Amelioration of Cytogenotoxic Damage in Drug Abusers Supplemented with Folic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Questionnaire and Oral Examination
2.3. Supplementation with Acid Folic
2.4. Collection, Preparation, and Analysis of Samples Using the BMCyt Assay
2.5. Statistical Analysis
3. Results
3.1. Demographic Characteristics and Drug Consumption Pattern
3.2. Frequency of Nuclear Abnormalities in the Drug Abuser Group vs. the Control Group
3.3. Frequency of Nuclear Abnormalities in the Drug Abuser Group vs. the Folic Acid Treatment Group
4. Discussion
4.1. Effect of Drug Abuse on the Occurrence of Nuclear Abnormalities
4.2. Effect of Folic Acid Supplementation on the Occurrence of Nuclear Abnormalities in Drug Abusers
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Degenhardt, L.; Hall, W. Extent of illicit drug use and dependence, and their contribution to the global burden of disease. Lancet 2012, 379, 55–70. [Google Scholar] [CrossRef]
- Degenhardt, L.; Whiteford, H.; Hall, W.D. The Global Burden of Disease projects: What have we learned about illicit drug use and dependence and their contribution to the global burden of disease? Drug Alcohol Rev. 2014, 33, 4–12. [Google Scholar] [CrossRef]
- Cheung, Y.W.; Cheung, N.W.T. Adolescent Drug Abuse in Hong Kong: Prevalence, Psychosocial Correlates, and Prevention. J. Adolesc. Health 2019, 64, S28–S33. [Google Scholar] [CrossRef]
- Teoh, L.; Moses, G.; McCullough, M.J. Oral manifestations of illicit drug use. Aust. Dent. J. 2019, 64, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Lewer, D.; Freer, J.; King, E.; Larney, S.; Degenhardt, L.; Tweed, E.J.; Hope, V.D.; Harris, M.; Millar, T.; Hayward, A.; et al. Frequency of health-care utilization by adults who use illicit drugs: A systematic review and meta-analysis. Addiction 2020, 115, 1011–1023. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, L.; Van Den Heuvel, C.; Byard, R.W. Socioeconomic and psychosocial determinants of substance misuse—A national perspective. Forensic Sci. Med. Pathol. 2023. [Google Scholar] [CrossRef]
- Dos Santos Maidana, M.; Varela Junior, A.S.; Corcini, C.D.; Pereira, J.R.; Pires, D.M.; Tavella, R.A.; Fernandes, C.L.F.; Dos Santos, M.; Garcia, E.M.; da Silva Júnior, F.M.R. Oral cytological changes in young adults related to alcohol consumption. Arch. Oral. Biol. 2021, 126, 105127. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, T.A.; Palazzo, R.P.; de Andrade, F.M.; Reichert, C.L.; Pechansky, F.; Kessler, F.; de Farias, C.B.; de Andrade, G.G.; Leistner-Segal, S.; Maluf, S.W. Genomic instability in human lymphocytes from male users of crack cocaine. Int. J. Environ. Res. Public Health 2014, 11, 10003–10015. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.V.S.; Verma, Y.; Singh, G.D. Assessment of genotoxicity amongst smokers, alcoholics, and tobacco chewers of North India using micronucleus assay and urinary 8-hydroxyl-2’-deoxyguanosine, as biomarkers. Environ. Monit. Assess. 2017, 189, 391. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.F.; Oliveira, L.U.; Cabral, L.A.; Brandão, A.A.; Salgado, M.A.; Almeida, J.D. Cytogenetic damage of oral mucosa by consumption of alcohol, tobacco and illicit drugs. J. Oral. Pathol. Med. 2010, 39, 441–446. [Google Scholar] [CrossRef]
- Steinmetz, A.; Steffens, L.; Morás, A.M.; Prezzi, F.; Braganhol, E.; Saffi, J.; Ortiz, R.S.; Barros, H.M.T.; Moura, D.J. In vitro model to study cocaine and its contaminants. Chem. Biol. Interact. 2018, 285, 1–7. [Google Scholar] [CrossRef]
- Vassoler, T.; Dogenski, L.C.; Sartori, V.K.; Presotto, J.S.; Cardoso, M.Z.; Zandoná, J.; Trentin, M.S.; Linden, M.S.; Palhano, H.S.; Vargas, J.E.; et al. Evaluation of the Genotoxicity of Tobacco and Alcohol in Oral Mucosa Cells: A Pilot Study. J. Contemp. Dent. Pract. 2021, 22, 745–750. Available online: https://pubmed.ncbi.nlm.nih.gov/34615778/ (accessed on 12 December 2023). [PubMed]
- Paiva, R.L.; de Figueiredo, M.A.Z.; Cherubini, K.; Da Silva, V.D.; Salum, F.G. Cytological Screening Model of Normal Oral Mucosa Exposed to Carcinogens: A Pilot Study. Acta Cytol. 2022, 66, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Pereira da Silva, V.H.; de Luna Antonio, R.; Pompeia, S.; Ribeiro, D.A. Cytogenetic Biomonitoring in Buccal Mucosa Cells from Young Smokers. Acta Cytol. 2015, 59, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Abu Ali, O.A.; Saad, H.A.; Al Malki, B.M.A. Synthesis of Some New Folic Acid-Based Heterocycles of Anticipated Biological Activity. Molecules 2021, 26, 368. [Google Scholar] [CrossRef] [PubMed]
- Pietrzik, K.; Bailey, L.; Shane, B. Folic acid and L-5-methyltetrahydrofolate: Comparison of clinical pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 2010, 49, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Stanhewicz, A.E.; Alexander, L.M.; Kenney, W.L. Folic acid supplementation improves microvascular function in older adults through nitric oxide-dependent mechanisms. Clin. Sci. 2015, 129, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Meda, B.C.; Zamora-Perez, A.L.; Muñoz-Magallanes, T.; Sánchez-Parada, M.G.; García Bañuelos, J.J.; Guerrero-Velázquez, C.; Sánchez-Orozco, L.V.; Vera-Cruz, J.M.; Armendáriz-Borunda, J.; Zúñiga-González, G.M. Nuclear abnormalities in buccal mucosa cells of patients with type I and II diabetes treated with folic acid. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2016, 797, 1–8. [Google Scholar] [CrossRef]
- Thomas, P.; Fenech, M. Buccal micronucleus cytome assay. Methods Mol. Biol. 2011, 682, 235–248. [Google Scholar] [CrossRef]
- Bolognesi, C.; Fenech, M. Micronucleus assay in human cells: Lymphocytes and buccal cells. Methods Mol. Biol. 2013, 1044, 191–207. [Google Scholar] [CrossRef]
- Burgaz, S.; Coskun, E.; Demircigil, G.C.; Kocabas, N.A.; Cetindag, F.; Sunter, O.; Edinsel, H. Micronucleus frequencies in lymphocytes and buccal epithelial cells from patients having head and neck cancer and their first-degree relatives. Mutagenesis 2011, 26, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Motgi, A.A.; Chavan, M.S.; Diwan, N.N.; Chowdhery, A.; Channe, P.P.; Shete, M.V. Assessment of cytogenic damage in the form of micronuclei in oral epithelial cells in patients using smokeless and smoked form of tobacco and non-tobacco users and its relevance for oral cancer. J. Cancer Res. Ther. 2014, 10, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Malacarne, I.T.; De Souza, D.V.; Rosario, B.D.A.; Viana, M.B.; Pereira, C.D.S.; Estadella, D.; Dos Santos, J.N.; Ribeiro, D.A. Genotoxicity, oxidative stress, and inflammatory response induced by crack-cocaine: Relevance to carcinogenesis. Environ Sci. Pollut. Res. Int. 2021, 28, 14285–14292. [Google Scholar] [CrossRef]
- Souza, D.V.; Claudio, S.R.; Da Silva, C.L.F.; Marangoni, K.P.; Peres, R.C.; Ribeiro, D.A. Genomic Instability in Peripheral Blood and Buccal Mucosal Cells of Marijuana Smokers: The Impact of Tobacco Smoke. Asian Pac. J. Cancer Prev. 2020, 21, 1235–1239. [Google Scholar] [CrossRef] [PubMed]
- Stich, H.F.; Rosin, M.P. Quantitating the synergistic effect of smoking and alcohol consumption with the micronucleus test on human buccal mucosa cells. Int. J. Cancer 1983, 31, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Holland, N.; Bolognesi, C.; Kirsch-Volders, M.; Bonassi, S.; Zeiger, E.; Knasmueller, S.; Fenech, M. The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: The HUMN project perspective on current status and knowledge gaps. Mutat. Res. 2008, 659, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Fenech, M.; Kirsch-Volders, M.; Natarajan, A.T.; Surralles, J.; Crott, J.W.; Parry, J.; Norppa, H.; Eastmond, D.A.; Tucker, J.D.; Thomas, P. Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 2011, 26, 125–132. [Google Scholar] [CrossRef]
- Mondal, N.K.; Ghosh, S.; Ray, M.R. Micronucleus formation and DNA damage in buccal epithelial cells of Indian street boys addicted to gasp ‘Golden glue’. Mutat. Res. 2011, 721, 178–183. [Google Scholar] [CrossRef]
- Oliveira, L.U.; Lima, C.F.; Salgado, M.A.; Balducci, I.; Almeida, J.D. Comparative study of oral mucosa micronuclei in smokers and alcoholic smokers. Anal. Quant. Cytol. Histol. 2012, 34, 9–14. Available online: https://pubmed.ncbi.nlm.nih.gov/22590814/ (accessed on 12 December 2023).
- Reis, S.R.; do Espírito Santo, A.R.; Andrade, M.G.; Sadigursky, M. Cytologic alterations in the oral mucosa after chronic exposure to ethanol. Braz. Oral. Res. 2006, 20, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Pereira da Silva, V.H.; Ribeiro, D.A. Cytogenetic Biomonitoring in Buccal Mucosa Cells from Young Smokers. Acta Cytol. 2017, 61, 89–90. [Google Scholar] [CrossRef] [PubMed]
- Woyceichoski, I.E.; de Arruda, E.P.; Resende, L.G.; Machado, M.A.; Grégio, A.M.; Azevedo, L.R.; de Lima, A.A. Cytomorphometric analysis of crack cocaine effects on the oral mucosa. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2008, 105, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Hashemipour, M.A.; Aghababaie, M.; Mirshekari, T.R.; Asadi-Shekaari, M.; Tahmasbi-Arashlow, M.; Tahmasbi-Arashlow, F.; Gandjalikhan Nassab, S.A. Exfoliative cytology of oral mucosa among smokers, opium addicts and non-smokers: A cytomorphometric study. Arch. Iran. Med. 2013, 16, 725–730. Available online: https://pubmed.ncbi.nlm.nih.gov/24329146/ (accessed on 12 December 2023). [PubMed]
- das Graças Alonso de Oliveira, M.; Dos Santos, J.N.; Cury, P.R.; da Silva, V.H.; Oliveira, N.R.; da Costa Padovani, R.; Tucci, A.M.; Ribeiro, D.A. Cytogenetic biomonitoring of oral mucosa cells of crack cocaine users. Environ. Sci. Pollut. Res. Int. 2014, 21, 5760–5764. [Google Scholar] [CrossRef] [PubMed]
- Pavanello, M.B.; Prado, F.A.; Balducci, I.; Brandão, A.A.; Almeida, J.D. Cytologic analysis of alterations induced by Smoking and by alcohol consumption. Acta Cytol. 2006, 50, 435–440. [Google Scholar] [CrossRef]
- Martínez-Alfaro, M.; Cárabez-Trejo, A.; Gallegos-Corona, M.A.; Pedraza-Aboytes, G.; Hernández-Chan, N.G.; Leo-Amador, G.E. Thinner inhalation effects on oxidative stress and DNA repair in a rat model of abuse. J. Appl. Toxicol. 2010, 30, 226–232. [Google Scholar] [CrossRef]
- de Geus, J.L.; Wambier, L.M.; Bortoluzzi, M.C.; Loguercio, A.D.; Kossatz, S.; Reis, A. Does smoking habit increase the micronuclei frequency in the oral mucosa of adults compared to non-smokers? A systematic review and meta-analysis. Clin. Oral. Investig. 2018, 22, 81–91. [Google Scholar] [CrossRef]
- Abdul, N.S.; Alrukban, N.K.; Alajmi, A.M.; Bindawoad, F.A.; Almughaiseeb, A.A.; AlGhannam, S.M. Cytotoxic and genotoxic effects of cigarette and waterpipe tobacco smoking on buccal mucosa: A systematic review and meta-analysis. J. Oral. Maxillofac. Pathol. 2022, 26, 534–540. [Google Scholar] [CrossRef]
- Nersesyan, A.; Muradyan, R.; Kundi, M.; Knasmueller, S. Impact of smoking on the frequencies of micronuclei and other nuclear abnormalities in exfoliated oral cells: A comparative study with different cigarette types. Mutagenesis 2011, 26, 295–301. [Google Scholar] [CrossRef]
- Naderi, N.J.; Farhadi, S.; Sarshar, S. Micronucleus assay of buccal mucosa cells in smokers with the history of smoking less and more than 10 years. Indian J. Pathol. Microbiol. 2012, 55, 433–438. [Google Scholar] [CrossRef]
- Prasad, P.; Hamed, M.S.; Nahar, P. Micronucleus Assay in Waterpipe Tobacco and Cigarette Smokers: A Comparative Study. J. Contemp. Dent. Pract. 2019, 20, 101–107. Available online: https://pubmed.ncbi.nlm.nih.gov/31058621/ (accessed on 12 December 2023).
- Thomas, A.J.; Nair, B.J.; Oommen, S.; Syamkumar, V.; Raman, R.K. Comparative Evaluation of Genotoxicity in Tobacco Users versus Nontobacco Users. J. Pharm. Bioallied Sci. 2021, 13 (Suppl. 2), S960–S964. [Google Scholar] [CrossRef] [PubMed]
- Caliri, A.W.; Tommasi, S.; Besaratinia, A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat. Res. Rev. Mutat. Res. 2021, 787, 108365. [Google Scholar] [CrossRef]
- Giordano, L.; Gregory, A.D.; Pérez Verdaguer, M.; Ware, S.A.; Harvey, H.; DeVallance, E.; Brzoska, T.; Sundd, P.; Zhang, Y.; Sciurba, F.C.; et al. Extracellular Release of Mitochondrial DNA: Triggered by Cigarette Smoke and Detected in COPD. Cells 2022, 11, 369. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.d.S.; Meireles, J.R.; de Moraes Marcílio Cerqueira, E. Chromosomal damage and apoptosis analysis in exfoliated oral epithelial cells from mouthwash and alcohol users. Genet. Mol. Biol. 2014, 37, 702–707. [Google Scholar] [CrossRef]
- Zamora-Perez, A.L.; Mariaud-Schmidt, R.P.; Fuentes-Lerma, M.G.; Guerrero-Velázquez, C.; Gómez-Meda, B.C.; López-Verdín, S.; Zúñiga-González, G.M. Increased number of micronuclei and nuclear anomalies in buccal mucosa cells from people exposed to alcohol-containing mouthwash. Drug Chem. Toxicol. 2013, 36, 255–260. [Google Scholar] [CrossRef]
- Reis, S.R.; Sadigursky, M.; Andrade, M.G.; Soares, L.P.; Espirito Santo, A.R.; Vilas Boas, D.S. Genotoxic effect of ethanol on oral mucosa cells. Pesqui. Odontol. Bras. 2002, 16, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.M. A review of the role of reactive oxygen and nitrogen species in alcohol-induced mitochondrial dysfunction. Free Radic. Res. 2003, 37, 585–596. [Google Scholar] [CrossRef]
- Balbo, S.; Brooks, P.J. mplications of acetaldehyde-derived DNA adducts for understanding alcohol-related carcinogenesis. Adv. Exp. Med. Biol. 2015, 815, 71–88. [Google Scholar] [CrossRef]
- Brooks, P.J.; Theruvathu, J.A. DNA adducts from acetaldehyde: Implications for alcohol-related carcinogenesis. Alcohol 2005, 35, 187–193. [Google Scholar] [CrossRef]
- Bhatia, S.; Drake, D.M.; Miller, L.; Wells, P.G. Oxidative stress and DNA damage in the mechanism of fetal alcohol spectrum disorders. Birth Defects Res. 2019, 111, 714–748. [Google Scholar] [CrossRef]
- Setshedi, M.; Wands, J.R.; Monte, S.M. Acetaldehyde adducts in alcoholic liver disease. Oxid. Med. Cell Longev. 2010, 3, 178–185. [Google Scholar] [CrossRef]
- Linhart, K.; Bartsch, H.; Seitz, H.K. The role of reactive oxygen species (ROS) and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts. Redox Biol. 2014, 3, 56–62. [Google Scholar] [CrossRef]
- Le Daré, B.; Lagente, V.; Gicquel, T. Ethanol and its metabolites: Update on toxicity, benefits, and focus on immunomodulatory effects. Drug Metab. Rev. 2019, 51, 545–561. [Google Scholar] [CrossRef]
- Fabian-Morales, E.; Fernández-Cáceres, C.; Gudiño, A.; Andonegui Elguera, M.A.; Torres-Arciga, K.; Escobar Arrazola, M.A.; Tolentino García, L.; Alfaro Mora, Y.E.; Oliva-Rico, D.A.; Cáceres Gutiérrez, R.E.; et al. Genotoxicity of Marijuana in Mono-Users. Front. Psychiatry 2021, 12, 753562. [Google Scholar] [CrossRef]
- Sarafian, T.A.; Habib, N.; Oldham, M.; Seeram, N.; Lee, R.P.; Lin, L.; Tashkin, D.P.; Roth, M.D. Inhaled marijuana smoke disrupts mitochondrial energetics in pulmonary epithelial cells in vivo. Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 290, L1202–L1209. [Google Scholar] [CrossRef]
- Howlett, A.C.; Mukhopadhyay, S.; Norford, D.C. Endocannabinoids and reactive nitrogen and oxygen species in neuropathologies. J. Neuroimmune Pharmacol. 2006, 1, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.D.; Carney, S.T.; Vrana, K.E.; Norford, D.C.; Howlett, A.C. Cannabinoid receptor-mediated translocation of NO-sensitive guanylyl cyclase and production of cyclic GMP in neuronal cells. Neuropharmacology 2008, 54, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Kogan, N.M.; Schlesinger, M.; Priel, E.; Rabinowitz, R.; Berenshtein, E.; Chevion, M.; Mechoulam, R. HU-331, a novel cannabinoid-based anticancer topoisomerase II inhibitor. Mol. Cancer Ther. 2007, 6, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Almeida, T.C.; Stefanon, E.B.; Rech, V.C.; Sagrillo, M.R.; Bohrer, P.L. Analysis of oral mucosa of users of crack through micronucleus technique. Clin. Lab. 2012, 58, 1269–1275. Available online: https://pubmed.ncbi.nlm.nih.gov/23289198/ (accessed on 12 December 2023). [PubMed]
- Oliveira, N.G.; Dinis-Oliveira, R.J. Drugs of abuse from a different toxicological perspective: An updated review of cocaine genotoxicity. Arch. Toxicol. 2018, 92, 2987–3006. [Google Scholar] [CrossRef] [PubMed]
- Ropek, N.; Al-Serori, H.; Mišík, M.; Nersesyan, A.; Sitte, H.H.; Collins, A.R.; Shaposhnikov, S.; Knasmüller, S.; Kundi, M.; Ferk, F. Methamphetamine (“crystal meth”) causes induction of DNA damage and chromosomal aberrations in human derived cells. Food Chem. Toxicol. 2019, 128, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Hu, H.C.; Chen, W.B.; Lin, S.K. Genetic toxicity of methamphetamine in vitro and in human abusers. Environ. Mol. Mutagen. 2003, 42, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Alfaro, M.; Alcaraz-Contreras, Y.; Cárabez-Trejo, A.; Leo-Amador, G.E. Oxidative stress effects of thinner inhalation. Indian J. Occup. Environ. Med. 2011, 15, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Yoon, B.I.; Hirabayashi, Y.; Kawasaki, Y.; Kodama, Y.; Kaneko, T.; Kim, D.Y.; Inoue, T. Mechanism of action of benzene toxicity: Cell cycle suppression in hemopoietic progenitor cells (CFU-GM). Exp. Hematol. 2001, 29, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.P.; Schneider, A.; Jumar, A.; Kistner, I.; Ott, C.; Schmieder, R.E. Effects of folic acid on renal endothelial function in patients with diabetic nephropathy: Results from a randomized trial. Clin. Sci. 2014, 127, 499–505. [Google Scholar] [CrossRef]
- Schneider, M.P.; Schlaich, M.P.; Harazny, J.M.; Raff, U.; Ritt, M.; Ott, C.; Schmieder, R.E. Folic acid treatment normalizes NOS-dependence of vascular tone in the metabolic syndrome. Obesity 2011, 19, 960–967. [Google Scholar] [CrossRef]
- Gäreskog, M.; Eriksson, U.J.; Wentzel, P. Combined supplementation of folic acid and vitamin E diminishes diabetes-induced embryotoxicity in rats. Birth Defects Res. A Clin. Mol. Teratol. 2006, 76, 483–490. [Google Scholar] [CrossRef]
- Fenech, M.; Rinaldi, J. The relationship between micronuclei in human lymphocytes and plasma levels of vitamin C, vitamin E, vitamin B12 and folic acid. Carcinogenesis 1994, 15, 1405–1411. [Google Scholar] [CrossRef]
- Matté, C.; Mackedanz, V.; Stefanello, F.M.; Scherer, E.B.; Andreazza, A.C.; Zanotto, C.; Moro, A.M.; Garcia, S.C.; Gonçalves, C.A.; Erdtmann, B.; et al. Chronic hyperhomocysteinemia alters antioxidant defenses and increases DNA damage in brain and blood of rats: Protective effect of folic acid. Neurochem. Int. 2009, 54, 7–13. [Google Scholar] [CrossRef]
- Padula, G.; Ponzinibbio, M.V.; Seoane, A.I. Possible radioprotective effect of folic acid supplementation on low dose ionizing radiation-induced genomic instability in vitro. Indian J. Exp. Biol. 2016, 54, 537–543. Available online: https://pubmed.ncbi.nlm.nih.gov/28577512/ (accessed on 12 December 2023).
- Smolková, B.; Dusinská, M.; Raslová, K.; Barancoková, M.; Kazimírová, A.; Horská, A.; Spustová, V.; Collins, A. Folate levels determine effect of antioxidant supplementation on micronuclei in subjects with cardiovascular risk. Mutagenesis 2004, 19, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, H.E.; Crott, J.W.; Ghandour, H.; Dallal, G.E.; Choi, S.W.; Keyes, M.K.; Jang, H.; Liu, Z.; Nadeau, M.; Johnston, A.; et al. Chronic cigarette smoking is associated with diminished folate status, altered folate form distribution, and increased genetic damage in the buccal mucosa of healthy adults. Am. J. Clin. Nutr. 2006, 83, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Stopper, H.; Treutlein, A.T.; Bahner, U.; Schupp, N.; Schmid, U.; Brink, A.; Perna, A.; Heidland, A. Reduction of the genomic damage level in haemodialysis patients by folic acid and vitamin B12 supplementation. Nephrol. Dial. Transplant. 2008, 23, 3272–3279. [Google Scholar] [CrossRef] [PubMed]
- Teo, T.; Fenech, M. The interactive effect of alcohol and folic acid on genome stability in human WIL2-NS cells measured using the cytokinesis-block micronucleus cytome assay. Mutat. Res. 2008, 657, 32–38. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, K.; Zhan, C.; Liu, X.; Gong, Z. Supplementation Reduces the Mutagenicity and Genotoxicity Caused by Benzo(a)pyrene. J. Nutr. Sci. Vitaminol. 2016, 62, 26–31. [Google Scholar] [CrossRef]
- Beetstra, S.; Thomas, P.; Salisbury, C.; Turner, J.; Fenech, M. Folic acid deficiency increases chromosomal instability, chromosome 21 aneuploidy and sensitivity to radiation-induced micronuclei. Mutat. Res. 2005, 578, 317–326. [Google Scholar] [CrossRef]
- Lu, L.; Ni, J.; Zhou, T.; Xu, W.; Fenech, M.; Wang, X. Choline and/or folic acid deficiency is associated with genomic damage and cell death in human lymphocytes in vitro. Nutr. Cancer 2012, 64, 481–487. [Google Scholar] [CrossRef]
- Fenech, M. The role of folic acid and Vitamin B12 in genomic stability of human cells. Mutat. Res. 2001, 475, 57–67. [Google Scholar] [CrossRef]
- Abramsson-Zetterberg, L.; Durling, L.J.; Yang-Wallentin, F.; Rytter, E.; Vessby, B. The impact of folate status and folic acid supplementation on the micronucleus frequency in human erythrocytes. Mutat. Res. 2006, 603, 33–40. [Google Scholar] [CrossRef]
Demographic Characteristics and Drug Consumption Pattern | Drug Abusers n = 44 | Healthy Controls n = 44 |
---|---|---|
Male | 37 | 17 |
Female | 7 | 27 |
Age (years) | 29.54 ± 9.38 | 31.16 ± 9.36 |
Smoking Index | 5.92 ± 6.61 | --- |
SDU/day | 4.85 ± 6.95 | --- |
Marijuana grams/week | 18.29 ± 27.65 | --- |
Cocaine grams/week | 1.32 ± 2.36 | --- |
Methamphetamine grams/week | 7.48 ± 9.59 | --- |
Inhalants hours)/week | 6.15 ± 14.76 | --- |
Nuclear Abnormalities | Healthy Controls | Drug Abusers |
---|---|---|
NA/2000 cells | 9.09 ± 3.79 | 28.45 ± 17.74 p < 0.001 |
MNs/2000 cells | 0.45 ± 0.50 | 0.11 ± 0.32 p < 0.001 |
NBUDs/2000 cells | 2.36 ± 1.90 | 3.20 ± 5.40 p < 0.005 |
BN/2000 cells | 0.55 ± 0.66 | 2.66 ± 2.51 p < 0.0001 |
CC/2000 cells | 2.36 ± 2.29 | 5.66 ± 5.48 p < 0.0005 |
KX/2000 cells | 1.61 ± 2.13 | 14.07 ± 14.95 p < 0.0001 |
PN/2000 cells | 0.55 ± 0.75 | 2.39 ± 2.85 p < 0.0005 |
KL/2000 cells | 1.20 ± 1.31 | 0.36 ± 0.94 p < 0.0005 |
Nuclear Abnormalities | Baseline Drug Consumers (Pre-Treatment) | 15 Days (Post-Treatment) with Folic Acid | 30 Days (Post-Treatment) with Folic Acid |
---|---|---|---|
NA/2000 cells | 28.45 ± 17.74 | 11.18 ± 7.42 p < 0.001 | 9.11 ± 10.9 p < 0.001 |
MNs/2000 cells | 0.11 ± 0.32 | 0.05 ± 0.21 NS | 0.05 ± 0.21 NS |
NBUDs/2000 cells | 3.20 ± 5.40 | 0.95 ± 1.72 p < 0.05 | 0.73 ± 1.04 p < 0.05 |
BN/2000 cells | 2.66 ± 2.51 | 0.30 ± 0.79 p < 0.0001 | 0.75 ± 1.42 p < 0.0005 |
CC/2000 cells | 5.66 ± 5.48 | 3.20 ± 2.80 p < 0.005 | 2.16 ± 2.54 p < 0.0005 |
KX/2000 cells | 14.07 ± 14.95 | 5.82 ± 5.40 p < 0.0005 | 5.00 ± 7.77 p < 0.0005 |
PN/2000 cells | 2.39 ± 2.85 | 0.80 ± 1.25 p < 0.005 | 0.23 ± 0.60 p < 0.0001 |
KL/2000 cells | 0.36 ± 0.94 | 0.07 ± 0.25 NS | 0.20 ± 1.36 NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Cabrera, A.S.; González-Santiago, A.E.; Rodríguez-Mora, J.F.; Zúñiga-González, G.M.; Gómez-Meda, B.C.; Baptista-Rosas, R.C.; Castañeda-Arellano, R.; Mercado-Sesma, A.R.; Zúñiga, L.Y.; Sánchez-Parada, M.G. Amelioration of Cytogenotoxic Damage in Drug Abusers Supplemented with Folic Acid. Biomedicines 2024, 12, 352. https://doi.org/10.3390/biomedicines12020352
Gómez-Cabrera AS, González-Santiago AE, Rodríguez-Mora JF, Zúñiga-González GM, Gómez-Meda BC, Baptista-Rosas RC, Castañeda-Arellano R, Mercado-Sesma AR, Zúñiga LY, Sánchez-Parada MG. Amelioration of Cytogenotoxic Damage in Drug Abusers Supplemented with Folic Acid. Biomedicines. 2024; 12(2):352. https://doi.org/10.3390/biomedicines12020352
Chicago/Turabian StyleGómez-Cabrera, Alejandro Salvador, Ana Elizabeth González-Santiago, José Francisco Rodríguez-Mora, Guillermo Moisés Zúñiga-González, Belinda Claudia Gómez-Meda, Raúl Cuauhtémoc Baptista-Rosas, Rolando Castañeda-Arellano, Arieh Roldán Mercado-Sesma, Laura Yareni Zúñiga, and María Guadalupe Sánchez-Parada. 2024. "Amelioration of Cytogenotoxic Damage in Drug Abusers Supplemented with Folic Acid" Biomedicines 12, no. 2: 352. https://doi.org/10.3390/biomedicines12020352
APA StyleGómez-Cabrera, A. S., González-Santiago, A. E., Rodríguez-Mora, J. F., Zúñiga-González, G. M., Gómez-Meda, B. C., Baptista-Rosas, R. C., Castañeda-Arellano, R., Mercado-Sesma, A. R., Zúñiga, L. Y., & Sánchez-Parada, M. G. (2024). Amelioration of Cytogenotoxic Damage in Drug Abusers Supplemented with Folic Acid. Biomedicines, 12(2), 352. https://doi.org/10.3390/biomedicines12020352