Rhabdomyolysis After Prolonged Tourniquet Application Is Associated with Reversible Acute Kidney Injury (AKI) in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Inclusion Criteria
2.3. Overview of Experimental Timeline
2.4. Day 1 Procedures—Catheterization and BL Measurements
2.5. Tourniquet Injury (Day 2)
2.6. Day 1–Day 4 Procedures
2.7. Terminal Procedures (Day 5 or upon Early Moribund Status)
2.8. Transcutaneous GFR Measurement
2.9. Blood Measures and Urinalysis
2.10. Calculations
- Cr clearance (CCr) = (UCr × urine flow) ÷ Cr, where UCr is urine Cr and Cr is blood Cr;
- Protein excreted = urine protein centration × urine volume/bodyweight.
2.11. Pathology
2.12. Statistical Methods
3. Results
3.1. Muscle Injury
3.2. Cardiovascular Function
3.3. Renal Function
3.4. Arterial Blood Measures
3.5. Water Consumption and Urine Measures
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Blackbourne, L.H.; Baer, D.G.; Eastridge, B.J.; Kheirabadi, B.; Bagley, S.; Kragh, J.F., Jr.; Cap, A.P.; Dubick, M.A.; Morrison, J.J.; Midwinter, M.J.; et al. Military Medical Revolution: Prehospital Combat Casualty Care. J. Trauma Acute Care Surg. 2012, 73, S372–S377. [Google Scholar] [CrossRef] [PubMed]
- Holcomb, J.B.; Dorlac, W.C.; Drew, B.G.; Butler, F.K.; Gurney, J.M.; Montgomery, H.R.; Shackelford, S.A.; Bank, E.A.; Kerby, J.D.; Kragh, J.F.; et al. Rethinking Limb Tourniquet Conversion in the Prehospital Environment. J. Trauma Acute Care Surg. 2023, 95, e54–e60. [Google Scholar] [CrossRef] [PubMed]
- Walters, T.J.; Powell, D.; Penny, A.; Stewart, I.; Chung, K.K.; Keenan, S.; Shackelford, S.A. Management of Crush Syndrome Under Prolonged Field Care. J. Spec. Oper. Med. 2016, 16, 79–85. [Google Scholar] [CrossRef]
- Stevens, R.A.; Baker, M.S.; Zubach, O.B.; Samotowka, M. Misuse of Tourniquets in Ukraine may be Costing More Lives and Limbs than they Save. Mil. Med. 2024, 189, 304–308. [Google Scholar] [CrossRef]
- Sari, A.N.; Kacan, M.; Unsal, D.; Sahan Firat, S.; Kemal Buharalioglu, C.; Vezir, O.; Korkmaz, B.; Cuez, T.; Canacankatan, N.; Sucu, N.; et al. Contribution of RhoA/Rho-kinase/MEK1/ERK1/2/iNOS Pathway to Ischemia/Reperfusion-Induced Oxidative/Nitrosative Stress and Inflammation Leading to Distant and Target Organ Injury in Rats. Eur. J. Pharmacol. 2014, 723, 234–245. [Google Scholar] [CrossRef]
- Pryor, J.P. The 2001 World Trade Center Disaster: Summary and Evaluation of Experiences. Eur. J. Trauma Emerg. Surg. 2009, 35, 212–224. [Google Scholar] [CrossRef]
- Singh, K.; Ditkofsky, N.G.; York, J.D.; Abujudeh, H.H.; Avery, L.A.; Brunner, J.F.; Sodickson, A.D.; Lev, M.H. Blast Injuries: From Improvised Explosive Device Blasts to the Boston Marathon Bombing. Radiographics 2016, 36, 295–307. [Google Scholar] [CrossRef]
- Van Der Meer, C.; Valkenburg, P.W.; Ariens, A.T.; Van Benthem, R.M. Cause of Death in Tourniquet Shock in Rats. Am. J. Physiol. 1966, 210, 513–525. [Google Scholar] [CrossRef]
- Matsushita, K.; Mori, K.; Saritas, T.; Eiwaz, M.B.; Funahashi, Y.; Nickerson, M.N.; Hebert, J.F.; Munhall, A.C.; McCormick, J.A.; Yanagita, M.; et al. Cilastatin Ameliorates Rhabdomyolysis-induced AKI in Mice. J. Am. Soc. Nephrol. 2021, 32, 2579–2594. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, M.; Chen, L.; Liu, J.; Li, X.; Zhang, C.; Xiang, X.; Li, X.; Lv, Q. Systemic Review of Animal Models Used in the Study of Crush Syndrome. Shock 2022, 57, 469–478. [Google Scholar] [CrossRef]
- Hebert, J.F.; Burfeind, K.G.; Malinoski, D.; Hutchens, M.P. Molecular Mechanisms of Rhabdomyolysis-Induced Kidney Injury: From Bench to Bedside. Kidney Int. Rep. 2023, 8, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.; Faulk, T.I.; Sosnov, J.A.; Clemens, M.S.; Elterman, J.; Ross, J.D.; Howard, J.T.; Fang, R.; Zonies, D.H.; Chung, K.K. Rhabdomyolysis Among Critically Ill Combat Casualties: Associations with Acute Kidney Injury and Mortality. J. Trauma Acute Care Surg. 2016, 80, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Walters, T.J.; Kragh, J.F.; Kauvar, D.S.; Baer, D.G. The Combined Influence of Hemorrhage and Tourniquet Application on the Recovery of Muscle Function in Rats. J. Orthop. Trauma 2008, 22, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Kauvar, D.S.; Baer, D.G.; Dubick, M.A.; Walters, T.J. Effect of Fluid Resuscitation on Acute Skeletal Muscle Ischemia-Reperfusion Injury After Hemorrhagic Shock in Rats. J. Am. Coll Surg. 2006, 202, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Schock-Kusch, D.; Sadick, M.; Henninger, N.; Kraenzlin, B.; Claus, G.; Kloetzer, H.M.; Weiss, C.; Pill, J.; Gretz, N. Transcutaneous Measurement of Glomerular Filtration Rate using FITC-Sinistrin in Rats. Nephrol. Dial. Transplant. 2009, 24, 2997–3001. [Google Scholar] [CrossRef]
- Xiang, L.; Calderon, A.S.; Klemcke, H.G.; Hudson, I.L.; Hinojosa-Laborde, C.; Chung, K.K.; Ryan, K.L. Extremity Trauma Exacerbates Acute Kidney Injury Following Prolonged Hemorrhagic Hypotension. J. Trauma Acute Care Surg. 2021, 91, S113–S123. [Google Scholar] [CrossRef]
- Cearra, I.; Herrero de la Parte, B.; Moreno-Franco, D.I.; Garcia-Alonso, I. A Reproducible Method for Biochemical, Histological and Functional Assessment of the Effects of Ischaemia-Reperfusion Syndrome in the Lower Limbs. Sci. Rep. 2021, 11, 19325. [Google Scholar] [CrossRef]
- Criddle, L.M. Rhabdomyolysis. Pathophysiology, Recognition, and Management. Crit. Care Nurse 2003, 23, 14–22, 24–26, 28 Passim, Quiz 31–32. [Google Scholar] [CrossRef]
- Russell, T.A. Acute Renal Failure Related to Rhabdomyolysis: Pathophysiology, Diagnosis, and Collaborative Management. Nephrol. Nurs. J. 2005, 32, 409–417, Quiz 418–419. [Google Scholar]
- Salman, B.; Mazen, M.D. Rhabdomyolysis: Clinical Manifestations and Diagnosis; UpToDate: Waltham, MA, USA, 2024. [Google Scholar]
- Tintinalli, J.E.; Kellen, G.D.; Stapczynski, J.S. Causes of bacteremia in children have been reported as P. Bacteremia, sepsis, and meningitis in children. In Tintinalli’s Emergency Medicine: A Comprehensive Study Guide, 6th ed.; McGraw-Hill Education LLC.: New York, NY, USA, 2004; pp. 735–742. [Google Scholar]
- Kennedy, T.J.; Miller, S.H.; Nellis, S.H.; Buck, D.; Flaim, S.F.; Graham, W.P., 3rd; Davis, T.S. Effects of Transient Ischemia on Nutrient Flow and Arteriovenous Shunting in Canine Hindlimb. Ann. Surg. 1981, 193, 255–263. [Google Scholar] [CrossRef]
- Winet, H.; Hsieh, A.; Bao, J.Y. Approaches to Study of Ischemia in Bone. J. Biomed. Mater. Res. 1998, 43, 410–421. [Google Scholar] [CrossRef]
- Hsieh, S.; Winet, H.; Bao, J.Y.; Glas, H.; Plenk, H. Evidence for Reperfusion Injury in Cortical Bone as a Function of Crush Injury Ischemia Duration: A Rabbit Bone Chamber Study. Bone 2001, 28, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Subashri, M.; Sujit, S.; Thirumalvalavan, K.; Poongodi, A.; Srinivasaprasad, N.D.; Edwin Fernando, M. Rhabdomyolysis-Associated Acute Kidney Injury. Indian J. Nephrol. 2023, 33, 114–118. [Google Scholar] [PubMed]
- Alpers, P.; Jones, L.K., Jr. Natural History of Exertional Rhabdomyolysis: A Population-Based Analysis. Muscle Nerve 2010, 42, 487–491. [Google Scholar] [CrossRef]
- Martini, J.; Carpentier, B.; Negrete, A.C.; Frangos, J.A.; Intaglietta, M. Paradoxical Hypotension Following Increased Hematocrit and Blood Viscosity. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H2136–H2143. [Google Scholar] [CrossRef]
- Zager, R.A.; Gamelin, L.M. Pathogenetic Mechanisms in Experimental Hemoglobinuric Acute Renal Failure. Am. J. Physiol. 1989, 256, F446–F455. [Google Scholar] [CrossRef]
- Holt, S.; Reeder, B.; Wilson, M.; Harvey, S.; Morrow, J.D.; Roberts, L.J., 2nd; Moore, K. Increased Lipid Peroxidation in Patients with Rhabdomyolysis. Lancet 1999, 353, 1241. [Google Scholar] [CrossRef]
- Holt, S.; Moore, K. Pathogenesis of Renal Failure in Rhabdomyolysis: The Role of Myoglobin. Exp. Nephrol. 2000, 8, 72–76. [Google Scholar] [CrossRef]
- Heyman, S.N.; Rosen, S.; Fuchs, S.; Epstein, F.H.; Brezis, M. Myoglobinuric Acute Renal Failure in the Rat: A Role for Medullary Hypoperfusion, Hypoxia, and Tubular Obstruction. J. Am. Soc. Nephrol. 1996, 7, 1066–1074. [Google Scholar] [CrossRef]
- Bruder, N.; Pellissier, D.; Grillot, P.; Gouin, F. Cerebral Hyperemia During Recovery From General Anesthesia in Neurosurgical Patients. Anesth. Analg. 2002, 94, 650–654. [Google Scholar] [CrossRef]
- Reubi, F.C. Renal Hyperemia Induced in Man by A New Phthalazine Derivative. Proc. Soc. Exp. Biol. Med. 1950, 73, 102. [Google Scholar] [CrossRef]
- de Castro, B.B.; Colugnati, F.A.; Cenedeze, M.A.; Suassuna, P.G.; Pinheiro, H.S. Standardization of Renal Function Evaluation in Wistar rats (Rattus norvegicus) from the Federal University of Juiz de Fora’s Colony. J. Bras. Nefrol. 2014, 36, 139–149. [Google Scholar] [CrossRef]
- Williams, D.; Kumar, R.; Afolabi, J.M.; Park, F.; Adebiyi, A. Rhabdomyolysis Aggravates Renal Iron Accumulation and Acute Kidney Injury in a Humanized Mouse Model of Sickle Cell Disease. Free Radic. Res. 2023, 57, 404–412. [Google Scholar] [CrossRef]
- Reis, N.G.; Francescato, H.D.C.; de Almeida, L.F.; Silva, C.; Costa, R.S.; Coimbra, T.M. Protective Effect of Calcitriol on Rhabdomyolysis-Induced Acute Kidney Injury in Rats. Sci. Rep. 2019, 9, 7090. [Google Scholar] [CrossRef]
- Kodadek, L.; Carmichael Ii, S.P.; Seshadri, A.; Pathak, A.; Hoth, J.; Appelbaum, R.; Michetti, C.P.; Gonzalez, R.P. Rhabdomyolysis: An American Association for the Surgery of Trauma Critical Care Committee Clinical Consensus Document. Trauma Surg. Acute Care Open 2022, 7, e000836. [Google Scholar] [CrossRef]
- Torres, P.A.; Helmstetter, J.A.; Kaye, A.M.; Kaye, A.D. Rhabdomyolysis: Pathogenesis, Diagnosis, and Treatment. Ochsner J. 2015, 15, 58–69. [Google Scholar]
- Chaikin, H.L. Rhabdomyolysis Secondary to Drug Overdose and Prolonged Coma. South Med. J. 1980, 73, 990–994. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N.; KDIGO AKI Guideline Work Group. Diagnosis, Evaluation, and Management of Acute Kidney Injury: A KDIGO Summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef]
- Samra, M.; Abcar, A.C. False Estimates of Elevated Creatinine. Perm. J. 2012, 16, 51–52. [Google Scholar] [CrossRef]
- Chiou, W.L.; Hsu, F.H. Pharmacokinetics of Creatinine in Man and Its Implications in the Monitoring of Renal Function and in Dosage Regimen Modifications in Patients with Renal Insufficiency. J. Clin. Pharmacol. 1975, 15, 427–434. [Google Scholar] [CrossRef]
- Schock-Kusch, D.; Geraci, S.; Ermeling, E.; Shulhevich, Y.; Sticht, C.; Hesser, J.; Stsepankou, D.; Neudecker, S.; Pill, J.; Schmitt, R.; et al. Reliability of Transcutaneous Measurement of Renal Function in Various Strains of Conscious Mice. PLoS ONE 2013, 8, e71519. [Google Scholar] [CrossRef] [PubMed]
Group | Baseline | 1.5 h | 24 h | 48 h | 72 h | |
---|---|---|---|---|---|---|
Sodium (mmol/L) | CON | 141 | 140 | 141 | 140 | 140 |
(2) | (3) | (2) | (1) | (1) | ||
TK | 138 * | 135 *# | 136 * | 140 | 137 * | |
(2) | (1) | (2) | (1) | (3) | ||
Calcium | CON | 1.37 | 1.28 | 1.37 | 1.29 | 1.34 |
(mmol/L) | (0.07) | (0.24) | (0.06) | (0.10) | (0.19) | |
TK | 1.33 | 1.26 | 1.22 | 1.31 | 1.12 * | |
(0.19) | (0.03) | (0.08) | (0.10) | (0.27) | ||
pH | CON | 7.45 | 7.45 | 7.44 | 7.49 | 7.39 |
(0.03) | (0.06) | (0.02) | (0.02) | (0.08) | ||
TK | 7.44 | 7.40 * | 7.48 | 7.42 * | 7.39 | |
(0.02) | (0.05) | (0.08) | (0.04) | (0.08) | ||
Lactate | CON | 1.09 | 1.10 | 1.04 | 0.84 | 0.93 |
(mmol/L) | (0.54) | (0.63) | (0.63) | (0.39) | (0.33) | |
TK | 1.02 | 2.00 *# | 1.86 *# | 1.49 # | 1.83 *# | |
(0.36) | (0.37) | (0.63) | (0.63) | (0.48) | ||
pCO2 | CON | 43.6 | 45.7 | 44.2 | 36.2 | 48.2 |
(mmHg) | (5.2) | (6.1) | (2.7) | (4.5) | (9.8) | |
TK | 43.8 | 46.5 | 37.5 | 44.3 | 39.3 * | |
(4.5) | (9.4) | (12.2) | (4.9) | (10.6) | ||
BUN (mg/dL) | CON | 14.6 | 12.9 | 14.8 | 13.9 | 12.3 |
(3.8) | (3.2) | (1.8) | (3.6) | (12.3) | ||
TK | 16.6 | 31.0 *# | 24.7 *# | 15.4 | 14.8 | |
(2.0) | (5.1) | (8.1) | (2.1) | (3.6) | ||
Cr (mg/dL) | CON | 0.257 | 0.329 | 0.320 | 0.229 | 0.314 |
(0.053) | (0.111) | (0.084) | (0.095) | (0.038) | ||
TK | 0.300 | 0.857 *# | 0.517 *# | 0.260 | 0.267 | |
(0.076) | (0.162) | (0.331) | (0.055) | (0.103) | ||
BUN/Cr | CON | 61.4 | 43.8 | 50.3 | 76.9 | 38.8 |
(15.0) | (17.5) | (20.9) | (57.0) | (10.5) | ||
TK | 58.9 | 37.3 | 55.9 | 61.7 | 58.3* | |
(16.8) | (9.8) | (16.7) | (17.3) | (11.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walters, T.J.; Torres, L.N.; Ryan, K.L.; Hainline, R.V.; Lipiec, S.M.; Obi, I.E.; Ybarra, J.; Niland, C.E.; Xiang, L. Rhabdomyolysis After Prolonged Tourniquet Application Is Associated with Reversible Acute Kidney Injury (AKI) in Rats. Biomedicines 2024, 12, 2607. https://doi.org/10.3390/biomedicines12112607
Walters TJ, Torres LN, Ryan KL, Hainline RV, Lipiec SM, Obi IE, Ybarra J, Niland CE, Xiang L. Rhabdomyolysis After Prolonged Tourniquet Application Is Associated with Reversible Acute Kidney Injury (AKI) in Rats. Biomedicines. 2024; 12(11):2607. https://doi.org/10.3390/biomedicines12112607
Chicago/Turabian StyleWalters, Thomas J., Luciana N. Torres, Kathy L. Ryan, Robert V. Hainline, Stephanie M. Lipiec, Ijeoma E. Obi, Jennifer Ybarra, Casey E. Niland, and Lusha Xiang. 2024. "Rhabdomyolysis After Prolonged Tourniquet Application Is Associated with Reversible Acute Kidney Injury (AKI) in Rats" Biomedicines 12, no. 11: 2607. https://doi.org/10.3390/biomedicines12112607
APA StyleWalters, T. J., Torres, L. N., Ryan, K. L., Hainline, R. V., Lipiec, S. M., Obi, I. E., Ybarra, J., Niland, C. E., & Xiang, L. (2024). Rhabdomyolysis After Prolonged Tourniquet Application Is Associated with Reversible Acute Kidney Injury (AKI) in Rats. Biomedicines, 12(11), 2607. https://doi.org/10.3390/biomedicines12112607