At the Intersection of Critical Care and Infectious Diseases: The Year in Review
Abstract
:1. Introduction
2. Materials and Methods
3. Prevention
3.1. VAP
3.2. S. aureus
Authors | Reference | Clinical Focus | Clinical Question | Trial Design | Sample Size | Conclusion |
---|---|---|---|---|---|---|
Ehrman et al. | [15] | Prevention | Does 3 days of nebulized amikacin prevent VAP? | DBRCT | 850 MV patients | Amikacin reduces the risk for VAP: 15% with amikacin vs. 22% with placebo (p < 0.05). No impact on duration of MV, LOS |
Huang et al. | [20] | Prevention | Is nasal iodophor non-inferior to mupirocin at preventing clinical cultures with S. aureus (in a background of CHG bathing)? | Pragmatic, cluster RCT | 801,688 ICU admissions | Iodophor was inferior to mupirocin at preventing clinical cultures with S. aureus. It also had no impact on cultures revealing MRSA or ICU-attributable BSIs. |
Monti et al. | [23] | Treatment | Does continuous vs. intermittent administration of meropenem reduce either mortality to subsequent cultures with PDR or XDR pathogens? | DBRCT | 607 patients with severe sepsis | Continuous infusion had no impact on either mortality or the emergence of resistance |
Qian et al. | [24] | Treatment | Does piperacillin-tazobactam increase the risk for AKI compared to cefepime? | Open label RCT | 2511 patients requiring an anti-pseudomonal antibiotic | There was no difference in the rate of AKI between the two agents. There were more neurologic complications (delirium/coma) with cefepime. |
Dequin et al. | [25] | Novel approach | Do adjunctive corticosteroids in severe CAP reduce mortality? | DBRCT | 800 subjects with severe CAP (but not in septic shock) | Corticosteroids reduce the risk for death significantly (6.2% vs. 11.9%, p = 0.006). The NNT to save one life equaled 18. |
Kaye et al. | [26] | Novel approach | Is a novel agent, sulbactam-durlobactam, non-inferior to colistin for mortality | DBRCT | 128 persons with CRAB infections identified by a rapid diagnostic. | Sulbactam-durlobactam was non-inferior to colistin with respect to mortality in the treatment of severe CRAB infections. Clinical cure rates were significantly higher with sulbactam-durlobactam and this agent resulted in less AKI than colistin. |
4. Current Antibiotics
4.1. Extended Infusions
4.2. Nephrotoxicity
5. Novel Paradigms
5.1. CAP
5.2. Sulbactam-Durlobactam
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ruiz-Spinelli, A.; Waterer, G.; Rello, J. Severe community-acquired pneumonia in the post COVID-19 era. Curr. Opin. Crit. Care 2023, 29, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; De Simone, G.; Boccia, G.; De Caro, F.; Pagliano, P. Sepsis and septic shock: New definitions, new diagnostic and therapeutic approaches. J. Glob. Antimicrob. Resist. 2017, 10, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Arefian, H.; Heublein, S.; Scherag, A.; Brunkhorst, F.M.; Younis, M.Z.; Moerer, O.; Fischer, D.; Hartmann, M. Hospital-related cost of sepsis: A systematic review. J. Infect. 2017, 74, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Zilberberg, M.D.; Nathanson, B.H.; Sulham, K.; Fan, W.; Shorr, A.F. A Novel Algorithm to Analyze Epidemiology and Outcomes of Carbapenem Resistance Among Patients With Hospital-Acquired and Ventilator-Associated Pneumonia: A Retrospective Cohort Study. Chest 2019, 155, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.A.; Markov, N.S.; Stoeger, T.; Pawlowski, A.E.; Kang, M.; Nannapaneni, P.; Grant, R.A.; Pickens, C.; Walter, J.M.; Kruser, J.M.; et al. Machine learning links unresolving secondary pneumonia to mortality in patients with severe pneumonia, including COVID-19. J. Clin. Investig. 2023, 133, e170682. [Google Scholar] [CrossRef]
- Zilberberg, M.D.; Nathanson, B.H.; Puzniak, L.A.; Dillon, R.J.; Shorr, A.F. The risk of inappropriate empiric treatment and its outcomes based on pathogens in non-ventilated (nvHABP), ventilated (vHABP) hospital-acquired and ventilator-associated (VABP) bacterial pneumonia in the US, 2012–2019. BMC Infect. Dis. 2022, 22, 775. [Google Scholar] [CrossRef]
- Kollef, M.H.; Shorr, A.F.; Bassetti, M.; Timsit, J.-F.; Micek, S.T.; Michelson, A.P.; Garnacho-Montero, J. Timing of antibiotic therapy in the ICU. Crit. Care 2021, 25, 360. [Google Scholar] [CrossRef]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef] [PubMed]
- Morel, C.M.; Network, T.G.-O.; Alm, R.A.; Årdal, C.; Bandera, A.; Bruno, G.M.; Carrara, E.; Colombo, G.L.; de Kraker, M.E.A.; Essack, S.; et al. A one health framework to estimate the cost of antimicrobial resistance. Antimicrob. Resist. Infect. Control 2020, 9, 187. [Google Scholar] [CrossRef] [PubMed]
- Kingston, R.; Vella, V.; Pouwels, K.B.; Schmidt, J.E.; El-Abasiri, R.A.A.; Reyna-Villasmil, E.; Hassoun-Kheir, N.; Harbarth, S.; Rodríguez-Baño, J.; Tacconelli, E.; et al. Excess resource use and cost of drug-resistant infections for six key pathogens in Europe: A systematic review and Bayesian meta-analysis. Clin. Microbiol. Infect. 2023, S1198-743X;00603-1. [Google Scholar] [CrossRef]
- Poudel, A.N.; Zhu, S.; Cooper, N.; Little, P.; Tarrant, C.; Hickman, M.; Yao, G. The economic burden of antibiotic resistance: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0285170. [Google Scholar] [CrossRef]
- Metersky, M.L.; Kalil, A.C. Management of Ventilator-Associated Pneumonia: Guidelines. Clin. Chest Med. 2018, 39, 797–808. [Google Scholar] [CrossRef]
- Mastrogianni, M.; Katsoulas, T.; Galanis, P.; Korompeli, A.; Myrianthefs, P. The Impact of Care Bundles on Ventilator-Associated Pneumonia (VAP) Prevention in Adult ICUs: A Systematic Review. Antibiotics 2023, 12, 227. [Google Scholar] [CrossRef]
- Ehrenzeller, S.; Klompas, M. Association Between Daily Toothbrushing and Hospital-Acquired Pneumonia: A Systematic Review and Meta-Analysis. JAMA Intern. Med. 2024, 184, 131–142. [Google Scholar] [CrossRef]
- Ehrmann, S.; Barbier, F.; Demiselle, J.; Quenot, J.-P.; Herbrecht, J.-E.; Roux, D.; Lacherade, J.-C.; Landais, M.; Seguin, P.; Schnell, D.; et al. Inhaled Amikacin to Prevent Ventilator-Associated Pneumonia. N. Engl. J. Med. 2023, 389, 2052–2062. [Google Scholar] [CrossRef]
- Murphy, C.V.; Reed, E.E.; Herman, D.D.; Magrum, B.; Beatty, J.J.; Stevenson, K.B. Antimicrobial Stewardship in the ICU. Semin. Respir. Crit. Care Med. 2022, 43, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.-L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; Machado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.; Aditianingsih, D.; et al. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017. JAMA 2020, 323, 1478–1487. [Google Scholar] [CrossRef]
- Huang, S.S.; Septimus, E.; Kleinman, K.; Moody, J.; Hickok, J.; Avery, T.R.; Lankiewicz, J.; Gombosev, A.; Terpstra, L.; Hartford, F.; et al. Targeted versus universal decolonization to prevent ICU infection. N. Engl. J. Med. 2013, 368, 2255–2265. [Google Scholar] [CrossRef] [PubMed]
- Noto, M.J.; Domenico, H.J.; Byrne, D.W.; Talbot, T.; Rice, T.W.; Bernard, G.R.; Wheeler, A.P. Chlorhexidine bathing and health care-associated infections: A randomized clinical trial. JAMA 2015, 313, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.S.; Septimus, E.J.; Kleinman, K.; Heim, L.T.; Moody, J.A.; Avery, T.R.; McLean, L.; Rashid, S.; Haffenreffer, K.; Shimelman, L.; et al. Nasal Iodophor Antiseptic vs Nasal Mupirocin Antibiotic in the Setting of Chlorhexidine Bathing to Prevent Infections in Adult ICUs: A Randomized Clinical Trial. JAMA 2023, 330, 1337–1347. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.B.; Gorwitz, R.J.; Jernigan, J.A. Mupirocin resistance. Clin. Infect. Dis. 2009, 49, 935–941. [Google Scholar] [CrossRef]
- Dadashi, M.; Hajikhani, B.; Darban-Sarokhalil, D.; van Belkum, A.; Goudarzi, M. Mupirocin resistance in Staphylococcus aureus: A systematic review and meta-analysis. J. Glob. Antimicrob. Resist. 2020, 20, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Monti, G.; Bradic, N.; Marzaroli, M.; Konkayev, A.; Fominskiy, E.; Kotani, Y.; Likhvantsev, V.V.; Momesso, E.; Nogtev, P.; Lobreglio, R.; et al. Continuous vs Intermittent Meropenem Administration in Critically Ill Patients With Sepsis: The MERCY Randomized Clinical Trial. JAMA 2023, 330, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Zarbock, A.; Nadim, M.K.; Pickkers, P.; Gomez, H.; Bell, S.; Joannidis, M.; Kashani, K.; Koyner, J.L.; Pannu, N.; Meersch, M.; et al. Sepsis-associated acute kidney injury: Consensus report of the 28th Acute Disease Quality Initiative workgroup. Nat. Rev. Nephrol. 2023, 19, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Dequin, P.-F.; Meziani, F.; Quenot, J.-P.; Kamel, T.; Ricard, J.-D.; Badie, J.; Reignier, J.; Heming, N.; Plantefève, G.; Souweine, B.; et al. Hydrocortisone in Severe Community-Acquired Pneumonia. N. Engl. J. Med. 2023, 388, 1931–1941. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Shorr, A.F.; Wunderink, R.G.; Du, B.; Poirier, G.E.; Rana, K.; Miller, A.; Lewis, D.; John O’Donnell; Chen, L.; et al. Efficacy and safety of sulbactam-durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii-calcoaceticus complex: A multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect Dis. 2023, 23, 1072–1084. [Google Scholar] [PubMed]
- Alnezary, F.S.; Almutairi, M.S.; Gonzales-Luna, A.J.; Thabit, A.K. The Significance of Bayesian Pharmacokinetics in Dosing for Critically Ill Patients: A Primer for Clinicians Using Vancomycin as an Example. Antibiotics 2023, 12, 1441. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Zhong, N.; Pachl, J.; Timsit, J.-F.; Kollef, M.; Chen, Z.; Song, J.; Taylor, D.; Laud, P.J.; Stone, G.G.; et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): A randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect. Dis. 2018, 18, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Aziz, M.H.; Sulaiman, H.; Mat-Nor, M.-B.; Rai, V.; Wong, K.K.; Hasan, M.S.; Rahman, A.N.A.; Jamal, J.A.; Wallis, S.C.; Lipman, J.; et al. Beta-Lactam Infusion in Severe Sepsis (BLISS): A prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. 2016, 42, 1535–1545. [Google Scholar] [CrossRef]
- Dulhunty, J.M.; Roberts, J.A.; Davis, J.S.; Webb, S.A.R.; Bellomo, R.; Gomersall, C.; Shirwadkar, C.; Eastwood, G.M.; Myburgh, J.; Paterson, D.L.; et al. A Multicenter Randomized Trial of Continuous versus Intermittent β-Lactam Infusion in Severe Sepsis. Am. J. Respir. Crit. Care Med. 2015, 192, 1298–1305. [Google Scholar] [CrossRef]
- Laporte-Amargos, J.; Ulldemolins, M.; Puig-Asensio, M.; Tebé, C.; Castro, S.; Carratalà, J.; Gudiol, C. Prolonged vs short-term infusion of β-lactam antibiotics for the treatment of febrile neutropenia: A systematic review and meta-analysis. J. Infect. 2023, 87, 190–198. [Google Scholar] [CrossRef]
- Roberts, J.A.; Abdul-Aziz, M.H.; Davis, J.S.; Dulhunty, J.M.; Cotta, M.O.; Myburgh, J.; Bellomo, R.; Lipman, J. Continuous versus Intermittent β-Lactam Infusion in Severe Sepsis. A Meta-analysis of Individual Patient Data from Randomized Trials. Am. J. Respir. Crit. Care Med. 2016, 194, 681–691. [Google Scholar] [CrossRef]
- Timsit, J.F.; Huntington, J.A.; Wunderink, R.G.; Shime, N.; Kollef, M.H.; Kivistik, Ü.; Nováček, M.; Réa-Neto, Á.; Martin-Loeches, I.; Yu, B.; et al. Ceftolozane/tazobactam versus meropenem in patients with ventilated hospital-acquired bacterial pneumonia: Subset analysis of the ASPECT-NP randomized, controlled phase 3 trial. Crit. Care 2021, 25, 290. [Google Scholar] [CrossRef]
- Lipman, J.; Brett, S.J.; De Waele, J.J.; Cotta, M.O.; Davis, J.S.; Finfer, S.; Glass, P.; Knowles, S.; McGuinness, S.; Myburgh, J.; et al. A protocol for a phase 3 multicentre randomised controlled trial of continuous versus intermittent β-lactam antibiotic infusion in critically ill patients with sepsis: BLING III. Crit Care Resusc. 2019, 21, 63–68. [Google Scholar] [CrossRef]
- Mellen, C.K.; Ryba, J.E.; Rindone, J.P. Does Piperacillin-Tazobactam Increase the Risk of Nephrotoxicity when Used with Vancomycin: A Meta-Analysis of Observational Trials. Curr. Drug Saf. 2017, 12, 62–66. [Google Scholar] [CrossRef]
- Maan, G.; Keitoku, K.; Kimura, N.; Sawada, H.; Pham, A.; Yeo, J.; Hagiya, H.; Nishimura, Y. Cefepime-induced neurotoxicity: Systematic review. J. Antimicrob. Chemother. 2022, 77, 2908–2921. [Google Scholar] [CrossRef] [PubMed]
- Luther, M.K.; Timbrook, T.T.; Caffrey, A.R.; Dosa, D.; Lodise, T.P.; LaPlante, K.L. Vancomycin Plus Piperacillin-Tazobactam and Acute Kidney Injury in Adults: A Systematic Review and Meta-Analysis. Crit. Care Med. 2018, 46, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Qian, E.T.; Casey, J.D.; Wright, A.; Wang, L.; Shotwell, M.S.; Siemann, J.K.; Dear, M.L.; Stollings, J.L.; Lloyd, B.D.; Marvi, T.K.; et al. Cefepime vs Piperacillin-Tazobactam in Adults Hospitalized With Acute Infection: The ACORN Randomized Clinical Trial. JAMA 2023, 330, 1557–1567. [Google Scholar] [CrossRef] [PubMed]
- Skrobik, Y. Delirium prevention and treatment. Crit. Care Clin. 2009, 25, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Blum, C.A.; Nigro, N.; Briel, M.; Schuetz, P.; Ullmer, E.; Suter-Widmer, I.; Winzeler, B.; Bingisser, R.; Elsaesser, H.; Drozdov, D.; et al. Adjunct prednisone therapy for patients with community-acquired pneumonia: A multicentre, double-blind, randomised, placebo-controlled trial. Lancet 2015, 385, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
- Meijvis, S.C.; Hardeman, H.; Remmelts, H.H.; Heijligenberg, R.; Rijkers, G.T.; van Velzen-Blad, H.; Voorn, G.P.; van de Garde, E.M.; Endeman, H.; Grutters, J.C.; et al. Dexamethasone and length of hospital stay in patients with community-acquired pneumonia: A randomised, double-blind, placebo-controlled trial. Lancet 2011, 377, 2023–2030. [Google Scholar] [CrossRef]
- Wittermans, E.; Vestjens, S.M.; Spoorenberg, S.M.; Blok, W.L.; Grutters, J.C.; Janssen, R.; Rijkers, G.T.; Smeenk, F.W.; Voorn, G.P.; van de Garde, E.M.; et al. Adjunctive treatment with oral dexamethasone in non-ICU patients hospitalised with community-acquired pneumonia: A randomised clinical trial. Eur. Respir. J. 2021, 58, 2002535. [Google Scholar] [CrossRef]
- Popovic, M.; Blum, C.A.; Nigro, N.; Mueller, B.; Schuetz, P.; Christ-Crain, M. Benefit of adjunct corticosteroids for community-acquired pneumonia in diabetic patients. Diabetologia 2015, 59, 2552–2560. [Google Scholar] [CrossRef]
- Meduri, G.U.; Shih, M.-C.; Bridges, L.; Martin, T.J.; Seam, N.; Davis-Karim, A.; Umberger, R.; Anzueto, A.; Sriram, P.; Lan, C.; et al. Low-dose methylprednisolone treatment in critically ill patients with severe community-acquired pneumonia. Intensive Care Med. 2022, 48, 1009–1023. [Google Scholar] [CrossRef] [PubMed]
- Koulenti, D.; Vandana, K.E.; Rello, J. Current viewpoint on the epidemiology of nonfermenting Gram-negative bacterial strains. Curr. Opin. Infect. Dis. 2023, 36, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Zilberberg, M.D.; Nathanson, B.H.; Sulham, K.; Fan, W.; Shorr, A.F. Daily cost of delay to adequate antibiotic treatment among patients surviving a hospitalization with community-onset Acinetobacter baumannii pneumonia or sepsis. Crit. Care 2017, 21, 130. [Google Scholar] [CrossRef] [PubMed]
- Rychlíčková, J.; Kubíčková, V.; Suk, P.; Urbánek, K. Challenges of Colistin Use in ICU and Therapeutic Drug Monitoring: A Literature Review. Antibiotics 2023, 12, 437. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Shorr, A.F.; et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2021, 21, 213–225. [Google Scholar] [CrossRef]
- Portsmouth, S.; van Veenhuyzen, D.; Echols, R.; Machida, M.; Ferreira, J.C.A.; Ariyasu, M.; Tenke, P.; Nagata, T.D. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: A phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect. Dis. 2018, 18, 1319–1328. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Nutman, A.; Lellouche, J.; Temkin, E.; Daikos, G.; Skiada, A.; Durante-Mangoni, E.; Dishon-Benattar, Y.; Bitterman, R.; Yahav, D.; Daitch, V.; et al. Colistin plus meropenem for carbapenem-resistant Gram-negative infections: In vitro synergism is not associated with better clinical outcomes. Clin. Microbiol. Infect. 2020, 26, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Cho, J.H.; Kim, H.J.; Han, S.H.; Jeong, S.H.; Byun, M.K. Colistin monotherapy versus colistin/rifampicin combination therapy in pneumonia caused by colistin-resistant Acinetobacter baumannii: A randomised controlled trial. J. Glob. Antimicrob. Resist. 2019, 17, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Kon, H.; Hameir, A.; Nutman, A.; Temkin, E.; Paz, A.K.; Lellouche, J.; Schwartz, D.; Weiss, D.S.; Kaye, K.S.; Daikos, G.L.; et al. Prevalence and Clinical Consequences of Colistin Heteroresistance and Evolution into Full Resistance in Carbapenem-Resistant Acinetobacter baumannii. Microbiol. Spectr. 2023, 11, e0509322. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabo, S.R.; Venkatramanan, A.; Shorr, A.F. At the Intersection of Critical Care and Infectious Diseases: The Year in Review. Biomedicines 2024, 12, 562. https://doi.org/10.3390/biomedicines12030562
Sabo SR, Venkatramanan A, Shorr AF. At the Intersection of Critical Care and Infectious Diseases: The Year in Review. Biomedicines. 2024; 12(3):562. https://doi.org/10.3390/biomedicines12030562
Chicago/Turabian StyleSabo, Sarah R., Aarthi Venkatramanan, and Andrew F. Shorr. 2024. "At the Intersection of Critical Care and Infectious Diseases: The Year in Review" Biomedicines 12, no. 3: 562. https://doi.org/10.3390/biomedicines12030562
APA StyleSabo, S. R., Venkatramanan, A., & Shorr, A. F. (2024). At the Intersection of Critical Care and Infectious Diseases: The Year in Review. Biomedicines, 12(3), 562. https://doi.org/10.3390/biomedicines12030562