ferguson, S.M. The ins and outs of the striatum: Role in drug addiction. Neuroscience 2015, 301, 529–541. [Google Scholar] [CrossRef]
- Bazzu, G.; Calia, G.; Puggioni, G.; Spissu, Y.; Rocchitta, G.; Debetto, P.; Grigoletto, J.; Zusso, M.; Migheli, R.; Serra, P.A.; et al. alpha-Synuclein- and MPTP-generated rodent models of Parkinson’s disease and the study of extracellular striatal dopamine dynamics: A microdialysis approach. CNS Neurol. Disord. Drug Targets 2010, 9, 482–490. [Google Scholar] [CrossRef]
- Clarke, R.B.; Adermark, L.; Chau, P.; Söderpalm, B.; Ericson, M. Increase in nucleus accumbens dopamine levels following local ethanol administration is not mediated by acetaldehyde. Alcohol Alcohol. 2014, 49, 498–504. [Google Scholar] [CrossRef]
- Clarke RB, C.; Söderpalm, B.; Lotfi, A.; Ericson, M.; Adermark, L. Involvement of Inhibitory Receptors in Modulating Dopamine Signaling and Synaptic Activity Following Acute Ethanol Exposure in Striatal Subregions. Alcohol. Clin. Exp. Res. 2015, 39, 2364–2374. [Google Scholar] [CrossRef]
- Quarta, D.; Borycz, J.; Solinas, M.; Patkar, K.; Hockemeyer, J.; Ciruela, F.; Lluis, C.; Franco, R.; Woods, A.S.; Goldberg, S.R.; et al. Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-D-aspartate receptor stimulation. J. Neurochem. 2004, 91, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Sidhpura, N.; Redfern, P.; Rowley, H.; Heal, D.; Wonnacott, S. Comparison of the effects of bupropion and nicotine on locomotor activation and dopamine release in vivo. Biochem. Pharmacol. 2007, 74, 1292–1298. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.B.; Prendergast, B.J.; Liang, J.W. Female rats are not more variable than male rats: A meta-analysis of neuroscience studies. Biol. Sex Differ. 2016, 7, 34. [Google Scholar] [CrossRef] [PubMed]
- Egenrieder, L.; Mitricheva, E.; Spanagel, R.; Noori, H.R. No basal or drug-induced sex differences in striatal dopaminergic levels: A cluster and meta-analysis of rat microdialysis studies. J. Neurochem. 2020, 152, 482–492. [Google Scholar] [CrossRef]
- Alfonso, M.; Durán, R.; Campos, F.; Perez-Vences, D.; Faro LR, F.; Arias, B. Mechanisms Underlying Domoic Acid–Induced Dopamine Release from Striatum: An in Vivo Microdialysis Study. Neurochem. Res. 2003, 28, 1487–1493. [Google Scholar] [CrossRef]
- Costas-Ferreira, C.; Durán, R.; Faro, L.F. Neurotoxic effects of exposure to glyphosate in rat striatum: Effects and mechanisms of action on dopaminergic neurotransmission. Pestic. Biochem. Physiol. 2023, 193, 105433. [Google Scholar] [CrossRef]
- Faro LR, F.; Justo, L.A.; Alfonso, M.; Durán, R. Possible synergies between isatin, an endogenous MAO inhibitor, and antiparkinsonian agents on the dopamine release from striatum of freely moving rats. Neuropharmacology 2020, 171, 108083. [Google Scholar] [CrossRef]
- Faro LR, F.; Costas-Ferreira, C.; Pantoja, A.A.; Durán, R. Protective effects of antioxidants on striatal dopamine release induced by organophosphorus pesticides. Pestic. Biochem. Physiol. 2022, 182, 105035. [Google Scholar] [CrossRef]
- Paxinos, G.; Watson, C. The Rat Brain: In Stereotaxic Coordinates, 4th ed.; Academic Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Durán, R.; Alfonso, M.; Arias, B. Determination of Biogenic Amines In Rat Brain Dialysates by High Performance Liquid Chromatography. J. Liq. Chromatogr. Relat. Technol. 1998, 21, 2799–2811. [Google Scholar] [CrossRef]
- Acquas, E.; Tanda, G.; Di Chiara, G. Differential effects of caffeine on dopamine and acetylcholine transmission in brain areas of drug-naive and caffeine-pretreated rats. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2002, 27, 182–193. [Google Scholar] [CrossRef]
- De Luca, M.A.; Bassareo, V.; Bauer, A.; Di Chiara, G. Caffeine and accumbens shell dopamine. J. Neurochem. 2007, 103, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.E.; Vestal, R.E. Methylxanthine effects on caudate dopamine release as measured by in vivo electrochemistry. Life Sci. 1989, 45, 2025–2039. [Google Scholar] [CrossRef] [PubMed]
- Quarta, D.; Ferré, S.; Solinas, M.; You, Z.-B.; Hockemeyer, J.; Popoli, P.; Goldberg, S.R. Opposite modulatory roles for adenosine A1 and A2A receptors on glutamate and dopamine release in the shell of the nucleus accumbens. Effects of chronic caffeine exposure. J. Neurochem. 2004, 88, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Solinas, M.; Ferré, S.; You, Z.-B.; Karcz-Kubicha, M.; Popoli, P.; Goldberg, S.R. Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens. J. Neurosci. Off. J. Soc. Neurosci. 2002, 22, 6321–6324. [Google Scholar] [CrossRef] [PubMed]
- Fisone, G.; Borgkvist, A.; Usiello, A. Caffeine as a psychomotor stimulant: Mechanism of action. Cell. Mol. Life Sci. CMLS 2004, 61, 857–872. [Google Scholar] [CrossRef]
- Nakaso, K.; Ito, S.; Nakashima, K. Caffeine activates the PI3K/Akt pathway and prevents apoptotic cell death in a Parkinson’s disease model of SH-SY5Y cells. Neurosci. Lett. 2008, 432, 146–150. [Google Scholar] [CrossRef]
- Ferré, S.; Fredholm, B.B.; Morelli, M.; Popoli, P.; Fuxe, K. Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci. 1997, 20, 482–487. [Google Scholar] [CrossRef]
- Ribeiro, J.A.; Sebastião, A.M.; de Mendonça, A. Adenosine receptors in the nervous system: Pathophysiological implications. Prog. Neurobiol. 2022, 68, 377–392. [Google Scholar] [CrossRef]
- Lopes, L.V.; Cunha, R.A.; Kull, B.; Fredholm, B.B.; Ribeiro, J.A. Adenosine A(2A) receptor facilitation of hippocampal synaptic transmission is dependent on tonic A(1) receptor inhibition. Neuroscience 2022, 112, 319–329. [Google Scholar] [CrossRef]
- O’Kane, E.M.; Stone, T.W. Interaction between adenosine A1 and A2 receptor-mediated responses in the rat hippocampus in vitro. Eur. J. Pharmacol. 1998, 362, 17–25. [Google Scholar] [CrossRef]
- Segovia, G.; Del Arco, A.; Mora, F. Endogenous Glutamate Increases Extracellular Concentrations of Dopamine, GABA, and Taurine Through NMDA and AMPA/Kainate Receptors in Striatum of the Freely Moving Rat: A Microdialysis Study. J. Neurochem. 1997, 69, 1476–1483. [Google Scholar] [CrossRef] [PubMed]
- Segovia, G.; Del Arco, A.; Mora, F. Effects of aging on the interaction between glutamate, dopamine, and GABA in striatum and nucleus accumbens of the awake rat. J. Neurochem. 1999, 73, 2063–2072. [Google Scholar] [PubMed]
- Calabresi, P.; Di Filippo, M. ACh/dopamine crosstalk in motor control and reward: A crucial role for alpha 6-containing nicotinic receptors? Neuron 2008, 60, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, P.D.; Wonnacott, S. Nicotinic acetylcholine receptors and the ascending dopamine pathways. Biochem. Pharmacol. 2009, 78, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Singer, S.; Shearman, E.; Sershen, H.; Lajtha, A. The Effects of Cholinergic and Dopaminergic Antagonists on Nicotine-Induced Cerebral Neurotransmitter Changes. Neurochem. Res. 2005, 30, 541–558. [Google Scholar] [CrossRef]
- Threlfell, S.; Lalic, T.; Platt, N.J.; Jennings, K.A.; Deisseroth, K.; Cragg, S.J. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 2012, 75, 58–64. [Google Scholar] [CrossRef]
- Drenan, R.M.; Grady, S.R.; Steele, A.D.; McKinney, S.; Patzlaff, N.E.; McIntosh, J.M.; Marks, M.J.; Miwa, J.M.; Lester, H.A. Cholinergic modulation of locomotion and striatal dopamine release is mediated by alpha6alpha4* nicotinic acetylcholine receptors. J. Neurosci. Off. J. Soc. Neurosci. 2010, 30, 9877–9889. [Google Scholar] [CrossRef]
- Gotti, C.; Guiducci, S.; Tedesco, V.; Corbioli, S.; Zanetti, L.; Moretti, M.; Zanardi, A.; Rimondini, R.; Mugnaini, M.; Clementi, F.; et al. Nicotinic acetylcholine receptors in the mesolimbic pathway: Primary role of ventral tegmental area alpha6beta2* receptors in mediating systemic nicotine effects on dopamine release, locomotion, and reinforcement. J. Neurosci. Off. J. Soc. Neurosci. 2010, 30, 5311–5325. [Google Scholar] [CrossRef]
- Meyer, E.L.; Yoshikami, D.; McIntosh, J.M. The neuronal nicotinic acetylcholine receptors alpha 4* and alpha 6* differentially modulate dopamine release in mouse striatal slices. J. Neurochem. 2008, 105, 1761–1769. [Google Scholar] [CrossRef]
- Quik, M.; Perez, X.A.; Grady, S.R. Role of α6 nicotinic receptors in CNS dopaminergic function: Relevance to addiction and neurological disorders. Biochem. Pharmacol. 2011, 82, 873–882. [Google Scholar] [CrossRef]
- Jones, I.W.; Wonnacott, S. Precise Localization of α7 Nicotinic Acetylcholine Receptors on Glutamatergic Axon Terminals in the Rat Ventral Tegmental Area. J. Neurosci. 2004, 24, 11244–11252. [Google Scholar] [CrossRef] [PubMed]
- Garção, P.; Szabó, E.C.; Wopereis, S.; Castro, A.A.; Tomé, Â.R.; Prediger, R.D.; Cunha, R.A.; Agostinho, P.; Köfalvi, A. Functional interaction between pre-synaptic α6β2-containing nicotinic and adenosine A2A receptors in the control of dopamine release in the rat striatum. Br. J. Pharmacol. 2013, 169, 1600–1611. [Google Scholar] [CrossRef] [PubMed]
- Bassareo, V.; Cucca, F.; Frau, R.; Di Chiara, G. Changes in Dopamine Transmission in the Nucleus Accumbens Shell and Core during Ethanol and Sucrose Self-Administration. Front. Behav. Neurosci. 2017, 11. [Google Scholar] [CrossRef] [PubMed]
- Brand, I.; Fliegel, S.; Spanagel, R.; Noori, H.R. Global Ethanol-Induced Enhancements of Monoaminergic Neurotransmission: A Meta-Analysis Study. Alcohol Clin. Exp. Res. 2013, 37, 2048–2057. [Google Scholar] [CrossRef] [PubMed]
- Melendez, R.I.; Rodd-Henricks, Z.A.; McBride, W.J.; Murphy, J.M. Alcohol stimulates the release of dopamine in the ventral pallidum but not in the globus pallidus: A dual-probe microdialysis study. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2003, 28, 939–946. [Google Scholar] [CrossRef]
- Yoshimoto, K.; Ueda, S.; Kato, B.; Takeuchi, Y.; Kawai, Y.; Noritake, K.; Yasuhara, M. Alcohol enhances characteristic releases of dopamine and serotonin in the central nucleus of the amygdala. Neurochem. Int. 2000, 37, 369–376. [Google Scholar] [CrossRef]
- Abrahao, K.P.; Salinas, A.G.; Lovinger, D.M. Alcohol and the Brain: Neuronal Molecular Targets, Synapses, and Circuits. Neuron 2017, 96, 1223–1238. [Google Scholar] [CrossRef]
- Jayaram-Lindström, N.; Ericson, M.; Steensland, P.; Jerlhag, E.; Jayaram-Lindström, N.; Ericson, M.; Steensland, P.; Jerlhag, E. Dopamine and Alcohol Dependence: From Bench to Clinic. In Recent Advances in Drug Addiction Research and Clinical Applications; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef]
- Engleman, E.A.; Ingraham, C.M.; Rodd, Z.A.; Murphy, J.M.; McBride, W.J.; Ding, Z.-M. The reinforcing effects of ethanol within the prelimbic cortex and ethanol drinking: Involvement of local dopamine D2 receptor-mediated neurotransmission. Drug Alcohol Depend. 2020, 214, 108165. [Google Scholar] [CrossRef]
- Di Chiara, G. Drug addiction as dopamine-dependent associative learning disorder. Eur. J. Pharmacol. 1999, 375, 13–30. [Google Scholar] [CrossRef]
Group/Area | Treatment Protocol | ||||
---|---|---|---|---|---|
n | 60 min | 60 min | 60 min | ||
CAF 5 mM | NAcc | 5 | Ringer | CAF | Ringer |
PFC | 6 | ||||
Striatum | 4 | ||||
NIC 5 mM | NAcc | 5 | Ringer | NIC | Ringer |
PFC | 5 | ||||
Striatum | 5 | ||||
EtOH 300 mM | NAcc | 6 | Ringer | EtOH | Ringer |
PFC | 4 | ||||
Striatum | 6 | ||||
NIC 5 mM + CAF 5 mM | NAcc | 5 | Ringer | NIC + CAF | Ringer |
PFC | 5 | ||||
Striatum | 6 | ||||
NIC 5 mM + CAF 5 mM + EtOH 300 mM | NAcc | 6 | Ringer | NIC + CAF + EtOH | Ringer |
PFC | 6 | ||||
Striatum | 7 |
Group/Treatment | DOPAC | ||
---|---|---|---|
NAcc | PFC | Striatum | |
Basal | 102.2 ± 10.7 | 103.5 ± 11.2 | 102.2 ± 8.6 |
CAF 5 mM | 122.2 ± 5.1 ** | 194.4 ±37.7 ** | 129.6 ± 6 ** |
NIC 5 mM | 117.6 19.7 | 280.3 ± 38 *** | 117.6 ± 19.7 |
CAF + NIC | 134.5 ± 26.4 | 191.2 ± 27.2 ** | 158.9 ± 32 |
EtOH 300 mM | 163.2 ± 40.4 * | 71.9 ± 12.2 | 203.1 ± 35.3 * |
CAF + NIC + EtOH | 146.7 ± 20.0 *** | 301 ± 38.6 ***& | 145.6 ± 13.5 *** |
HVA | |||
Basal | 104.7 ± 6.8 | 116.1 ± 17.2 | 109.6 ± 9.3 |
CAF 5 mM | 107.8 ± 16.3 | 134.8 ± 13.3 | 128 ± 9.6 * |
NIC 5 mM | 137.8 ± 22.8 * | 129 ± 18.1 | 146.9 ± 22.3 * |
CAF + NIC | 139.7 ± 22.9 * | 146.3 ± 29.8 | 134.8 ± 18.7 |
EtOH 300 mM | 116.6 ± 17.5 | 81.3 ± 16.1 | 131.6 ± 9.3 * |
CAF + NIC + EtOH | 160.5 ± 23.1 *** | 168.4 ± 27.6 * | 119.6 ± 15.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costas-Ferreira, C.; Barreiro-Chapela, M.; Durán, R.; Faro, L.R.F. Possible Potentiating Effects of Combined Administration of Alcohol, Caffeine, and Nicotine on In Vivo Dopamine Release in Addiction-Related Circuits Within the CNS of Rats. Biomedicines 2024, 12, 2591. https://doi.org/10.3390/biomedicines12112591
Costas-Ferreira C, Barreiro-Chapela M, Durán R, Faro LRF. Possible Potentiating Effects of Combined Administration of Alcohol, Caffeine, and Nicotine on In Vivo Dopamine Release in Addiction-Related Circuits Within the CNS of Rats. Biomedicines. 2024; 12(11):2591. https://doi.org/10.3390/biomedicines12112591
Chicago/Turabian StyleCostas-Ferreira, Carmen, Martiño Barreiro-Chapela, Rafael Durán, and Lilian R. Ferreira Faro. 2024. "Possible Potentiating Effects of Combined Administration of Alcohol, Caffeine, and Nicotine on In Vivo Dopamine Release in Addiction-Related Circuits Within the CNS of Rats" Biomedicines 12, no. 11: 2591. https://doi.org/10.3390/biomedicines12112591
APA StyleCostas-Ferreira, C., Barreiro-Chapela, M., Durán, R., & Faro, L. R. F. (2024). Possible Potentiating Effects of Combined Administration of Alcohol, Caffeine, and Nicotine on In Vivo Dopamine Release in Addiction-Related Circuits Within the CNS of Rats. Biomedicines, 12(11), 2591. https://doi.org/10.3390/biomedicines12112591