Exosomes-Mediated Signaling Pathway: A New Direction for Treatment of Organ Ischemia-Reperfusion Injury
Abstract
:1. Introduction
1.1. Overview of Ischemia-Reperfusion Injury
1.2. Occurrence and Mechanism of Ischemia-Reperfusion Injury
1.3. Current Therapeutic Strategies for Ischemia-Reperfusion Injury
1.4. Exosomes Mediate Organ Ischemia-Reperfusion Injury through Different Signaling Pathways
2. The Signaling Pathway of Exosomes in Promoting Organ Ischemia-Reperfusion Injury Recovery
2.1. PI3K/Akt Signaling Pathway
2.1.1. Brain
2.1.2. Heart
2.1.3. Liver
2.1.4. Genital System
2.2. NF-κB Signaling Pathway
2.2.1. Heart
2.2.2. Brain
2.2.3. Intestines
2.2.4. Kidney
2.3. Nrf2 Signaling Pathway
2.3.1. Brain
2.3.2. Spinal Cord
2.3.3. Kidney
2.4. PTEN Signaling Pathway
2.4.1. Heart
2.4.2. Kidney
2.4.3. Lung
2.4.4. Intestines
2.4.5. Liver
2.5. Wnt Signaling Pathway
2.5.1. Brain
2.5.2. Heart
2.5.3. Liver
2.6. MAPK Signaling Pathway
2.6.1. Brain
2.6.2. Liver
2.6.3. Kidney
2.6.4. Heart
2.7. Toll-Like Receptor-Mediated Signaling Pathway
2.7.1. Brain
2.7.2. Heart
2.7.3. Intestines
2.8. AMPK Signaling Pathway
2.8.1. Heart
2.8.2. Brain
2.9. Cross-Talk between Different Signaling Pathways
2.9.1. Heart
2.9.2. Brain
2.9.3. Kidney
2.9.4. Liver
3. Conclusions and Future Aspects
Funding
Conflicts of Interest
Abbreviations
ADSCs | Adipose-derived stromal cells |
AKT | Serine/threonine kinase or protein kinase B (PKB) |
AMPK | Adenosine 5′-monophosphate activated protein kinase |
BAT | Brown adipose tissue |
BBB | Blood-brain barrier |
Bcl-2 | B-cell lymphoma-2 |
BMDCs | Bone-marrow-derived dendritic cells |
CXCR4 | Chemokine receptor type 4 |
ER | Endoplasmic reticulum |
ERKs | Extracellular signal regulated kinases |
EVs | Extracellular vesicles |
GD/R | Glucose deprivation/reperfusion |
GSK-3 | Glycogen synthetase kinase-3 |
HAECs | Human amniotic epithelial cells |
HBMSCs | Human bone marrow mesenchymal stem cells |
HCP5 | HLA complex P5 |
HDPSCs | Human dental pulp stem cells |
HIF-1α | Hypoxia-induced factor 1α |
HNSCs | Human neural stem cells |
HO-1 | Heme oxygenase 1 |
H/R | Hypoxia/Reoxygenation |
HSP70 | Heat shock protein 70 |
HUCMCs | Human umbilical cord mesenchymal cell |
HUSCs | Human urine-derived stem cells |
HUVECs | Human umbilical vascular endothelial cells |
IPC | Ischemic preconditioning |
I/R | Ischemia-reperfusion |
IRAK1 | Interleukin-1 receptor-associated kinase 1 |
JNKs | Jun N-terminal kinases |
LD | Lactate dehydrogenase |
LPC | Lysophosphatidylcholine |
MAPK | Mitogen-activated protein kinase |
MCAO | Middle cerebral artery occlusion |
MDA | Malondialdehyde |
MEKK1 | Mitogen/Extracellular regulatory protein kinase 1 |
MIRI | Myocardial ischemia-reperfusion injury |
MKK4 | Mitogen activated protein kinase kinase 4 |
ML | Mesenteric lymph |
MSCs | Mesenchymal stem cells |
MSCs-EVs | Extracellular vesicles derived from MSCs |
M2-exos | M2 macrophage derived exosomes |
NFAT1 | Nuclear factor of activating T cell 1 |
NF-κB | Nuclear factor kappa-B |
NLRP1 | NLR family pyrin domain containing 1 |
Nrf2 | The nuclear factor erythroid 2-related factor 2 |
PCP | The Wnt/planar cell polarity |
P-exos | Plasma exosomes |
PI3K | Phosphatidylinositol-3-kinase |
PIP3 | Phosphatidylinositol 3-phosphate |
PTEN | Phosphatase and Tensin Homolog deleted on Chromosome 10 |
PUFs | Polyunsaturated fatty acids |
RIPC | Remote ischemic preconditioning |
RISK | reperfusion injury salvage kinase |
ROS | Reactive oxygen species |
SOD | Superoxide dismutase |
TEC | Tubular epithelial cell |
TLRs | Toll-like receptors |
TXNIP | Thioredoxin interacting protein |
Wnt | The wingless/Integrated |
References
- Liu, Y.; Li, L.; Wang, Z.; Zhang, J.; Zhou, Z. Myocardial ischemia-reperfusion injury; Molecular mechanisms and prevention. Microvasc. Res. 2023, 149, 104565. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.J.; Sun, L.L.; Ji, X.; Shi, R.; Xu, F.; Gu, J.H. Neuroprotective effects of oleanolic acid against cerebral ischemia-reperfusion injury in mice. Exp. Neurol. 2021, 343, 113785. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Jiang, T.; Huang, Z.; Ma, H.; Wang, M. Role of traditional Chinese medicine monomers in cerebral ischemia/reperfusion injury: A review of the mechanism. Front. Pharmacol. 2023, 14, 1220862. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhou, L. AG490 protects cerebral ischemia/reperfusion injury via inhibiting the JAK2/3 signaling pathway. Brain Behav. 2021, 11, e01911. [Google Scholar] [CrossRef] [PubMed]
- Ikhlas, M.; Atherton, N.S. Vascular Reperfusion Injury. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2022. [Google Scholar]
- Fan, Z.; Cai, L.; Wang, S.; Wang, J.; Chen, B. Baicalin Prevents Myocardial Ischemia/Reperfusion Injury Through Inhibiting ACSL4 Mediated Ferroptosis. Front. Pharmacol. 2021, 12, 628988. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Castro, M.B.; Cornide-Petronio, M.E.; Gracia-Sancho, J.; Peralta, C. Inflammasome-Mediated Inflammation in Liver Ischemia-Reperfusion Injury. Cells 2019, 8, 1131. [Google Scholar] [CrossRef] [PubMed]
- Algoet, M.; Janssens, S.; Himmelreich, U.; Gsell, W.; Pusovnik, M.; Van den Eynde, J.; Oosterlinck, W. Myocardial ischemia-reperfusion injury and the influence of inflammation. Trends Cardiovasc. Med. 2023, 33, 357–366. [Google Scholar] [CrossRef]
- Nørgård, M.; Svenningsen, P. Acute Kidney Injury by Ischemia/Reperfusion and Extracellular Vesicles. Int. J. Mol. Sci. 2023, 24, 15312. [Google Scholar] [CrossRef]
- Tao, H.; Dong, L.; Shan, X.; Li, L.; Chen, H. MicroRNA-32-3p facilitates cerebral ischemia/reperfusion injury through inhibiting Cab39/AMPK. Int. Immunopharmacol. 2023, 121, 110504. [Google Scholar] [CrossRef]
- Wang, R.; Wang, M.; Zhou, J.; Dai, Z.; Sun, G.; Sun, X. Calenduloside E suppresses calcium overload by promoting the interaction between L-type calcium channels and Bcl2-associated athanogene 3 to alleviate myocardial ischemia/reperfusion injury. J. Adv. Res. 2021, 34, 173–186. [Google Scholar] [CrossRef]
- Ye, J.; Wang, R.; Wang, M.; Fu, J.; Zhang, Q.; Sun, G.; Sun, X. Hydroxysafflor Yellow A Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Calcium Overload and Apoptosis. Oxidative Med. Cell. Longev. 2021, 2021, 6643615. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Li, J.; Fan, Q.; Zhao, X.; Chen, K. Dexmedetomidine alleviates myocardial ischemia/reperfusion-induced injury and Ca(2+) overload via the microRNA-346-3p/CaMKIId axis. Int. J. Cardiol. 2021, 338, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.C.; Wan, B.Y.; Zeng, Y. STIM2 knockdown protects against ischemia/reperfusion injury through reducing mitochondrial calcium overload and preserving mitochondrial function. Life Sci. 2020, 247, 116560. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, J.; Liu, M.; Chen, Y.; Wu, Y.; Li, Q.; Ma, T.; Gao, J.; Xia, Y.; Fan, M.; et al. Protective effect of HINT2 on mitochondrial function via repressing MCU complex activation attenuates cardiac microvascular ischemia-reperfusion injury. Basic. Res. Cardiol. 2021, 116, 65. [Google Scholar] [CrossRef] [PubMed]
- Francisco, J.; Del Re, D.P. Inflammation in Myocardial Ischemia/Reperfusion Injury: Underlying Mechanisms and Therapeutic Potential. Antioxidants 2023, 12, 1944. [Google Scholar] [CrossRef] [PubMed]
- Franke, M.; Bieber, M.; Kraft, P.; Weber, A.N.R.; Stoll, G.; Schuhmann, M.K. The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice. Brain Behav. Immun. 2021, 92, 223–233. [Google Scholar] [CrossRef]
- Huang, J.; Chen, L.; Yao, Z.M.; Sun, X.R.; Tong, X.H.; Dong, S.Y. The role of mitochondrial dynamics in cerebral ischemia-reperfusion injury. Biomed. Pharmacother. 2023, 162, 114671. [Google Scholar] [CrossRef]
- Necsoiu, C.; Jordan, B.S.; Choi, J.H.; Moon, J.J.; Espinoza, M.D.; Gremmer, B.J.; Batchinsky, A.I.; Cancio, L.C. Mitigating Ischemia-Reperfusion Injury Using a Bilobed Partial REBOA Catheter: Controlled Lower-Body Hypotension. Shock 2021, 55, 396–406. [Google Scholar] [CrossRef]
- Charles, E.J.; Tian, Y.; Zhang, A.; Wu, D.; Mehaffey, J.H.; Gigliotti, J.C.; Klibanov, A.L.; Kron, I.L.; Yang, Z. Pulsed ultrasound attenuates the hyperglycemic exacerbation of myocardial ischemia-reperfusion injury. J. Thorac. Cardiovasc. Surg. 2021, 161, e297–e306. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ou, W.; Xie, M.; Yang, J.; Li, Q.; Li, T. Nanomedicine-Based Therapeutics for Myocardial Ischemic/Reperfusion Injury. Adv. Healthc. Mater. 2023, 12, e2300161. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Gu, Y.; Guo, M.; Ji, X. Neuroprotective effects and mechanisms of ischemic/hypoxic preconditioning on neurological diseases. CNS Neurosci. Ther. 2021, 27, 869–882. [Google Scholar] [CrossRef]
- Lou, J.; Wang, X.; Zhang, H.; Yu, G.; Ding, J.; Zhu, X.; Li, Y.; Wu, Y.; Xu, H.; Xu, H.; et al. Inhibition of PLA2G4E/cPLA2 promotes survival of random skin flaps by alleviating Lysosomal membrane permeabilization-Induced necroptosis. Autophagy 2022, 18, 1841–1863. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Li, C.; Shi, Y.; Liu, G.; Zou, J.; Zhang, D.Y.; Jiang, C.; Wang, X.; He, L.; Huang, P.; et al. Protective effect of platinum nano-antioxidant and nitric oxide against hepatic ischemia-reperfusion injury. Nat. Commun. 2022, 13, 2513. [Google Scholar] [CrossRef]
- Eskla, K.L.; Vellama, H.; Tarve, L.; Eichelmann, H.; Jagomäe, T.; Porosk, R.; Oja, V.; Rämma, H.; Peet, N.; Laisk, A.; et al. Hypothermia Alleviates Reductive Stress, a Root Cause of Ischemia Reperfusion Injury. Int. J. Mol. Sci. 2022, 23, 10108. [Google Scholar] [CrossRef]
- Ziegler, M.; Haigh, K.; Nguyen, T.; Wang, X.; Lim, B.; Yap, M.L.; Eddy, E.M.; Haigh, J.J.; Peter, K. The pulmonary microvasculature entraps induced vascular progenitor cells (iVPCs) systemically delivered after cardiac ischemia-reperfusion injury: Indication for preservation of heart function via paracrine effects beyond engraftment. Microcirculation 2019, 26, e12493. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, M.; Liu, H.; Zhu, R.; He, H.; Zhou, Y.; Zhang, Y.; Li, C.; Liang, D.; Zeng, Q.; et al. Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes. Exp. Neurol. 2021, 341, 113700. [Google Scholar] [CrossRef] [PubMed]
- Hade, M.D.; Suire, C.N.; Suo, Z. Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells 2021, 10, 1959. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Duan, L.; Lu, J.; Xia, J. Engineering exosomes for targeted drug delivery. Theranostics 2021, 11, 3183–3195. [Google Scholar] [CrossRef]
- Gao, L.; Qiu, F.; Cao, H.; Li, H.; Dai, G.; Ma, T.; Gong, Y.; Luo, W.; Zhu, D.; Qiu, Z.; et al. Therapeutic delivery of microRNA-125a-5p oligonucleotides improves recovery from myocardial ischemia/reperfusion injury in mice and swine. Theranostics 2023, 13, 685–703. [Google Scholar] [CrossRef]
- Chang, C.; Cai, R.P.; Su, Y.M.; Wu, Q.; Su, Q. Mesenchymal Stem Cell-Derived Exosomal Noncoding RNAs as Alternative Treatments for Myocardial Ischemia-Reperfusion Injury: Current Status and Future Perspectives. J. Cardiovasc. Transl. Res. 2023, 16, 1085–1098. [Google Scholar] [CrossRef]
- Wang, S.; Jun, J.; Cong, L.; Du, L.; Wang, C. miR-328-3p, a Predictor of Stroke, Aggravates the Cerebral Ischemia-Reperfusion Injury. Int. J. Gen. Med. 2021, 14, 2367–2376. [Google Scholar] [CrossRef]
- Hu, S.; Li, Z.; Shen, D.; Zhu, D.; Huang, K.; Su, T.; Dinh, P.U.; Cores, J.; Cheng, K. Exosome-eluting stents for vascular healing after ischaemic injury. Nat. Biomed. Eng. 2021, 5, 1174–1188. [Google Scholar] [CrossRef]
- Zhang, R.; Mao, W.; Niu, L.; Bao, W.; Wang, Y.; Wang, Y.; Zhu, Y.; Yang, Z.; Chen, J.; Dong, J.; et al. NSC-derived exosomes enhance therapeutic effects of NSC transplantation on cerebral ischemia in mice. eLife 2023, 12, 84493. [Google Scholar] [CrossRef]
- Mathew, B.; Ravindran, S.; Liu, X.; Torres, L.; Chennakesavalu, M.; Huang, C.C.; Feng, L.; Zelka, R.; Lopez, J.; Sharma, M.; et al. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion. Biomaterials 2019, 197, 146–160. [Google Scholar] [CrossRef]
- Xin, P.; Xu, X.; Deng, C.; Liu, S.; Wang, Y.; Zhou, X.; Ma, H.; Wei, D.; Sun, S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol. 2020, 80, 106210. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, L.; Ma, C.; Wang, G.; Zhang, Y.; Sun, S. Exosomes derived from platelet-rich plasma present a novel potential in alleviating knee osteoarthritis by promoting proliferation and inhibiting apoptosis of chondrocyte via Wnt/β-catenin signaling pathway. J. Orthop. Surg. Res. 2019, 14, 470. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Tian, T.; Li, X.T.; Hao, P.P.; Liu, W.C.; Chen, Y.G.; Jiang, T.Y.; Chen, P.S.; Cheng, Y.; Xue, F.S. Dexmedetomidine postconditioning attenuates myocardial ischemia/reperfusion injury by activating the Nrf2/Sirt3/SOD2 signaling pathway in the rats. Redox Rep. Commun. Free Radic. Res. 2023, 28, 2158526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, J.; Liu, J.; Liu, H.; Li, J. Effects of stem cell-derived exosomes on neuronal apoptosis and inflammatory cytokines in rats with cerebral ischemia-reperfusion injury via PI3K/AKT pathway-mediated mitochondrial apoptosis. Immunopharmacol. Immunotoxicol. 2021, 43, 731–740. [Google Scholar] [CrossRef] [PubMed]
- Li, K.S.; Bai, Y.; Li, J.; Li, S.L.; Pan, J.; Cheng, Y.Q.; Li, K.; Wang, Z.G.; Ji, W.J.; Zhou, Q.; et al. LncRNA HCP5 in hBMSC-derived exosomes alleviates myocardial ischemia reperfusion injury by sponging miR-497 to activate IGF1/PI3K/AKT pathway. Int. J. Cardiol. 2021, 342, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.H.; Wang, X.; Zhang, Y.; Hui, J. Exosomes of bone-marrow stromal cells inhibit cardiomyocyte apoptosis under ischemic and hypoxic conditions via miR-486-5p targeting the PTEN/PI3K/AKT signaling pathway. Thromb. Res. 2019, 177, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, X. Ischaemic preconditioning-induced serum exosomes protect against myocardial ischaemia/reperfusion injury in rats by activating the PI3K/AKT signalling pathway. Cell Biochem. Funct. 2021, 39, 287–295. [Google Scholar] [CrossRef]
- Zheng, L.; Li, Z.; Ling, W.; Zhu, D.; Feng, Z.; Kong, L. Exosomes Derived from Dendritic Cells Attenuate Liver Injury by Modulating the Balance of Treg and Th17 Cells After Ischemia Reperfusion. Cell Physiol. Biochem. 2018, 46, 740–756. [Google Scholar] [CrossRef]
- Liu, H.; Shi, M.; Li, X.; Lu, W.; Zhang, M.; Zhang, T.; Wu, Y.; Zhang, Z.; Cui, Q.; Yang, S.; et al. Adipose Mesenchymal Stromal Cell-Derived Exosomes Prevent Testicular Torsion Injury via Activating PI3K/AKT and MAPK/ERK1/2 Pathways. Oxid. Med. Cell. Longev. 2022, 2022, 8065771. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, H.; Chan, G.C.F.; Zhou, Y.; Lai, X.; Lian, M. Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stromal Cells Protect Cardiac Cells Against Hypoxia/Reoxygenation Injury by Inhibiting Endoplasmic Reticulum Stress via Activation of the PI3K/Akt Pathway. Cell Transpl. 2020, 29, 963689720945677. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, S.; Chang, S.; Ren, D.; Shali, S.; Li, C.; Yang, H.; Huang, Z.; Ge, J. M2 macrophage-derived exosomes carry microRNA-148a to alleviate myocardial ischemia/reperfusion injury via inhibiting TXNIP and the TLR4/NF-κB/NLRP3 inflammasome signaling pathway. J. Mol. Cell. Cardiol. 2020, 142, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ru, J.; Zhang, H.; Chen, J.; Lin, X.; Lin, Z.; Wen, M.; Huang, L.; Ni, H.; Zhuge, Q.; et al. Melatonin Enhances the Therapeutic Effect of Plasma Exosomes Against Cerebral Ischemia-Induced Pyroptosis Through the TLR4/NF-κB Pathway. Front. Neurosci. 2020, 14, 848. [Google Scholar] [CrossRef]
- Wei, W.; Li, H.; Deng, Y.; Zheng, X.; Zhou, Y.; Xue, X. The combination of Alisma and Atractylodes ameliorates cerebral ischaemia/reperfusion injury by negatively regulating astrocyte-derived exosomal miR-200a-3p/141-3p by targeting SIRT1. J. Ethnopharmacol. 2023, 313, 116597. [Google Scholar] [CrossRef] [PubMed]
- Senda, A.; Morishita, K.; Kojima, M.; Doki, S.; Taylor, B.; Yagi, M.; Watanabe, A.; Kobayashi, T.; Aiboshi, J.; Coimbra, R.; et al. The role of mesenteric lymph exosomal lipid mediators following intestinal ischemia-reperfusion injury on activation of inflammation. J. Trauma. Acute Care Surg. 2020, 89, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liao, J.; Su, X.; Li, W.; Bi, Z.; Wang, J.; Su, Q.; Huang, H.; Wei, Y.; Gao, Y.; et al. Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1. Theranostics 2020, 10, 9561–9578. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Jia, P.; Chen, N.; Fang, Y.; Liang, Y.; Guo, M.; Ding, X. Delayed Remote Ischemic Preconditioning ConfersRenoprotection against Septic Acute Kidney Injury via Exosomal miR-21. Theranostics 2019, 9, 405–423. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Huang, Z.; Huang, L.; Liang, J.; Wang, P.; Zhao, L.; Shi, Y. Surface-modified engineered exosomes attenuated cerebral ischemia/reperfusion injury by targeting the delivery of quercetin towards impaired neurons. J. Nanobiotechnol. 2021, 19, 141. [Google Scholar] [CrossRef]
- Liu, Q.; Tan, Y.; Qu, T.; Zhang, J.; Duan, X.; Xu, H.; Mu, Y.; Ma, H.; Wang, F. Therapeutic mechanism of human neural stem cell-derived extracellular vesicles against hypoxia-reperfusion injury in vitro. Life Sci. 2020, 254, 117772. [Google Scholar] [CrossRef]
- Xiao, T.; Qu, H.; Zeng, Z.; Li, C.; Wan, J. Exosomes from M2-polarized macrophages relieve oxygen/glucose deprivation/normalization-induced neuronal injury by activating the Nrf2/HO-1 signaling. Arch. Biochem. Biophys. 2022, 721, 109193. [Google Scholar] [CrossRef]
- Cao, H.; Cheng, Y.; Gao, H.; Zhuang, J.; Zhang, W.; Bian, Q.; Wang, F.; Du, Y.; Li, Z.; Kong, D.; et al. In Vivo Tracking of Mesenchymal Stem Cell-Derived Extracellular Vesicles Improving Mitochondrial Function in Renal Ischemia-Reperfusion Injury. ACS Nano 2020, 14, 4014–4026. [Google Scholar] [CrossRef]
- Zhang, J.; Su, R.; Wang, Y.; Wang, H.; Li, S.; Yang, X.; Liu, G. Protective effect of small extracellular vesicles (EVs) derived from ACE2-modified human umbilical cord mesenchymal stem cells against renal ischemia-reperfusion injury. Nephrology 2024, 29, 5–17. [Google Scholar] [CrossRef]
- Li, T.; Gu, J.; Yang, O.; Wang, J.; Wang, Y.; Kong, J. Bone Marrow Mesenchymal Stem Cell-Derived Exosomal miRNA-29c Decreases Cardiac Ischemia/Reperfusion Injury Through Inhibition of Excessive Autophagy via the PTEN/Akt/mTOR Signaling Pathway. Circ. J. 2020, 84, 1304–1311. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, Z.; Zhao, Y.; Fan, F.; Xiong, W.; Song, S.; Yin, Y.; Hu, J.; Yang, K.; Yang, L.; et al. Mononuclear phagocyte system blockade using extracellular vesicles modified with CD47 on membrane surface for myocardial infarction reperfusion injury treatment. Biomaterials 2021, 275, 121000. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Yang, B.; Qiao, R.; Li, A.; Guo, H.; Ding, J.; Li, H.; Ye, H.; Wu, D.; et al. Transfer of MicroRNA-216a-5p From Exosomes Secreted by Human Urine-Derived Stem Cells Reduces Renal Ischemia/Reperfusion Injury. Front. Cell Dev. Biol. 2020, 8, 610587. [Google Scholar] [CrossRef] [PubMed]
- Li, J.W.; Wei, L.; Han, Z.; Chen, Z. Mesenchymal stromal cells-derived exosomes alleviate ischemia/reperfusion injury in mouse lung by transporting anti-apoptotic miR-21-5p. Eur. J. Pharmacol. 2019, 852, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wan, Z.; Liu, Z.; Liu, D.; Zhao, Z.; Leng, Y. Exosomes Derived from BMSCs Ameliorate Intestinal Ischemia-Reperfusion Injury by Regulating miR-144-3p-Mediated Oxidative Stress. Dig. Dis. Sci. 2022, 67, 5090–5106. [Google Scholar] [CrossRef]
- Li, H.; Lin, W.; Zhang, G.; Liu, R.; Qu, M.; Zhang, J.; Xing, X. BMSC-exosomes miR-25-3p Regulates the p53 Signaling Pathway Through PTEN to Inhibit Cell Apoptosis and Ameliorate Liver Ischemia-reperfusion Injury. Stem Cell Rev. Rep. 2023, 19, 2820–2836. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, Y.; Wang, Y.; Zhao, D.; Sun, C.; Zhou, S.; Xu, D.; Zhao, J. Exosomes Derived from CXCR4-Overexpressing BMSC Promoted Activation of Microvascular Endothelial Cells in Cerebral Ischemia/Reperfusion Injury. Neural Plast. 2020, 2020, 8814239. [Google Scholar] [CrossRef]
- Cui, X.; He, Z.; Liang, Z.; Chen, Z.; Wang, H.; Zhang, J. Exosomes From Adipose-derived Mesenchymal Stem Cells Protect the Myocardium Against Ischemia/Reperfusion Injury Through Wnt/β-Catenin Signaling Pathway. J. Cardiovasc. Pharmacol. 2017, 70, 225–231. [Google Scholar] [CrossRef]
- Zou, L.; Ma, X.; Wu, B.; Chen, Y.; Xie, D.; Peng, C. Protective effect of bone marrow mesenchymal stem cell-derived exosomes on cardiomyoblast hypoxia-reperfusion injury through the miR-149/let-7c/Faslg axis. Free Radic. Res. 2020, 54, 722–731. [Google Scholar] [CrossRef]
- Park, H.; Park, H.; Mun, D.; Kang, J.; Kim, H.; Kim, M.; Cui, S.; Lee, S.H.; Joung, B. Extracellular Vesicles Derived from Hypoxic Human Mesenchymal Stem Cells Attenuate GSK3β Expression via miRNA-26a in an Ischemia-Reperfusion Injury Model. Yonsei Med. J. 2018, 59, 736–745. [Google Scholar] [CrossRef]
- Tian, T.; Cao, L.; He, C.; Ye, Q.; Liang, R.; You, W.; Zhang, H.; Wu, J.; Ye, J.; Tannous, B.A.; et al. Targeted delivery of neural progenitor cell-derived extracellular vesicles for anti-inflammation after cerebral ischemia. Theranostics 2021, 11, 6507–6521. [Google Scholar] [CrossRef]
- Wu, W.; Liu, J.; Yang, C.; Xu, Z.; Huang, J.; Lin, J. Astrocyte-derived exosome-transported microRNA-34c is neuroprotective against cerebral ischemia/reperfusion injury via TLR7 and the NF-κB/MAPK pathways. Brain Res. Bull. 2020, 163, 84–94. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Wang, Q.; Zheng, D.; Feng, X.; Zhao, W.; Cai, L.; Zhang, Q.; Xu, H.; Fu, H. Attenuation of hepatic ischemia-reperfusion injury by adipose stem cell-derived exosome treatment via ERK1/2 and GSK-3β signaling pathways. Int. J. Mol. Med. 2022, 49, 5068. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Dai, H.; Liu, W.; Liao, R.; Chen, H.; Zhang, L.; Wang, X.; Chen, Z. Exosomes derived from human adipose-derived stem cells alleviate hepatic ischemia-reperfusion (I/R) injury through the miR-183/ALOX5 axis. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2023, 37, e22782. [Google Scholar] [CrossRef]
- Kang, X.; Chen, Y.; Xin, X.; Liu, M.; Ma, Y.; Ren, Y.; Ji, J.; Yu, Q.; Qu, L.; Wang, S.; et al. Human Amniotic Epithelial Cells and Their Derived Exosomes Protect Against Cisplatin-Induced Acute Kidney Injury Without Compromising Its Antitumor Activity in Mice. Front. Cell Dev. Biol. 2021, 9, 752053. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, X.; Hu, G.; Li, C.; Guo, L.; Zhang, L.; Sun, F.; Xia, Y.; Yan, W.; Cui, Z.; et al. Small Extracellular Vesicles From Brown Adipose Tissue Mediate Exercise Cardioprotection. Circ. Res. 2022, 130, 1490–1506. [Google Scholar] [CrossRef]
- Jiang, Y.; He, R.; Shi, Y.; Liang, J.; Zhao, L. Plasma exosomes protect against cerebral ischemia/reperfusion injury via exosomal HSP70 mediated suppression of ROS. Life Sci. 2020, 256, 117987. [Google Scholar] [CrossRef]
- Li, G.; Xiao, L.; Qin, H.; Zhuang, Q.; Zhang, W.; Liu, L.; Di, C.; Zhang, Y. Exosomes-carried microRNA-26b-5p regulates microglia M1 polarization after cerebral ischemia/reperfusion. Cell Cycle 2020, 19, 1022–1035. [Google Scholar] [CrossRef]
- Li, X.; Bi, T.; Yang, S. Exosomal microRNA-150-5p from bone marrow mesenchymal stromal cells mitigates cerebral ischemia/reperfusion injury via targeting toll-like receptor 5. Bioengineered 2022, 13, 3030–3043. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, Q.; Liu, X.; Zhang, T.; Wang, S.; Zhou, L.; Zou, L.; Fan, F.; Chi, H.; Sun, J.; et al. Exosomal microRNA-98-5p from hypoxic bone marrow mesenchymal stem cells inhibits myocardial ischemia-reperfusion injury by reducing TLR4 and activating the PI3K/Akt signaling pathway. Int. Immunopharmacol. 2021, 101, 107592. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, L.; Ma, H.; Sun, F.; Wen, F. microRNA-129 overexpression in endothelial cell-derived extracellular vesicle influences inflammatory response caused by myocardial ischemia/reperfusion injury. Cell Biol. Int. 2021, 45, 1743–1756. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhou, Y.; Liang, D.; He, H.; Liu, X.; Zhu, R.; Zhang, M.; Luo, X.; Wang, Y.; Huang, G. Exosomes Secreted From Bone Marrow Mesenchymal Stem Cells Attenuate Oxygen-Glucose Deprivation/Reoxygenation-Induced Pyroptosis in PC12 Cells by Promoting AMPK-Dependent Autophagic Flux. Front. Cell Neurosci. 2020, 14, 182. [Google Scholar] [CrossRef]
- Liu, L.; Jin, X.; Hu, C.F.; Li, R.; Zhou, Z.; Shen, C.X. Exosomes Derived from Mesenchymal Stem Cells Rescue Myocardial Ischaemia/Reperfusion Injury by Inducing Cardiomyocyte Autophagy Via AMPK and Akt Pathways. Cell. Physiol. Biochem. 2017, 43, 52–68. [Google Scholar] [CrossRef]
- Su, Q.; Lv, X.W.; Xu, Y.L.; Cai, R.P.; Dai, R.X.; Yang, X.H.; Zhao, W.K.; Kong, B.H. Exosomal LINC00174 derived from vascular endothelial cells attenuates myocardial I/R injury via p53-mediated autophagy and apoptosis. Mol. Ther. Nucleic Acids 2021, 23, 1304–1322. [Google Scholar] [CrossRef]
- Han, M.; Cao, Y.; Xue, H.; Chu, X.; Li, T.; Xin, D.; Yuan, L.; Ke, H.; Li, G.; Wang, Z. Neuroprotective Effect of Mesenchymal Stromal Cell-Derived Extracellular Vesicles Against Cerebral Ischemia-Reperfusion-Induced Neural Functional Injury: A Pivotal Role for AMPK and JAK2/STAT3/NF-κB Signaling Pathway Modulation. Drug Des. Devel Ther. 2020, 14, 2865–2876. [Google Scholar] [CrossRef]
- Tao, H.; Li, L.; Dong, L.; Chen, H.; Shan, X.; Zhuge, L.; Lou, H. Growth differentiation factor 7 pretreatment enhances the therapeutic capacity of bone marrow-derived mesenchymal stromal cells against cerebral ischemia-reperfusion injury. Chem.-Biol. Interact. 2023, 386, 110779. [Google Scholar] [CrossRef]
- Xu, F.; Na, L.; Li, Y.; Chen, L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci. 2020, 10, 54. [Google Scholar] [CrossRef]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef]
- Deng, R.M.; Zhou, J. The role of PI3K/AKT signaling pathway in myocardial ischemia-reperfusion injury. Int. Immunopharmacol. 2023, 123, 110714. [Google Scholar] [CrossRef]
- Ruan, C.; Guo, H.; Gao, J.; Wang, Y.; Liu, Z.; Yan, J.; Li, X.; Lv, H. Neuroprotective effects of metformin on cerebral ischemia-reperfusion injury by regulating PI3K/Akt pathway. Brain Behav. 2021, 11, e2335. [Google Scholar] [CrossRef]
- Feng, C.; Wan, H.; Zhang, Y.; Yu, L.; Shao, C.; He, Y.; Wan, H.; Jin, W. Neuroprotective Effect of Danhong Injection on Cerebral Ischemia-Reperfusion Injury in Rats by Activation of the PI3K-Akt Pathway. Front. Pharmacol. 2020, 11, 298. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, J.; Zhang, J.; Sun, K.; Li, Q.; Kuang, B.; Wang, M.M.Z.; Hou, S.; Gong, N. Methyl eugenol attenuates liver ischemia reperfusion injury via activating PI3K/Akt signaling. Int. Immunopharmacol. 2021, 99, 108023. [Google Scholar] [CrossRef]
- Oh, A.; Pardo, M.; Rodriguez, A.; Yu, C.; Nguyen, L.; Liang, O.; Chorzalska, A.; Dubielecka, P.M. NF-κB signaling in neoplastic transition from epithelial to mesenchymal phenotype. Cell Commun. Signal. CCS 2023, 21, 291. [Google Scholar] [CrossRef]
- Dong, P.; Liu, K.; Han, H. The Role of NF-κB in Myocardial Ischemia/Reperfusion Injury. Curr. Protein Pept. Sci. 2022, 23, 535–547. [Google Scholar] [CrossRef]
- Dong, X.; Wang, L.; Song, G.; Cai, X.; Wang, W.; Chen, J.; Wang, G. Physcion Protects Rats Against Cerebral Ischemia-Reperfusion Injury via Inhibition of TLR4/NF-kB Signaling Pathway. Drug Des. Dev. Ther. 2021, 15, 277–287. [Google Scholar] [CrossRef]
- Li, M.; Hou, Q.; Zhong, L.; Zhao, Y.; Fu, X. Macrophage Related Chronic Inflammation in Non-Healing Wounds. Front. Immunol. 2021, 12, 681710. [Google Scholar] [CrossRef]
- Tsai, S.C.; Yang, K.D.; Chang, K.H.; Lin, F.C.; Chou, R.H.; Li, M.C.; Cheng, C.C.; Kao, C.Y.; Chen, C.P.; Lin, H.C.; et al. Umbilical Cord Mesenchymal Stromal Cell-Derived Exosomes Rescue the Loss of Outer Hair Cells and Repair Cochlear Damage in Cisplatin-Injected Mice. Int. J. Mol. Sci. 2021, 22, 6664. [Google Scholar] [CrossRef]
- Cao, J.Y.; Wang, B.; Tang, T.T.; Wen, Y.; Li, Z.L.; Feng, S.T.; Wu, M.; Liu, D.; Yin, D.; Ma, K.L.; et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury. Theranostics 2021, 11, 5248–5266. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.A.; Yoon, H.; Kim, M.Y.; Yoo, J.K.; Ahn, S.H.; Park, C.H.; Park, J.; Nam, B.Y.; Park, J.T.; et al. Exosome-based delivery of super-repressor IκBα ameliorates kidney ischemia-reperfusion injury. Kidney Int. 2021, 100, 570–584. [Google Scholar] [CrossRef]
- Lin, L.; Wu, Q.; Lu, F.; Lei, J.; Zhou, Y.; Liu, Y.; Zhu, N.; Yu, Y.; Ning, Z.; She, T.; et al. Nrf2 signaling pathway: Current status and potential therapeutic targetable role in human cancers. Front. Oncol. 2023, 13, 1184079. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.; Jiang, X.; Du, H.; Shi, Y.; Xiu, M.; Liu, Y.; He, J. Natural products targeting Nrf2/ARE signaling pathway in the treatment of inflammatory bowel disease. Biomed. Pharmacother. 2023, 164, 114950. [Google Scholar] [CrossRef]
- Ucar, B.I.; Ucar, G.; Saha, S.; Buttari, B.; Profumo, E.; Saso, L. Pharmacological Protection against Ischemia-Reperfusion Injury by Regulating the Nrf2-Keap1-ARE Signaling Pathway. Antioxidants 2021, 10, 823. [Google Scholar] [CrossRef]
- Ya, B.L.; Liu, Q.; Li, H.F.; Cheng, H.J.; Yu, T.; Chen, L.; Wang, Y.; Yuan, L.L.; Li, W.J.; Liu, W.Y.; et al. Uric Acid Protects against Focal Cerebral Ischemia/Reperfusion-Induced Oxidative Stress via Activating Nrf2 and Regulating Neurotrophic Factor Expression. Oxidative Med. Cell. Longev. 2018, 2018, 6069150. [Google Scholar] [CrossRef]
- Raquel, G.B.; Panisello-Roselló, A.; Sanchez-Nuno, S.; Alva, N.; Roselló-Catafau, J.; Carbonell, T. Nrf2 and oxidative stress in liver ischemia/reperfusion injury. FEBS J. 2022, 289, 5463–5479. [Google Scholar] [CrossRef]
- Liu, W.; Tang, P.; Wang, J.; Ye, W.; Ge, X.; Rong, Y.; Ji, C.; Wang, Z.; Bai, J.; Fan, J.; et al. Extracellular vesicles derived from melatonin-preconditioned mesenchymal stem cells containing USP29 repair traumatic spinal cord injury by stabilizing NRF2. J. Pineal Res. 2021, 71, e12769. [Google Scholar] [CrossRef]
- Cui, X.; Liu, X.; Kong, P.; Du, T.; Li, T.; Yang, G.; Zhang, W.; Jing, X.; Wang, W. PTEN inhibitor VO-OHpic protects endplate chondrocytes against apoptosis and calcification via activating Nrf-2 signaling pathway. Aging 2023, 15, 2275–2292. [Google Scholar] [CrossRef]
- Jiang, T.Y.; Shi, Y.Y.; Cui, X.W.; Pan, Y.F.; Lin, Y.K.; Feng, X.F.; Ding, Z.W.; Yang, C.; Tan, Y.X.; Dong, L.W.; et al. PTEN Deficiency Facilitates Exosome Secretion and Metastasis in Cholangiocarcinoma by Impairing TFEB-mediated Lysosome Biogenesis. Gastroenterology 2023, 164, 424–438. [Google Scholar] [CrossRef]
- Xu, Y.; Tang, Y.; Lu, J.; Zhang, W.; Zhu, Y.; Zhang, S.; Ma, G.; Jiang, P.; Zhang, W. PINK1-mediated mitophagy protects against hepatic ischemia/reperfusion injury by restraining NLRP3 inflammasome activation. Free Radic. Biol. Med. 2020, 160, 871–886. [Google Scholar] [CrossRef]
- Du, J.; Li, Y.; Zhao, W. Autophagy and Myocardial Ischemia. Adv. Exp. Med. Biol. 2020, 1207, 217–222. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, M.; Xu, F.; Jiang, S. Wnt signaling in breast cancer: Biological mechanisms, challenges and opportunities. Mol. Cancer 2020, 19, 165. [Google Scholar] [CrossRef]
- Ma, Q.; Yu, J.; Zhang, X.; Wu, X.; Deng, G. Wnt/β-catenin signaling pathway-a versatile player in apoptosis and autophagy. Biochimie 2023, 211, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef]
- Ji, Y.B.; Gao, Q.; Tan, X.X.; Huang, X.W.; Ma, Y.Z.; Fang, C.; Wang, S.N.; Qiu, L.H.; Cheng, Y.X.; Guo, F.Y.; et al. Lithium alleviates blood-brain barrier breakdown after cerebral ischemia and reperfusion by upregulating endothelial Wnt/β-catenin signaling in mice. Neuropharmacology 2021, 186, 108474. [Google Scholar] [CrossRef]
- Zhao, H.; Ming, T.; Tang, S.; Ren, S.; Yang, H.; Liu, M.; Tao, Q.; Xu, H. Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Mol. Cancer 2022, 21, 144. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Z.; Liu, F.; Ou, Y. Clinical significance of activated Wnt/β-catenin signaling in apoptosis inhibition of oral cancer. Open Life Sci. 2021, 16, 1045–1052. [Google Scholar] [CrossRef]
- Piao, C.; Sang, J.; Kou, Z.; Wang, Y.; Liu, T.; Lu, X.; Jiao, Z.; Wang, H. Effects of Exosomes Derived from Adipose-Derived Mesenchymal Stem Cells on Pyroptosis and Regeneration of Injured Liver. Int. J. Mol. Sci. 2022, 23, 12065. [Google Scholar] [CrossRef]
- Ma, Y.; Nicolet, J. Specificity models in MAPK cascade signaling. FEBS Open Bio 2023, 13, 1177–1192. [Google Scholar] [CrossRef]
- Qi, X.M.; Chen, G. p38γ MAPK Inflammatory and Metabolic Signaling in Physiology and Disease. Cells 2023, 12, 1674. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Kong, T.; Shao, Z.; Liu, M.; Zhang, R.; Zhang, S.; Kong, Q.; Chen, J.; Cheng, B.; Wang, C. Orexin-A alleviates astrocytic apoptosis and inflammation via inhibiting OX1R-mediated NF-κB and MAPK signaling pathways in cerebral ischemia/reperfusion injury. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166230. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Li, X.; Liu, Y.; Liang, X.; Ye, H.; Yang, C.; Hua, L.; Zhang, X. Curcumin Alleviates Cerebral Ischemia-reperfusion Injury by Inhibiting NLRP1-dependent Neuronal Pyroptosis. Curr. Neurovasc Res. 2021, 18, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.L.; Teng, F.; Zhang, Y.S.; Sun, Q.; Cao, Y.X.; Meng, G.W. FPR1 gene silencing suppresses cardiomyocyte apoptosis and ventricular remodeling in rats with ischemia/reperfusion injury through the inhibition of MAPK signaling pathway. Exp. Cell Res. 2018, 370, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, J.; Dong, E.; Wang, Z.; Xiao, H. Toll-like receptors in cardiac hypertrophy. Front. Cardiovasc. Med. 2023, 10, 1143583. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, J.; Wang, C.; Liu, J.; Lu, W. Toll-Like Receptors Gene Polymorphisms in Autoimmune Disease. Front. Immunol. 2021, 12, 672346. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.T.; Liao, M.T.; Tsai, K.W.; Lu, K.C.; Hu, W.C. Interplay of Chemokines Receptors, Toll-like Receptors, and Host Immunological Pathways. Biomedicines 2023, 11, 2384. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Deng, F.; Zhao, B.; Lin, Z.; Sun, Q.; Yang, X.; Wu, M.; Qiu, S.; Chen, Y.; Yan, Z.; et al. Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling. Microbiome 2022, 10, 38. [Google Scholar] [CrossRef]
- Kitazume-Taneike, R.; Taneike, M.; Omiya, S.; Misaka, T.; Nishida, K.; Yamaguchi, O.; Akira, S.; Shattock, M.J.; Sakata, Y.; Otsu, K. Ablation of Toll-like receptor 9 attenuates myocardial ischemia/reperfusion injury in mice. Biochem. Biophys. Res. Commun. 2019, 515, 442–447. [Google Scholar] [CrossRef]
- Guo, L.L.; Guo, M.L.; Yao, J.; Weng, Y.Q.; Zhang, X.Z. MicroRNA-421 improves ischemia/reperfusion injury via regulation toll-like receptor 4 pathway. J. Int. Med. Res. 2020, 48, 300060519871863. [Google Scholar] [CrossRef]
- Mentor, S.; Fisher, D. Exosomes form tunneling nanotubes (TUNTs) in the blood-brain barrier: A nano-anatomical perspective of barrier genesis. Front. Mol. Neurosci. 2022, 15, 938315. [Google Scholar] [CrossRef]
- Gao, X.; Lin, C.; Feng, Y.; You, Y.; Jin, Z.; Li, M.; Zhou, Y.; Chen, K. Akkermansia muciniphila-derived small extracellular vesicles attenuate intestinal ischemia-reperfusion-induced postoperative cognitive dysfunction by suppressing microglia activation via the TLR2/4 signaling. Biochim. Biophys. Acta. Mol. Cell Res. 2023, 1871, 119630. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, D.; Trefts, E.; Lv, M.; Inuzuka, H.; Song, G.; Liu, M.; Lu, J.; Liu, J.; Chu, C.; et al. Metabolic orchestration of cell death by AMPK-mediated phosphorylation of RIPK1. Science 2023, 380, 1372–1380. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, C.; Chen, J.; Zou, Q.; Li, B.; Wei, H.; Chang, M.P.; Liao, X.; Hu, C. Hypothermia preconditioning improves cardiac contractility after cardiopulmonary resuscitation through AMPK-activated mitophagy. Exp. Biol. Med. 2022, 247, 1277–1286. [Google Scholar] [CrossRef] [PubMed]
- Zuurbier, C.J.; Bertrand, L.; Beauloye, C.R.; Andreadou, I.; Ruiz-Meana, M.; Jespersen, N.R.; Kula-Alwar, D.; Prag, H.A.; Eric Botker, H.; Dambrova, M.; et al. Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J. Cell. Mol. Med. 2020, 24, 5937–5954. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wu, X.; Luo, J.; Zhao, L.; Li, X.; Guo, H.; Bai, H.; Cui, W.; Guo, W.; Feng, D.; et al. Adiponectin peptide alleviates oxidative stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3β. Exp. Neurol. 2020, 329, 113302. [Google Scholar] [CrossRef]
- Li, D.; Zhao, Y.; Zhang, C.; Wang, F.; Zhou, Y.; Jin, S. Plasma Exosomes at the Late Phase of Remote Ischemic Pre-conditioning Attenuate Myocardial Ischemia-Reperfusion Injury Through Transferring miR-126a-3p. Front. Cardiovasc. Med. 2021, 8, 736226. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shen, Y. Exosomal miR-455-3p from BMMSCs prevents cardiac ischemia-reperfusion injury. Hum. Exp. Toxicol. 2022, 41, 9603271221102508. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wang, M.; Hu, Z.; Ma, Y.; Shi, Y.; Cao, X.; Guo, T.; Cai, H.; Cai, H. Extracorporeal Cardiac Shock Wave-Induced Exosome Derived From Endothelial Colony-Forming Cells Carrying miR-140-3p Alleviate Cardiomyocyte Hypoxia/Reoxygenation Injury via the PTEN/PI3K/AKT Pathway. Front. Cell Dev. Biol. 2021, 9, 779936. [Google Scholar] [CrossRef] [PubMed]
- Douvris, A.; Viñas, J.; Burns, K.D. miRNA-486-5p: Signaling targets and role in non-malignant disease. Cell. Mol. Life Sci. 2022, 79, 376. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, H.; Xu, K.; Ling, Z.; Huang, Y.; Hu, Q.; Lu, K.; Liu, C.; Wang, Y.; Liu, N.; et al. Hypoxia preconditioned renal tubular epithelial cell-derived extracellular vesicles alleviate renal ischaemia-reperfusion injury mediated by the HIF-1α/Rab22 pathway and potentially affected by microRNAs. Int. J. Biol. Sci. 2019, 15, 1161–1176. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Lu, T.; Zhou, C.; Cai, J.; Zhang, X.; Liang, J.; Sui, X.; Chen, X.; Chen, L.; Sun, Y.; et al. Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Protect Liver Ischemia/Reperfusion Injury by Reducing CD154 Expression on CD4+ T Cells via CCT2. Adv. Sci. 2020, 7, 1903746. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Zhang, Y.D.; Ma, R.Y.; Chen, Y.J.; Xiang, X.M.; Hou, D.Y.; Li, X.H.; Huang, H.; Li, T.; Duan, C.Y. Activated Drp1 regulates p62-mediated autophagic flux and aggravates inflammation in cerebral ischemia-reperfusion via the ROS-RIP1/RIP3-exosome axis. Mil. Med. Res. 2022, 9, 25. [Google Scholar] [CrossRef]
- Fan, M.; Sun, W.; Gu, X.; Lu, S.; Shen, Q.; Liu, X.; Zhang, X. The critical role of STAT3 in biogenesis of tumor-derived exosomes with potency of inducing cancer cachexia in vitro and in vivo. Oncogene 2022, 41, 1050–1062. [Google Scholar] [CrossRef]
- Wei, M.; Gao, X.; Liu, L.; Li, Z.; Wan, Z.; Dong, Y.; Chen, X.; Niu, Y.; Zhang, J.; Yang, G. Visceral Adipose Tissue Derived Exosomes Exacerbate Colitis Severity via Pro-inflammatory MiRNAs in High Fat Diet Fed Mice. ACS Nano 2020, 14, 5099–5110. [Google Scholar] [CrossRef]
- Dehkordi, N.R.; Dehkordi, N.R.; Farjoo, M.H. Therapeutic properties of stem cell-derived exosomes in ischemic heart disease. Eur. J. Pharmacol. 2022, 920, 174839. [Google Scholar] [CrossRef]
- Xin, W.; Qin, Y.; Lei, P.; Zhang, J.; Yang, X.; Wang, Z. From cerebral ischemia towards myocardial, renal, and hepatic ischemia: Exosomal miRNAs as a general concept of intercellular communication in ischemia-reperfusion injury. Mol. Ther. Nucleic Acids 2022, 29, 900–922. [Google Scholar] [CrossRef]
- Zheng, X.F.; Zhang, X.J.; Dong, L.P.; Zhao, J.R.; Zhang, C.; Chen, R. Neuroprotective mechanism of salvianolic acid B against cerebral ischemia-reperfusion injury in mice through downregulation of TLR4, p-p38MAPK, p-JNK, NF-κB, and IL-1β. Immun. Inflamm. Dis. 2023, 11, e1030. [Google Scholar] [CrossRef]
The Cellular Origin of Exosomes | Experimental Models | Mechanism/Results | Signaling Pathway | Ref. | |
---|---|---|---|---|---|
In Vivo | In Vitro | ||||
Stem-cell-derived | Focal cerebral I/R model | Neurons | Reduce the expression of inflammatory cytokines; inhibit neuronal apoptosis | PI3K/Akt | [39] |
Human bone marrow mesenchymal stem cells | Myocardial I/R model | Cardiomyocytes | Reduce HCP5 expression | PI3K/Akt | [40] |
Human bone marrow mesenchymal stem cells | Myocardial I/R model | H9C2s | Promote the proliferation of H9C2 cells; inhibit the apoptosis myocardial cells | PI3K/Akt | [41] |
Plasma | Myocardial I/R model | - | Up-regulate the expression of Bcl-2; reduce the expression of inflammatory cytokines | PI3K/Akt | [42] |
Bone-marrow-derived dendritic cells | Hepatocyte H/R model | T cells | Enhance anti-inflammatory cytokine secretion; regulate the balance between different T cells | PI3K/Akt | [43] |
Adipose-derived stromal cells | - | Spermatogenic cells | Induce spermatocyte proliferation and migration; reduce oxidative stress and inflammatory factors | PI3K/Akt | [44] |
Human umbilical cord mesenchymal cells | Myocardial H/R model | H9C2s | Inhibit the activation of caspase-3 and ER stress markers expression; reduce cell apoptosis | PI3K/Akt | [45] |
M2-macrophage-derived | Myocardial I/R model | Cardiomyocytes | Carry miRNA-148a and bind to TXNIP; relieve inflammation | NF-κB | [46] |
Plasma | Focal cerebral I/R model | Neurons | Reduce the pyrodeath of microglia and neurons; reduce the size of cerebral infarction | NF-κB | [47] |
Astrocyte | Brain I/R model | - | Inhibit the uptake of miR-200a-3p by exosomes; enhance the expression of sirtuin1 in cerebral cortex | NF-κB | [48] |
Mesenteric lymph | - | Mesenteric lymphocytes | Increase the concentration of LPC in PUFs | NF-κB | [49] |
Human urine-derived stem cells | Renal I/R model | Renal tubular cells | Carry miRNA-146a-5p to act on the mRNA of IRAK1 | NF-κB | [50] |
Serum | - | Renal tubular epithelial cells | Inhibit inflammatory response and reduce apoptosis | NF-κB | [51] |
Neuron | Middle cerebral artery occlusion/reperfusion (MCAO/R) model | Neurons | Remove superoxide radicals | Nrf2 | [52] |
Human neural stem cells | Brain I/R model | Neurons | Up-regulate the expression of vasotropic factors; promote the proliferation and migration of vascular endothelial cells | Nrf2 | [53] |
M2-polarized macrophages | Glucose deprivation/reperfusion (GD/R) cell model | Neurons | Improve the level of superoxide dismutase; inhibit the production of reactive oxygen | Nrf2 | [54] |
Mesenchymal stem cells | Renal I/R model | Renal tubular epithelial cells | Up-regulate the expression of miRNA-200a-3p; restore mitochondrial antioxidant function | Nrf2 | [55] |
Mesenchymal stem cells | Renal I/R model | Renal tubular epithelial cells | Reduce creatinine and urea nitrogen levels; inhibit the expression of inflammatory factors | Nrf2 | [56] |
Human bone marrow mesenchymal stem cells | Myocardial I/R model | - | Attenuate autophagy of cells; inhibit oxidative stress | PTEN | [57] |
Mesenchymal stem cells | - | Cardiomyocytes | Inhibit cell apoptosis; relieve inflammation | PTEN | [58] |
Human urine-derived stem cells | Renal I/R model | Renal tubular epithelial cells | Stimulate phosphorylation of Akt; inhibit inflammatory response | PTEN | [59] |
Mesenchymal stem cells | Lung I/R model | Lung endothelial cells | Reduce the occurrence of pulmonary edema and pulmonary dysfunction | PTEN | [60] |
Human bone marrow mesenchymal stem cells | GD/R cell model | Intestinal cells | Carry miRNA-144-3p; reduce the apoptosis of intestinal cells | PTEN | [61] |
Human bone marrow mesenchymal stem cells | Liver I/R model | - | Reduce apoptosis, oxidative stress, and DNA damage | PTEN | [62] |
Human bone marrow mesenchymal stem cells | MCAO/R model | Cerebral endothelial cells | Induce the proliferation and migration of bend.3 cells; enhance the expression level of anti-apoptotic proteins | Wnt | [63] |
Adipose-derived stromal cells | Myocardial I/R model | H9C2s | Exert anti-apoptotic effects; reduce LD and cardiac troponin I levels | Wnt | [64] |
Human bone marrow mesenchymal stem cells | - | H9C2s | Regulate Faslg expression; reduce cell production of reactive oxygen species | Wnt | [65] |
Mesenchymal stem cells | Myocardial I/R model | Cardiomyocytes | Inhibit the expression of GSK-3; reduce the degree of infarction expansion | Wnt | [66] |
Stem-cell-derived | MCAO/R model | Neural progenitor cells | Package seven miRNAs; reduce inflammation | MAPK | [67] |
Astrocytes | Brain I/R model | Neurons | Carry miRNA-34c to act on toll-like receptors | MAPK | [68] |
Adipose-derived stromal cells | Lung I/R model | - | Play an anti-apoptotic role; reduces liver tissue necrosis and apoptosis | MAPK | [69] |
Adipose-derived stromal cells | Liver I/R model | Human hepatocytes | Induce proliferation of human hepatocytes and inhibit apoptosis | MAPK | [70] |
Human amniotic epithelial cells | Renal I/R model | - | Inhibit the expression of caspase; reduce renal dysfunction | MAPK | [71] |
Brown adipose tissue | Myocardial I/R model | Cardiomyocytes | Transport miRNA-125b-5p and miRNA-128-3p to myocardial tissue | MAPK | [72] |
Plasma | Brain I/R model | - | Deliver HSP70 to the brain; inhibit ROS production; reduce mitochondrial apoptosis | Toll-like receptor mediated | [73] |
Human umbilical cord mesenchymal cells | Brain I/R model | Microglial cells | Carry miRNA-26b-5p; attenuate the M1 polarization of microglia | Toll-like receptor mediated | [74] |
Human bone marrow mesenchymal stem cells | MCAO/R model | - | Silence TLR5 expression; inhibit the level of inflammatory factors | Toll-like receptor mediated | [75] |
Human bone marrow mesenchymal stem cells | Myocardial I/R model | Cardiomyocytes | Inhibit the myocardial enzyme level and oxidative stress response | Toll-like receptor mediated | [76] |
Human umbilical vascular endothelial cells | Myocardial I/R model | Cardiomyocytes | Enhance the expression of miRNA-129; degrade the pro-inflammatory factors; relieve myocardial fibrosis | Toll-like receptor mediated | [77] |
Human bone marrow mesenchymal stem cells | Brain I/R model | - | Decrease caspase 1 and interleukin-1β levels; alleviate neuronal apoptosis | AMPK | [78] |
Mesenchymal stem cells | Myocardial I/R model | H9C2s | Reduce ROS production and apoptosis; enhance autophagy | AMPK | [79] |
Aortic endothelial cells | Myocardial I/R model | Cardiomyocytes | Down-regulate myocardin expression; promote autophagy and apoptosis | AMPK | [80] |
Mesenchymal stem cells | MCAO/R model | - | Reduce the level of oxidative stress; decrease the release of inflammatory factors | AMPK | [81] |
Human bone marrow mesenchymal stem cells | Brain I/R model | Neuron | Down-regulate phosphodiesterase levels in primary neurons | AMPK | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xu, R.; Yan, Y.; He, B.; Miao, C.; Fang, Y.; Wan, H.; Zhou, G. Exosomes-Mediated Signaling Pathway: A New Direction for Treatment of Organ Ischemia-Reperfusion Injury. Biomedicines 2024, 12, 353. https://doi.org/10.3390/biomedicines12020353
Wang Y, Xu R, Yan Y, He B, Miao C, Fang Y, Wan H, Zhou G. Exosomes-Mediated Signaling Pathway: A New Direction for Treatment of Organ Ischemia-Reperfusion Injury. Biomedicines. 2024; 12(2):353. https://doi.org/10.3390/biomedicines12020353
Chicago/Turabian StyleWang, Yanying, Ruojiao Xu, Yujia Yan, Binyu He, Chaoyi Miao, Yifeng Fang, Haitong Wan, and Guoying Zhou. 2024. "Exosomes-Mediated Signaling Pathway: A New Direction for Treatment of Organ Ischemia-Reperfusion Injury" Biomedicines 12, no. 2: 353. https://doi.org/10.3390/biomedicines12020353
APA StyleWang, Y., Xu, R., Yan, Y., He, B., Miao, C., Fang, Y., Wan, H., & Zhou, G. (2024). Exosomes-Mediated Signaling Pathway: A New Direction for Treatment of Organ Ischemia-Reperfusion Injury. Biomedicines, 12(2), 353. https://doi.org/10.3390/biomedicines12020353