Alterations in the Levels of Urinary Exosomal MicroRNA-183-5p and MicroRNA-125a-5p in Individuals with Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Sample Collection
2.2. Exosomal RNA Extraction from Urine
2.3. Urinary Exosomal MiRNAs Profile Analyzed by Small RNA-Seq Technology
2.4. RT-qPCR Analysis
2.5. Blood Index Test and Definition of Other Variables
2.6. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Enrichment Analysis
2.7. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Urinary Exosomal MiRNA Profiling
3.3. Validation Results of Differentially Expressed MiRNAs by RT-qPCR
3.4. Correlations of Candidate Urinary Exosomal MiRNAs with Clinical Parameters
3.5. Binary Logistic Regression Analysis for the Risk Score
3.6. GO Analysis and KEGG Pathway Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Tabák, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimäki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2790. [Google Scholar] [CrossRef] [PubMed]
- McDermott, K.; Fang, M.; Boulton, A.J.M.; Selvin, E.; Hicks, C.W. Etiology, Epidemiology, and Disparities in the Burden of Diabetic Foot Ulcers. Diabetes Care 2023, 46, 209–221. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Gaglia, J.L.; Hilliard, M.E.; Isaacs, D.; et al. 2. Classification and Diagnosis of Diabetes: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46 (Suppl. S1), S19–S40. [Google Scholar] [CrossRef]
- He, Y.; Ma, G.; Zhai, F.; Li, Y.; Hu, Y.; Feskens, E.J.; Yang, X. Dietary patterns and glucose tolerance abnormalities in Chinese adults. Diabetes Care 2009, 32, 1972–1976. [Google Scholar] [CrossRef]
- Zhou, B.; Sheffer, K.E.; Bennett, J.E.; Gregg, E.W.; Danaei, G.; Singleton, R.K.; Shaw, J.E.; Mishra, A.; Lhoste, V.P.F.; Carrillo-Larco, R.M.; et al. Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c. Nat. Med. 2023, 29, 2885–2901. [Google Scholar] [CrossRef]
- van Rooij, E.; Kauppinen, S. Development of microRNA therapeutics is coming of age. EMBO Mol. Med. 2014, 6, 851–864. [Google Scholar] [CrossRef]
- Sekar, D.; Venugopal, B.; Sekar, P.; Ramalingam, K. Role of microRNA 21 in diabetes and associated/related diseases. Gene 2016, 582, 14–18. [Google Scholar] [CrossRef]
- Kumar, A.; Ren, Y.; Sundaram, K.; Mu, J.; Sriwastva, M.K.; Dryden, G.W.; Lei, C.; Zhang, L.; Yan, J.; Zhang, X.; et al. miR-375 prevents high-fat diet-induced insulin resistance and obesity by targeting the aryl hydrocarbon receptor and bacterial tryptophanase (tnaA) gene. Theranostics 2021, 11, 4061–4077. [Google Scholar] [CrossRef]
- Du, H.; Zhao, Y.; Yin, Z.; Wang, D.W.; Chen, C. The role of miR-320 in glucose and lipid metabolism disorder-associated diseases. Int. J. Biol. Sci. 2021, 17, 402–416. [Google Scholar] [CrossRef] [PubMed]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhao, S.; Li, W.; Ruan, Y.; Yuan, R.; Ning, J.; Jiang, K.; Xie, J.; Yao, X.; Li, H.; et al. Tubular cell-derived exosomal miR-150-5p contributes to renal fibrosis following unilateral ischemia-reperfusion injury by activating fibroblast in vitro and in vivo. Int. J. Biol. Sci. 2021, 17, 4021–4033. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Tao, Q.; Wu, X.; Zhang, L.; Liu, Q.; Wang, L. The Utility of Exosomes in Diagnosis and Therapy of Diabetes Mellitus and Associated Complications. Front. Endocrinol. 2021, 12, 756581. [Google Scholar] [CrossRef] [PubMed]
- Lv, L.L.; Cao, Y.H.; Ni, H.F.; Xu, M.; Liu, D.; Liu, H.; Chen, P.S.; Liu, B.C. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am. J. Physiol. Ren. Physiol. 2013, 305, F1220–F1227. [Google Scholar] [CrossRef]
- Wang, J.; Tao, Y.; Zhao, F.; Liu, T.; Shen, X.; Zhou, L. Expression of urinary exosomal miRNA-615-3p and miRNA-3147 in diabetic kidney disease and their association with inflammation and fibrosis. Ren. Fail. 2023, 45, 2121929. [Google Scholar] [CrossRef]
- Han, L.L.; Wang, S.H.; Yao, M.Y.; Zhou, H. Urinary exosomal microRNA-145-5p and microRNA-27a-3p act as noninvasive diagnostic biomarkers for diabetic kidney disease. World J. Diabetes 2024, 15, 92–104. [Google Scholar] [CrossRef]
- Min, Q.H.; Chen, X.M.; Zou, Y.Q.; Zhang, J.; Li, J.; Wang, Y.; Li, S.Q.; Gao, Q.F.; Sun, F.; Liu, J.; et al. Differential expression of urinary exosomal microRNAs in IgA nephropathy. J. Clin. Lab. Anal. 2018, 32, 1–9. [Google Scholar] [CrossRef]
- Jia, W.; Weng, J.; Zhu, D.; Ji, L.; Lu, J.; Zhou, Z.; Zou, D.; Guo, L.; Ji, Q.; Chen, L.; et al. Standards of medical care for type 2 diabetes in China 2019. Diabetes/Metab. Res. Rev. 2019, 35, e3158. [Google Scholar] [CrossRef]
- Erdbrügger, U.; Blijdorp, C.J.; Bijnsdorp, I.V.; Borràs, F.E.; Burger, D.; Bussolati, B.; Byrd, J.B.; Clayton, A.; Dear, J.W.; Falcón-Pérez, J.M.; et al. Urinary extracellular vesicles: A position paper by the Urine Task Force of the International Society for Extracellular Vesicles. J. Extracell. Vesicles 2021, 10, e12093. [Google Scholar] [CrossRef]
- Royo, F.; Zuñiga-Garcia, P.; Sanchez-Mosquera, P.; Egia, A.; Perez, A.; Loizaga, A.; Arceo, R.; Lacasa, I.; Rabade, A.; Arrieta, E.; et al. Different EV enrichment methods suitable for clinical settings yield different subpopulations of urinary extracellular vesicles from human samples. J. Extracell. Vesicles 2016, 5, 29497. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Zhu, Z.; Roy, S.; Jun, E.; Han, H.; Munoz, R.M.; Nishiwada, S.; Sharma, G.; Cridebring, D.; Zenhausern, F.; et al. An Exosome-based Transcriptomic Signature for Noninvasive, Early Detection of Patients with Pancreatic Ductal Adenocarcinoma: A Multicenter Cohort Study. Gastroenterology 2022, 163, 1252–1266.e2. [Google Scholar] [CrossRef] [PubMed]
- Symons, R.; Masci, P.G.; Francone, M.; Claus, P.; Barison, A.; Carbone, I.; Agati, L.; Galea, N.; Janssens, S.; Bogaert, J. Impact of active smoking on myocardial infarction severity in reperfused ST-segment elevation myocardial infarction patients: The smoker’s paradox revisited. Eur. Heart J. 2016, 37, 2756–2764. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, Y.; Zhang, M.; Yin, P.; Wu, F.; Zhao, W. Drinking behaviour among men and women in China: The 2007 China Chronic Disease and Risk Factor Surveillance. Addiction 2011, 106, 1946–1956. [Google Scholar] [CrossRef]
- Abdel Mageed, S.S.; Doghish, A.S.; Ismail, A.; El-Husseiny, A.A.; Fawzi, S.F.; Mahmoud, A.M.; El-Mahdy, H.A. The role of miRNAs in insulin resistance and diabetic macrovascular complications—A review. Int. J. Biol. Macromol. 2023, 230, 123189. [Google Scholar] [CrossRef]
- Ye, Z.; Wang, S.; Huang, X.; Chen, P.; Deng, L.; Li, S.; Lin, S.; Wang, Z.; Liu, B. Plasma Exosomal miRNAs Associated with Metabolism as Early Predictor of Gestational Diabetes Mellitus. Diabetes 2022, 71, 2272–2283. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, H.; Yin, S.; Ji, C.; Zhang, X.; Zhang, B.; Wu, P.; Shi, Y.; Mao, F.; Yan, Y.; et al. Human Mesenchymal Stem Cell Derived Exosomes Alleviate Type 2 Diabetes Mellitus by Reversing Peripheral Insulin Resistance and Relieving β-Cell Destruction. ACS Nano 2018, 12, 7613–7628. [Google Scholar] [CrossRef]
- Yu, C.Y.; Yang, C.Y.; Rui, Z.L. MicroRNA-125b-5p improves pancreatic β-cell function through inhibiting JNK signaling pathway by targeting DACT1 in mice with type 2 diabetes mellitus. Life Sci. 2019, 224, 67–75. [Google Scholar] [CrossRef]
- Hwang, S.J.; Ahn, B.J.; Shin, M.W.; Song, Y.S.; Choi, Y.; Oh, G.T.; Kim, K.W.; Lee, H.J. miR-125a-5p attenuates macrophage-mediated vascular dysfunction by targeting Ninjurin1. Cell Death Differ. 2022, 29, 1199–1210. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Min, K.H.; Lee, W. MiR-183-5p Induced by Saturated Fatty Acids Hinders Insulin Signaling by Downregulating IRS-1 in Hepatocytes. Int. J. Mol. Sci. 2022, 23, 2979. [Google Scholar] [CrossRef]
- Niu, Y.; Liu, F.; Wang, X.; Chang, Y.; Song, Y.; Chu, H.; Bao, S.; Chen, C. miR-183-5p Promotes HCC Migration/Invasion via Increasing Aerobic Glycolysis. OncoTargets Ther. 2021, 14, 3649–3658. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Sun, X.; Lin, Z.; Yang, Y.; Zhang, M.; Xu, Z.; Liu, P.; Liu, Z.; Huang, H. Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism. Acta Pharm. Sin. B 2022, 12, 2887–2904. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Wang, K.; Xia, J.; Qian, D.; Guo, J.; Zhong, L.; Tang, D.; Chen, X.; Peng, W.; Chen, Y.; et al. Natural exosomes-like nanoparticles in mung bean sprouts possesses anti-diabetic effects via activation of PI3K/Akt/GLUT4/GSK-3β signaling pathway. J. Nanobiotechnol. 2023, 21, 349. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Zhou, D.; Yang, C.; Singh, T.; Penzo-Méndez, A.; Maddipati, R.; Tzatsos, A.; Bardeesy, N.; Avruch, J.; Stanger, B.Z. Hippo signaling regulates differentiation and maintenance in the exocrine pancreas. Gastroenterology 2013, 144, 1543–1553.e1. [Google Scholar] [CrossRef]
- Yuan, T.; Annamalai, K.; Naik, S.; Lupse, B.; Geravandi, S.; Pal, A.; Dobrowolski, A.; Ghawali, J.; Ruhlandt, M.; Gorrepati, K.D.D.; et al. The Hippo kinase LATS2 impairs pancreatic β-cell survival in diabetes through the mTORC1-autophagy axis. Nat. Commun. 2021, 12, 4928. [Google Scholar] [CrossRef]
- Kimball, A.S.; Joshi, A.D.; Boniakowski, A.E.; Schaller, M.; Chung, J.; Allen, R.; Bermick, J.; Carson, W.F., IV; Henke, P.K.; Maillard, I.; et al. Notch Regulates Macrophage-Mediated Inflammation in Diabetic Wound Healing. Front. Immunol. 2017, 8, 635. [Google Scholar] [CrossRef]
- Zhang, H.; Nair, V.; Saha, J.; Atkins, K.B.; Hodgin, J.B.; Saunders, T.L.; Myers, M.G., Jr.; Werner, T.; Kretzler, M.; Brosius, F.C. Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice. Kidney Int. 2017, 92, 909–921. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.; Zhang, J.; Gao, S.; Xu, T.; Yin, Y. JAK/STAT signaling in diabetic kidney disease. Front. Cell Dev. Biol. 2023, 11, 1233259. [Google Scholar] [CrossRef]
- Jridi, I.; Canté-Barrett, K.; Pike-Overzet, K.; Staal, F.J.T. Inflammation and Wnt Signaling: Target for Immunomodulatory Therapy? Front. Cell Dev. Biol. 2020, 8, 615131. [Google Scholar] [CrossRef]
- Scholz, C.C.; Taylor, C.T. Targeting the HIF pathway in inflammation and immunity. Curr. Opin. Pharmacol. 2013, 13, 646–653. [Google Scholar] [CrossRef]
- Lontchi-Yimagou, E.; Sobngwi, E.; Matsha, T.E.; Kengne, A.P. Diabetes mellitus and inflammation. Curr. Diabetes Rep. 2013, 13, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, Y.; Yin, L.; Qi, Y.; Sun, H.; Sun, P.; Xu, M.; Tang, Z.; Peng, J. miR-125a-5p ameliorates hepatic glycolipid metabolism disorder in type 2 diabetes mellitus through targeting of STAT3. Theranostics 2018, 8, 5593–5609. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Wang, Z.; Li, H.; Shou, J.; Jing, Z.; Xie, J.; Sui, X.; Pan, H.; Han, W. The role of STAT3 in autophagy. Autophagy 2015, 11, 729–739. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, L.; Hu, F.; Wang, P.; Xie, Y.; Li, F.; Guo, B. Neuregulin-4 attenuates diabetic cardiomyopathy by regulating autophagy via the AMPK/mTOR signalling pathway. Cardiovasc. Diabetol. 2022, 21, 205. [Google Scholar] [CrossRef] [PubMed]
Variables | Sequencing Group | Training Set | Validation Set | ||||||
---|---|---|---|---|---|---|---|---|---|
NDM (n = 8) | T2DM (n = 9) | p-Value | NDM (n = 25) | T2DM (n = 25) | p-Value | NDM (n = 59) | T2DM (n = 59) | p-Value | |
Gender (Male/female) | 5/3 | 7/2 | 0.526 | 13/12 | 13/12 | 1.000 | 34/25 | 34/25 | 1.000 |
Age (years) | 60.13 ± 10.05 | 63.33 ± 10.05 | 0.521 | 59.04 ± 6.23 | 62.40 ± 8.14 | 0.108 | 57.81 ± 7.68 | 60.61 ± 9.95 | 0.090 |
Currently smoking | 1 (12.5%) | 3 (33.3%) | 0.576 | 3 (12%) | 7 (28%) | 0.157 | 14 (23.73%) | 12 (20.34%) | 0.657 |
Currently drinking | 2 (25.0%) | 3 (33.3%) | 1.000 | 9 (36%) | 6 (24%) | 0.355 | 28 (47.46%) | 16 (27.12%) | 0.022 * |
Duration of diabetes (years) | 15.19 ± 8.72 | 14.92 ± 10.22 | 13.21 ± 8.99 | ||||||
BMI (kg/m2) | 23.59 ± 2.54 | 22.73 ± 2.30 | 0.481 | 23.37 ± 2.97 | 25.27 ± 3.09 | 0.031 * | 23.57 ± 2.83 | 24.38 ± 3.07 | 0.142 |
SBP (mmHg) | 122.50 ± 10.78 | 141.33 ± 16.19 | 0.023 * | 122.60 ± 8.63 | 138.76 ± 20.67 | 0.010 * | 122.08 ± 11.83 | 137.97 ± 20.54 | 0.000 ** |
DBP (mmHg) | 69.50 ± 9.96 | 86.33 ± 11.69 | 0.006 ** | 74.08 ± 9.27 | 84.36 ± 10.26 | 0.030 * | 72.09 ± 9.30 | 83.63 ± 11.55 | 0.000 ** |
Hypertension | 2 (25.0%) | 4 (44.4%) | 0.620 | 4 (16%) | 19 (76%) | 0.000 ** | 8 (13.56%) | 38 (64.41%) | 0.000 ** |
Hyperlipidemia | 2 (25.0%) | 4 (44.4%) | 0.620 | 11 (44%) | 15 (60%) | 0.258 | 37 (62.71%) | 31 (52.54%) | 0.264 |
ALT (U/L) | 16.13 ± 4.58 | 36.56 ± 20.14 | 0.014 * | 19.76 ± 10.28 | 25.88 ± 16.25 | 0.059 | 18.59 ± 8.576 | 26.37 ± 22.60 | 0.049 * |
AST (U/L) | 19.88 ± 3.09 | 27.00 ± 14.07 | 0.183 | 21.28 ± 7.45 | 20.72 ± 8.98 | 0.321 | 19.93 ± 5.620 | 22.59 ± 14.21 | 0.957 |
TB (μmol/L) | 14.09 ± 4.82 | 10.91 ± 3.61 | 0.152 | 15.00 ± 4.44 | 12.60 ± 13.00 | 0.387 | 15.02 ± 5.16 | 12.60 ± 9.20 | 0.001 ** |
TBA (μmol/L) | 2.93 ± 2.87 | 4.06 ± 3.55 | 0.480 | 3.51 ± 3.48 | 4.21 ± 2.88 | 0.139 | 3.05 ± 2.66 | 4.16 ± 3.90 | 0.018 * |
TP (g/L) | 69.46 ± 4.11 | 66.80 ± 4.66 | 0.230 | 70.82 ± 3.75 | 66.33 ± 5.81 | 0.007 ** | 70.22 ± 3.89 | 67.13 ± 7.06 | 0.004 ** |
eGFR (ml/min/1.73 m2) | 84.29 ± 19.47 | 103.25 ± 49.45 | 0.326 | 87.47 ± 14.06 | 85.96 ± 38.68 | 0.855 | 87.61 ± 13.45 | 89.56 ± 33.65 | 0.681 |
UA (μmol/L) | 336.00 ± 75.82 | 379.56 ± 151.87 | 0.475 | 330.92 ± 81.54 | 348.84 ± 115.00 | 0.528 | 323.60 ± 90.61 | 350.51 ± 116.08 | 0.290 |
TG (mmol/L) | 1.28 ± 0.76 | 3.28 ± 5.71 | 0.328 | 1.39 ± 0.70 | 2.58 ± 3.46 | 0.010 * | 1.54 ± 1.05 | 2.23 ± 2.65 | 0.025 * |
TC (mmol/L) | 4.28 ± 0.94 | 4.37 ± 1.85 | 0.900 | 4.88 ± 1.03 | 4.65 ± 1.57 | 0.318 | 4.99 ± 1.00 | 4.57 ± 1.43 | 0.017 * |
HDLC (mmol/L) | 1.38 ± 0.27 | 1.13 ± 0.29 | 0.086 | 1.45 ± 0.36 | 1.10 ± 0.31 | 0.001 ** | 1.42 ± 0.30 | 1.15 ± 0.31 | 0.000 ** |
LDLC (mmol/L) | 2.45 ± 0.91 | 2.23 ± 0.72 | 0.599 | 2.98 ± 0.91 | 2.64 ± 1.01 | 0.273 | 3.11 ± 0.91 | 2.67 ± 0.98 | 0.018 * |
FPG (mmol/L) | 4.77 ± 0.62 | 8.59 ± 2.48 | 0.001 ** | 4.89 ± 0.39 | 8.78 ± 3.42 | 0.000 ** | 4.88 ± 0.37 | 9.31 ± 5.07 | 0.000 ** |
HbA1c (%) | 5.55 ± 0.23 | 8.79 ± 2.82 | 0.016 * | 5.61 ± 0.24 | 8.53 ± 1.67 | 0.000 ** | 5.57 ± 0.29 | 8.62 ± 2.01 | 0.000 ** |
RBC (1012/L) | 4.70 ± 0.25 | 4.34 ± 0.47 | 0.083 | 4.70 ± 0.47 | 4.38 ± 0.80 | 0.096 | 4.73 ± 0.52 | 4.37 ± 0.71 | 0.017 * |
WBC (109/L) | 5.24 ± 0.91 | 6.38 ± 1.90 | 0.157 | 5.07 ± 1.04 | 6.94 ± 1.60 | 0.000 ** | 5.34 ± 1.27 | 6.73 ± 1.71 | 0.000 ** |
PLT (109/L) | 193.25 ± 57.68 | 215.75 ± 81.14 | 0.534 | 208.76 ± 50.16 | 215.29 ± 67.26 | 0.703 | 201.85 ± 48.81 | 202.98 ± 73.15 | 0.921 |
HGB (g/L) | 144.75 ± 8.00 | 132.88 ± 11.74 | 0.035 * | 142.52 ± 9.89 | 132.42 ± 24.87 | 0.066 | 143.81 ± 12.18 | 132.50 ± 21.81 | 0.001 * |
FPG | HbA1c | eGFR | UA | TG | TC | HDLC | LDLC | |
---|---|---|---|---|---|---|---|---|
miR-183-5p | 0.035 p = 0.704 | 0.135 p = 0.178 | −0.099 p = 0.299 | 0.112 p = 0.226 | −0.029 p = 0.753 | −0.152 p = 0.102 | −0.098 p = 0.292 | −0.180 p = 0.053 |
miR-125a-5p | −0.214 p = 0.021 * | −0.266 p = 0.007 ** | 0.161 p = 0.088 | −0.092 p = 0.321 | −0.071 p = 0.447 | 0.142 p = 0.126 | 0.221 p = 0.017 * | 0.156 p = 0.092 |
Variables | Model 1 | Model 2 | Model 3 | |||
---|---|---|---|---|---|---|
OR [95% CI] | p-Value | OR [95% CI] | p-Value | OR [95% CI] | p-Value | |
miR-183-5p | ||||||
miR-183-5p (relative expression(log10)) 1 | 4.785 (1.111, 20.611) | 0.036 * | 4.666 (0.903, 24.108) | 0.066 | 4.201 (0.425, 41.494) | 0.219 |
Male (vs. female) 2 | - | - | 1.052 (0.453, 2.446) | 0.906 | 0.877 (0.270, 2.851) | 0.827 |
Age (years) | - | - | 1.005 (0.955, 1.057) | 0.858 | 1.016 (0.937, 1.101) | 0.703 |
BMI (kg/cm2) | - | - | 1.004 (0.866, 1.163) | 0.962 | 0.885 (0.718, 1.091) | 0.254 |
SBP (mmHg) | 1.059 (1.029, 1.091) | 0.000 ** | 1.106 (1.046, 1.169) | 0.000 ** | ||
ALT(U/L) | - | - | - | - | 1.074 (1.016, 1.135) | 0.012 * |
TB (umol/L) | - | - | - | - | 0.939 (0.869, 1.015) | 0.115 |
TP(g/L) | 0.813 (0.720, 0.917) | 0.001 ** | ||||
TG (mmol/L) | 1.270 (0.849, 1.897) | 0.244 | ||||
LDLC (mmol/L) | 0.496 (0.227, 1.082) | 0.078 | ||||
WBC (109/L) | - | - | - | - | 2.464 (1.478, 4.108) | 0.001 ** |
miR-125a-5p | ||||||
miR-125a-5p (relative expression(log10)) 1 | 0.071 (0.010, 0.480) | 0.007 ** | 0.037 (0.004, 0.384) | 0.006 ** | 0.046 (0.002, 0.922) | 0.044 * |
Male (vs. female) 2 | - | - | 1.152 (0.482, 2.758) | 0.750 | 0.921 (0.277, 3.061) | 0.893 |
Age (years) | - | - | 1.003 (0.954, 1.054) | 0.914 | 1.008 (0.932, 1.089) | 0.851 |
BMI (kg/cm2) | - | - | 0.964 (0.830, 1.121) | 0.635 | 0.843 (0.678, 1.047) | 0.122 |
SBP (mmHg) | 1.067 (1.035, 1.101) | 0.000 ** | 1.123 (1.059, 1.191) | 0.000 ** | ||
ALT(U/L) | - | - | - | - | 1.072 (1.012, 1.135) | 0.018 * |
TB (umol/L) | - | - | - | - | 0.943 (0.868, 1.024) | 0.163 |
TP(g/L) | - | - | - | - | 0.795 (0.702, 0.901) | 0.000 ** |
TG (mmol/L) | 1.190 (0.788, 1.798) | 0.409 | ||||
LDLC (mmol/L) | 0.486 (0.215, 1.099) | 0.083 | ||||
WBC (109/L) | 2.500 (1.470, 4.252) | 0.001 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Sun, S.; Wu, J.; Liu, G.; Wu, Q.; Ran, X. Alterations in the Levels of Urinary Exosomal MicroRNA-183-5p and MicroRNA-125a-5p in Individuals with Type 2 Diabetes Mellitus. Biomedicines 2024, 12, 2608. https://doi.org/10.3390/biomedicines12112608
Fang Y, Sun S, Wu J, Liu G, Wu Q, Ran X. Alterations in the Levels of Urinary Exosomal MicroRNA-183-5p and MicroRNA-125a-5p in Individuals with Type 2 Diabetes Mellitus. Biomedicines. 2024; 12(11):2608. https://doi.org/10.3390/biomedicines12112608
Chicago/Turabian StyleFang, Yixuan, Shiyi Sun, Jing Wu, Guanjian Liu, Qinqin Wu, and Xingwu Ran. 2024. "Alterations in the Levels of Urinary Exosomal MicroRNA-183-5p and MicroRNA-125a-5p in Individuals with Type 2 Diabetes Mellitus" Biomedicines 12, no. 11: 2608. https://doi.org/10.3390/biomedicines12112608
APA StyleFang, Y., Sun, S., Wu, J., Liu, G., Wu, Q., & Ran, X. (2024). Alterations in the Levels of Urinary Exosomal MicroRNA-183-5p and MicroRNA-125a-5p in Individuals with Type 2 Diabetes Mellitus. Biomedicines, 12(11), 2608. https://doi.org/10.3390/biomedicines12112608