Osteopontin and Clinical Outcomes in Hemodialysis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Laboratory Measurements
2.3. Study Endpoints
2.4. Statistical Analysis
3. Results
3.1. Independent Correlates of OPN
3.2. Survival Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jager, K.J.; Kovesdy, C.; Langham, R.; Rosenberg, M.; Jha, V.; Zoccali, C. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Kidney Int. 2019, 96, 1048–1050. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, C.; Mallamaci, F.; Adamczak, M.; De Oliveira, R.B.; Massy, Z.A.; Sarafidis, P.; Agarwal, R.; Mark, P.B.; Kotanko, P.; Ferro, C.J.; et al. Cardiovascular complications in chronic kidney disease: A review from the European Renal and Cardiovascular Medicine Working Group of the European Renal Association. Cardiovasc. Res. 2023, 119, 2017–2032. [Google Scholar] [CrossRef]
- Denhardt, D.T.; Noda, M. Osteopontin expression and function: Role in bone remodeling. J. Cell. Biochem. 1998, 72, 92–102. [Google Scholar] [CrossRef]
- Gravallese, E.M. Osteopontin: A bridge between bone and the immune system. J. Clin. Investig. 2003, 112, 147–149. [Google Scholar] [CrossRef]
- Nitta, K.; Ishizuka, T.; Horita, S.; Hayashi, T.; Ajiro, A.; Uchida, K.; Honda, K.; Oba, T.; Kawashima, A.; Yumura, W.; et al. Soluble osteopontin and vascular calcification in hemodialysis patients. Nephron 2001, 89, 455–458. [Google Scholar] [CrossRef]
- Mohamed, R.; Tawfeek, E.; Abdel-Salam, M.; Ghoraba, N.M.; Maghraby, H. The Relationship between Circulating Levels of Osteopontin with Carotid Intima-Media Thickness in Children on Regular Hemodialysis. Open J. Nephrol. 2021, 11, 467–476. [Google Scholar] [CrossRef]
- Kothari, A.N.; Arffa, M.L.; Chang, V.; Blackwell, R.H.; Syn, W.K.; Zhang, J.; Mi, Z.; Kuo, P.C. Osteopontin-A Master Regulator of Epithelial-Mesenchymal Transition. J. Clin. Med. 2016, 5, 39. [Google Scholar] [CrossRef] [PubMed]
- De Fusco, C.; Messina, A.; Monda, V.; Viggiano, E.; Moscatelli, F.; Valenzano, A.; Esposito, T.; Sergio, C.; Cibelli, G.; Monda, M.; et al. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis. Stem Cells Int. 2017, 2017, 4045238. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Jeong, S.; Xia, Q.; Kong, X. Role of Osteopontin in Liver Diseases. Int. J. Biol. Sci. 2016, 12, 1121. [Google Scholar] [CrossRef]
- Yamaga, M.; Tsuji, K.; Miyatake, K.; Yamada, J.; Abula, K.; Ju, Y.J.; Sekiya, I.; Muneta, T. Osteopontin Level in Synovial Fluid Is Associated with the Severity of Joint Pain and Cartilage Degradation after Anterior Cruciate Ligament Rupture. PLoS ONE 2012, 7, 49014. [Google Scholar] [CrossRef]
- Hattori, T.; Iwasaki-Hozumi, H.; Bai, G.; Chagan-Yasutan, H.; Shete, A.; Telan, E.F.; Takahashi, A.; Ashino, Y.; Matsuba, T. Both Full-Length and Protease-Cleaved Products of Osteopontin Are Elevated in Infectious Diseases. Biomedicines 2021, 9, 1006. [Google Scholar] [CrossRef] [PubMed]
- Icer, M.A.; Gezmen-Karadag, M. The multiple functions and mechanisms of osteopontin. Clin Biochem. 2018, 59, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Chiang, T.I.; Chang, I.C.; Lee, H.S.; Lee, H.; Huang, C.H.; Cheng, Y.W. Osteopontin regulates anabolic effect in human menopausal osteoporosis with intermittent parathyroid hormone treatment. Osteoporos. Int. 2011, 22, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Fodor, D.; Bondor, C.; Albu, A.; Simon, S.P.; Craciun, A.; Muntean, L. The value of osteopontin in the assessment of bone mineral density status in postmenopausal women. J. Investig. Med. 2013, 61, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.H.; Cho, K.H.; Lee, H.A.; Kim, S.W. High serum osteopontin levels are associated with low bone mineral density in postmenopausal women. J. Korean Med. Sci. 2013, 28, 1496–1499. [Google Scholar] [CrossRef] [PubMed]
- Vancea, A.; Serban, O.; Fodor, D. Relationship between Osteopontin and Bone Mineral Density. Acta Endocrinol. 2021, 17, 509. [Google Scholar] [CrossRef]
- Wei, Q.S.; Huang, L.; Tan, X.; Chen, Z.Q.; Chen, S.M.; Deng, W.M. Serum osteopontin levels in relation to bone mineral density and bone turnover markers in postmenopausal women. Scand. J. Clin. Lab. Investig. 2016, 76, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Kaleta, B. The role of osteopontin in kidney diseases. Inflamm. Res. 2019, 68, 93–102. [Google Scholar] [CrossRef]
- Kadoglou, N.P.E.; Khattab, E.; Velidakis, N.; Gkougkoudi, E. The Role of Osteopontin in Atherosclerosis and Its Clinical Manifestations (Atherosclerotic Cardiovascular Diseases)—A Narrative Review. Biomedicines 2023, 11, 3178. [Google Scholar] [CrossRef]
- Blacher, J.; Guerin, A.P.; Pannier, B.; Marchais, S.J.; London, G.M. Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension 2001, 38, 938–942. [Google Scholar] [CrossRef]
- Si, J.; Wang, C.; Zhang, D.; Wang, B.; Hou, W.; Zhou, Y. Osteopontin in Bone Metabolism and Bone Diseases. Med. Sci. Monit. 2020, 26, e919159-1. [Google Scholar] [CrossRef] [PubMed]
- Lok, Z.S.Y.; Lyle, A.N. Osteopontin in Vascular Disease. Arter. Thromb. Vasc. Biol. 2019, 39, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Sun, D.; Duan, Y.; Wen, P.; Dai, C.; Yang, J.; He, W. WNT/β-catenin signaling promotes VSMCs to osteogenic transdifferentiation and calcification through directly modulating Runx2 gene expression. Exp. Cell Res. 2016, 345, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, H.A.; Warner, K.J.; Li, M.C.; Hunter, G.K. Binding of bone sialoprotein, osteopontin and synthetic polypeptides to hydroxyapatite. Connect. Tissue Res. 2001, 42, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Speer, M.Y.; McKee, M.D.; Guldberg, R.E.; Liaw, L.; Yang, H.Y.; Tung, E.; Karsenty, G.; Giachelli, C.M. Inactivation of the osteopontin gene enhances vascular calcification of matrix Gla protein-deficient mice: Evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo. J. Exp. Med. 2002, 196, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, X.; Wu, H. Arterial Stiffness: A focus on vascular calcification and its link to bone mineralization. Arter. Thromb. Vasc. Biol. 2020, 40, 1078. [Google Scholar] [CrossRef]
- Davies, M.R.; Hruska, K.A. Pathophysiological mechanisms of vascular calcification in end-stage renal disease. Kidney Int. 2001, 60, 472–479. [Google Scholar] [CrossRef]
- Chen, N.X.; Moe, S.M. Vascular Calcification: Pathophysiology and Risk Factors. Curr. Hypertens. Rep. 2012, 14, 228. [Google Scholar] [CrossRef]
- Nemcsik, J.; Kiss, I.; Tislér, A. Arterial stiffness, vascular calcification and bone metabolism in chronic kidney disease. World J. Nephrol. 2012, 1, 25. [Google Scholar] [CrossRef]
- Lund, S.A.; Giachelli, C.M.; Scatena, M. The role of osteopontin in inflammatory processes. J. Cell Commun. Signal. 2009, 3, 311. [Google Scholar] [CrossRef]
- Wang, T.; He, C. TNF-α and IL-6: The Link between Immune and Bone System. Curr. Drug Targets. 2020, 21, 213–227. [Google Scholar] [PubMed]
- Many, G.M.; Yokosaki, Y.; Uaesoontrachoon, K.; Nghiem, P.P.; Bello, L.; Dadgar, S.; Yin, Y.; Damsker, J.M.; Cohen, H.B.; Kornegay, J.N. OPN-a induces muscle inflammation by increasing recruitment and activation of pro-inflammatory macrophages. Exp. Physiol. 2016, 101, 1285. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Liang, S.; Guo, H.; Xu, L.; Li, J.; Peng, J. OPN Promotes Cell Proliferation and Invasion through NF-κB in Human Esophageal Squamous Cell Carcinoma. Genet. Res. 2022, 2022, 3154827. [Google Scholar] [CrossRef] [PubMed]
- Henein, M.Y.; Vancheri, S.; Longo, G.; Vancheri, F. The Role of Inflammation in Cardiovascular Disease. Int. J. Mol. Sci. 2022, 23, 12906. [Google Scholar] [CrossRef]
- Bazzichi, L.; Ghiadoni, L.; Rossi, A.; Bernardini, M.; Lanza, M.; De Feo, F.; Giacomelli, C.; Mencaroni, I.; Raimo, K.; Rossi, M.; et al. Osteopontin Is Associated with Increased Arterial Stiffness in Rheumatoid Arthritis. Mol. Med. 2009, 15, 402. [Google Scholar] [CrossRef]
- Feola, M. The influence of arterial stiffness in heart failure: A clinical review. J. Geriatr. Cardiol. 2021, 18, 135–140. [Google Scholar]
- Fortis, S.; Khadaroo, R.G.; Haitsma, J.J.; Zhang, H. Osteopontin is associated with inflammation and mortality in a mouse model of polymicrobial sepsis. Acta Anaesthesiol. Scand. 2015, 59, 170–175. [Google Scholar] [CrossRef]
- Roderburg, C.; Benz, F.; Cardenas, D.V.; Lutz, M.; Hippe, H.J.; Luedde, T.; Trautwein, C.; Frey, N.; Koch, A.; Tacke, F.; et al. Persistently elevated osteopontin serum levels predict mortality in critically ill patients. Crit. Care 2015, 19, 271. [Google Scholar] [CrossRef] [PubMed]
- Carbone, F.; Bonaventura, A.; Vecchiè, A.; Meessen, J.; Minetti, S.; Elia, E.; Ferrara, D.; Ansaldo, A.M.; Tulli, G.; Guarducci, D.; et al. Early osteopontin levels predict mortality in patients with septic shock. Eur. J. Intern. Med. 2020, 78, 113–120. [Google Scholar] [CrossRef]
- Rosenberg, M.; Zugck, C.; Nelles, M.; Juenger, C.; Frank, D.; Remppis, A.; Giannitsis, E.; Katus, H.A.; Frey, N. Osteopontin, a new prognostic biomarker in patients with chronic heart failure. Circ. Heart Fail. 2008, 1, 43–49. [Google Scholar] [CrossRef]
- Verbeke, F.; Van Biesen, W.; Honkanen, E.; Wikström, B.; Jensen, P.B.; Krzesinski, J.M.; Rasmussen, M.; Vanholder, R.; Rensma, P.L.; CORD Study Investigators. Prognostic value of aortic stiffness and calcification for cardiovascular events and mortality in dialysis patients: Outcome of the calcification outcome in renal disease (CORD) study. Clin. J. Am. Soc. Nephrol. 2011, 6, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Wilkieson, T.J.; Rahman, M.O.; Gangji, A.S.; Voss, M.; Ingram, A.J.; Ranganath, N.; Goldsmith, C.H.; Kotsamanes, C.Z.; Crowther, M.A.; Rabbat, C.G.; et al. Coronary artery calcification, cardiovascular events, and death: A prospective cohort study of incident patients on hemodialysis. Can. J. Kidney Health Dis. 2015, 2, 29. [Google Scholar] [CrossRef] [PubMed]
- Shantouf, R.S.; Budoff, M.J.; Ahmadi, N.; Ghaffari, A.; Flores, F.; Gopal, A.; Noori, N.; Jing, J.; Kovesdy, C.P.; Kalantar-Zadeh, K. Total and individual coronary artery calcium scores as independent predictors of mortality in hemodialysis patients. Am. J. Nephrol. 2010, 31, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Ohtake, T.; Ishioka, K.; Honda, K.; Oka, M.; Maesato, K.; Mano, T.; Ikee, R.; Moriya, H.; Hidaka, S.; Kobayashi, S. Impact of coronary artery calcification in hemodialysis patients: Risk factors and associations with prognosis. Hemodial. Int. 2010, 14, 218–225. [Google Scholar] [CrossRef]
- Matsuoka, M.; Iseki, K.; Tamashiro, M.; Fujimoto, N.; Higa, N.; Touma, T.; Takishita, S. Impact of high coronary artery calcification score (CACS) on survival in patients on chronic hemodialysis. Clin. Exp. Nephrol. 2004, 8, 54–58. [Google Scholar] [CrossRef]
- Wanner, C.; Zimmermann, J.; Schwedler, S.; Metzger, T. Inflammation and cardiovascular risk in dialysis patients. Kidney Int. Suppl. 2002, 61, S99–S102. [Google Scholar] [CrossRef]
- Panichi, V.; Rizza, G.M.; Paoletti, S.; Bigazzi, R.; Aloisi, M.; Barsotti, G.; Rindi, P.; Donati, G.; Antonelli, A.; Panicucci, E.; et al. Chronic inflammation and mortality in haemodialysis: Effect of different renal replacement therapies. Results from the RISCAVID study. Nephrol. Dial. Transplant. 2008, 23, 2337–2343. [Google Scholar] [CrossRef]
- Zimmermann, J.; Herrlinger, S.; Pruy, A.; Metzger, T.; Wanner, C. Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int. 1999, 55, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Schafer, M.J.; Zhang, X.; Kumar, A.; Atkinson, E.J.; Zhu, Y.; Jachim, S.; Mazula, D.L.; Brown, A.K.; Berning, M.; Aversa, Z.; et al. The senescence-associated secretome as an indicator of age and medical risk. JCI Insight. 2020, 5, e133668. [Google Scholar] [CrossRef]
- Sawaki, D.; Zhang, Y.; Mohamadi, A.; Pini, M.; Mezdari, Z.; Lipskaia, L.; Naushad, S.; Lamendour, L.; Altintas, D.M.; Breau, M.; et al. Osteopontin promotes age-related adipose tissue remodeling through senescence-associated macrophage dysfunction. JCI Insight. 2023, 8, e145811. [Google Scholar] [CrossRef]
- Moriero, M.; Verzola, D.; Bertolotto, M.; Minetti, S.; Contini, P.; Ramoni, D.; Liberale, L.; Pontremoli, R.; Viazzi, F.; Pende, A.; et al. Baseline urinary osteopontin levels are associated with the improvement of metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 1874–1878. [Google Scholar] [CrossRef] [PubMed]
- Scuricini, A.; Andreozzi, F.; Sgura, C.; Ministrini, S.; Bertolotto, M.; Ramoni, D.; Liberale, L.; Camici, G.G.; Mannino, G.C.; Succurro, E.; et al. Osteopontin levels correlate with severity of diabetic cardiomyopathy in early stage of diabetes. Diabetes Res. Clin. Pr. 2023, 203, 110885. [Google Scholar] [CrossRef] [PubMed]
- Carbone, F.; Meessen, J.; Magnoni, M.; Andreini, D.; Maggioni, A.P.; Latini, R.; Montecucco, F. Osteopontin as Candidate Biomarker of Coronary Disease despite Low Cardiovascular Risk: Insights from CAPIRE Study. Cells 2022, 11, 669. [Google Scholar] [CrossRef]
- Bertolotto, M.; Verzola, D.; Contini, P.; de Totero, D.; Tirandi, A.; Ramoni, D.; Ministrini, S.; Giacobbe, D.R.; Bonaventura, A.; Vecchié, A.; et al. Osteopontin is associated with neutrophil extracellular trap formation in elderly patients with severe sepsis. Eur. J. Clin. Investig. 2024, 54, e14159. [Google Scholar] [CrossRef]
- Carbone, F.; Grossi, F.; Bonaventura, A.; Vecchié, A.; Minetti, S.; Bardi, N.; Elia, E.; Ansaldo, A.M.; Ferrara, D.; Rijavec, E.; et al. Baseline serum levels of osteopontin predict clinical response to treatment with nivolumab in patients with non-small cell lung cancer. Clin. Exp. Metastasis 2019, 36, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Ramoni, D.; Coco, S.; Rossi, G.; Dellepiane, C.; Bennicelli, E.; Santamaria, S.; Zinoli, L.; Tagliafico, A.S.; Tagliamento, M.; Barletta, G.; et al. Circulating Osteopontin Predicts Clinical and Radiological Response in First-Line Treatment of Advanced Non-Small Cell Lung Cancer. Lung 2024, 202, 197–210. [Google Scholar] [CrossRef]
- Mohamed, I.A.; Gadeau, A.P.; Hasan, A.; Abdulrahman, N.; Mraiche, F. Osteopontin: A Promising Therapeutic Target in Cardiac Fibrosis. Cells 2019, 8, 1558. [Google Scholar] [CrossRef]
Whole Cohort (n = 1124) | |
---|---|
Age (years) | 65 ± 14 |
BMI (kg/m2) | 25 ± 5 |
Male sex n (%) | 720 (64) |
Current smokers n (%) | 158 (14) |
Past smokers n (%) | 403 (36) |
Diabetics n (%) | 301 (27) |
Antihypertensive treatment n (%) | 653 (58) |
Cardiovascular comorbidities * n (%) | 586 (52) |
Systolic blood pressure (mmHg) | 135 ± 22 |
Diastolic blood pressure (mmHg) | 73 ± 12 |
Dialysis vintage (months) | 47 (22–90) |
Pre-dialysis potassium (mEq/L) | 5.5 ± 0.9 |
Post-dialysis potassium (mEq/L) | 3.9 ± 0.6 |
Pre-dialysis weight (Kg) | 69 ± 15 |
Post-dialysis weight (Kg) | 66 ± 15 |
Cholesterol (mg/dL) | 154 ± 39 |
HDL cholesterol (mg/dL) | 40 ± 13 |
Hemoglobin (g/dL) | 11.3 ± 1.5 |
Albumin (g/dL) | 3.9 ± 0.5 |
C-reactive protein (mg/L) | 4.5 (3.0–12.0) |
Calcium (mg/dL) | 9.1 ± 1.0 |
Phosphate (mg/dL) | 5.0 ± 1.6 |
Sodium (mEq/L) | 138 ± 4 |
Alkaline phosphatase (UI/L) | 88 (66–124) |
PTH (pg/mL) | 243 (118–460) |
Variables | β (95% CI), p |
---|---|
PTH (50 pg/mL) | 0.03 (0.02, 0.04), p < 0.001 |
Alkaline phosphatase (50 UI/L) | 0.08 (0.04, 0.12), p < 0.001 |
Phosphate (mg/dL) | 0.03 (−0.01, 0.07), p = 0.16 |
Variables. | HR (95% CI), p | HR (95% CI), p |
---|---|---|
ln osteopontin (1 ng/mL) | 1.15 (1.05–1.24), p = 0.001 | 1.19 (1.09–1.31), p < 0.001 |
Age (1 year) | 1.05 (1.04–1.05), p < 0.001 | |
Gender (0 = female, 1 = male) | 1.13 (0.93–1.38), p = 0.21 | |
Current smoking (0 = no, 1 = yes) | 0.98 (0.73–1.31), p = 0.88 | |
Diabetes (0 = no, 1 = yes) | 1.31 (1.06–1.61), p = 0.01 | |
Cholesterol (1 mg/dL) | 1.00 (0.99–1.00), p = 0.003 | |
Pre-dialysis systolic blood pressure (1 mm/Hg) | 1.00 (1.00–1.00), p = 0.90 | |
Previous CV comorbidities (0 = no, 1 = yes) | 1.45 (1.20–1.77), p < 0.001 | |
Dialysis vintage (1 day) | 1.00 (1.00–1.00), p < 0.001 | |
Blood pressure lowering therapy (0 = no, 1 = yes) | 1.02 (0.84–1.25), p = 0.81 | |
Albumin (1 g/dL) | 0.77 (0.63–0.94), p = 0.01 | |
Calcium (1 mg/dL) | 1.04 (0.94–1.15), p = 0.44 | |
Phosphate (1 mg/dL) | 0.99 (0.93–1.05), p = 0.73 | |
Hemoglobin (1 g/dL) | 0.95 (0.89–1.02), p = 0.15 | |
C-reactive protein (1 mg/L) | 1.00 (1.00–1.002), p = 0.84 | |
Body mass index (1 Kg/m2) | 0.97 (0.97–1.02), p = 0.77 |
Variables | HR (95%CI), p | HR (95%CI), p |
---|---|---|
ln osteopontin (1 ng/mL) | 1.13 (1.01–1.26), p = 0.03 | 1.22 (1.08–1.38), p < 0.001 |
Age (1 year) | 1.04 (1.03–1.06), p < 0.001 | |
Gender (0 = female, 1 = male) | 1.30 (1.00–1.70), p = 0.06 | |
Current smoking (0 = no, 1 = yes) | 0.81 (0.54–1.23), p = 0.25 | |
Diabetes (0 = no, 1 = yes) | 1.49 (1.14–1.95), p = 0.01 | |
Cholesterol (1 mg/dL) | 1.00 (0.99–1.00), p = 0.002 | |
Pre-dialysis systolic blood pressure (1 mm/Hg) | 1.00 (0.99–1.01), p = 0.99 | |
Previous CV comorbidities (0 = no, 1 = yes) | 1.71 (1.31–2.24), p < 0.001 | |
Dialysis vintage (1 day) | 1.00 (1.00–1.00), p = 0.09 | |
Blood pressure lowering therapy (0 = no, 1 = yes) | 1.06 (0.82–1.38), p = 0.82 | |
Albumin (1 g/dL) | 0.88 (0.68–1.14), p = 0.44 | |
Calcium (1 mg/dL) | 1.00 (0.87–1.15), p = 0.99 | |
Phosphate (1 mg/dL) | 0.96 (0.88–1.04), p = 0.34 | |
Hemoglobin (1 g/dL) | 0.97 (0.89–1.05), p = 0.38 | |
C-reactive protein (1 mg/L) | 1.00 (1.00–1.003), p = 0.97 | |
Body mass index (1 Kg/m2) | 1.00 (0.96–1.03), p = 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torino, C.; Carbone, F.; Pizzini, P.; Mezzatesta, S.; D’Arrigo, G.; Gori, M.; Liberale, L.; Moriero, M.; Michelauz, C.; Frè, F.; et al. Osteopontin and Clinical Outcomes in Hemodialysis Patients. Biomedicines 2024, 12, 2605. https://doi.org/10.3390/biomedicines12112605
Torino C, Carbone F, Pizzini P, Mezzatesta S, D’Arrigo G, Gori M, Liberale L, Moriero M, Michelauz C, Frè F, et al. Osteopontin and Clinical Outcomes in Hemodialysis Patients. Biomedicines. 2024; 12(11):2605. https://doi.org/10.3390/biomedicines12112605
Chicago/Turabian StyleTorino, Claudia, Federico Carbone, Patrizia Pizzini, Sabrina Mezzatesta, Graziella D’Arrigo, Mercedes Gori, Luca Liberale, Margherita Moriero, Cristina Michelauz, Federica Frè, and et al. 2024. "Osteopontin and Clinical Outcomes in Hemodialysis Patients" Biomedicines 12, no. 11: 2605. https://doi.org/10.3390/biomedicines12112605
APA StyleTorino, C., Carbone, F., Pizzini, P., Mezzatesta, S., D’Arrigo, G., Gori, M., Liberale, L., Moriero, M., Michelauz, C., Frè, F., Isoppo, S., Gavoci, A., Rosa, F. L., Scuricini, A., Tirandi, A., Ramoni, D., Mallamaci, F., Tripepi, G., Montecucco, F., & Zoccali, C. (2024). Osteopontin and Clinical Outcomes in Hemodialysis Patients. Biomedicines, 12(11), 2605. https://doi.org/10.3390/biomedicines12112605