Antimicrobial and Antibiofilm Potential of Green-Synthesized Graphene–Silver Nanocomposite against Multidrug-Resistant Nosocomial Pathogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Growth Media
2.2. Cell Surface Hydrophobicity Assay
2.3. Preparation of Plant Extracts
2.4. Green Synthesis and Characterization of Graphene–Ag Nanocomposites (GO-AgNPs)
2.4.1. Preparation of GO
2.4.2. Preparation of AgNPs on GO
2.4.3. Characterization of GO-Ag NPs
2.5. In Vitro Antimicrobial Study of Graphene–Ag-Nanocomposite
2.5.1. Agar-Well Diffusion Assay
2.5.2. Microbroth Dilution Assay
2.5.3. Quantitative Biofilm Inhibition Assays
2.5.4. Functionalization of the Catheters with GO-AgNPs
2.5.5. Field Emission Scanning Electron Microscopy of Microbial Biofilms on GO-AgNP-Functionalized Catheters
2.6. Hemocompatibility of GO-AgNP-Functionalized Catheters
2.7. Biocompatibility of Nanocomposite-Impregnated Catheters
3. Results and Discussion
3.1. Cell Surface Hydrophobicity
3.2. Characterization of Biosynthesized Go-AgNPs
3.2.1. UV–Visible Spectroscopy
3.2.2. Fourier Transform Infrared Spectroscopy (FTIR)
3.2.3. EDS Analysis of Nanocomposite
3.2.4. Transmission Electron Microscopy (TEM) of GO-AgNPs
3.3. In Vitro Antimicrobial Efficacy of GO-Ag Nanocomposites
Determination of Minimum Inhibitory Concentration (MIC) and Minimum Lethal Concentration (MLC)
3.4. Biofilm Inhibition
3.5. GO-AgNP-Functionalized Catheters Avert Biofilm Formation by C. auris and P. aeruginosa
3.6. GO-AgNP-Functionalized Catheters Demonstrate Hemocompatibility and Biocompatibility In Vitro
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oni, O.; Orok, E.; Lawal, Z.; Ojo, T.; Oluwadare, T.; Bamitale, T.; Jaiyesimi, B.; Akinjisola, A.; Apara, T. Knowledge and Perception of Nosocomial Infections among Patients in a Nigerian Hospital. Sci. Rep. 2023, 13, 20204. [Google Scholar] [CrossRef]
- World Health Organization. Report on the Burden of Endemic Health Care-Associated Infection Worldwide; World Health Organization: Geneva, Switzerland, 2011; ISBN 978-92-4-150150-7.
- Perlroth, J.; Choi, B.; Spellberg, B. Nosocomial Fungal Infections: Epidemiology, Diagnosis, and Treatment. Med. Mycol. 2007, 45, 321–346. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial Resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef] [PubMed]
- Osman, H.; Nguyen, P. First Case of COVID-19 Complicated with Burkolderia cepacia Pneumonia and Bacteremia. Chest 2020, 158, A544. [Google Scholar] [CrossRef]
- Nori, P.; Cowman, K.; Chen, V.; Bartash, R.; Szymczak, W.; Madaline, T.; Katiyar, C.P.; Jain, R.; Aldrich, M.; Weston, G. Bacterial and Fungal Coinfections in COVID-19 Patients Hospitalized during the New York City Pandemic Surge. Infect. Control Hosp. Epidemiol. 2021, 42, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Kariyawasam, R.M.; Julien, D.A.; Jelinski, D.C.; Larose, S.L.; Rennert-May, E.; Conly, J.M.; Dingle, T.C.; Chen, J.Z.; Tyrrell, G.J.; Ronksley, P.E.; et al. Antimicrobial Resistance (AMR) in COVID-19 Patients: A Systematic Review and Meta-Analysis (November 2019–June 2021). Antimicrob. Resist. Infect. Control 2022, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Dutta, T.; Ghosh, N.N.; Das, M.; Adhikary, R.; Mandal, V.; Chattopadhyay, A.P. Green Synthesis of Antibacterial and Antifungal Silver Nanoparticles Using Citrus Limetta Peel Extract: Experimental and Theoretical Studies. J. Environ. Chem. Eng. 2020, 8, 104019. [Google Scholar] [CrossRef]
- Sharma, V.K.; Yngard, R.A.; Lin, Y. Silver Nanoparticles: Green Synthesis and Their Antimicrobial Activities. Adv. Colloid Interface Sci. 2009, 145, 83–96. [Google Scholar] [CrossRef]
- Mussin, J.; Robles-Botero, V.; Casañas-Pimentel, R.; Rojas, F.; Angiolella, L.; San Martin-Martinez, E.; Giusiano, G. Antimicrobial and Cytotoxic Activity of Green Synthesis Silver Nanoparticles Targeting Skin and Soft Tissue Infectious Agents. Sci. Rep. 2021, 11, 14566. [Google Scholar] [CrossRef]
- Verma, R.; Tapwal, A.; Kumar, D.; Puri, S. Antimicrobial Potential and Phytochemical Profiling of Ethnomedicinal Plant Trillium govanianum Wall. Ex D. Don in Western Himalaya. J. Herb. Med. 2021, 29, 100491. [Google Scholar] [CrossRef]
- Uz-Zaman, K.; Bakht, J.; Malikovna, B.K.; Elsharkawy, E.R.; Khalil, A.A.; Bawazeer, S.; Rauf, A. Trillium govanianum Wall. Ex. Royle Rhizomes Extract-Medicated Silver Nanoparticles and Their Antimicrobial Activity. Green Process. Synth. 2020, 9, 503–514. [Google Scholar] [CrossRef]
- Shafiq-ur-Rahman; Ismail, M.; Shah, M.R.; Adhikari, A.; Anis, I.; Ahmad, M.S.; Khurram, M. Govanoside A, a New Steroidal Saponin from Rhizomes of Trillium govanianum. Steroids 2015, 104, 270–275. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, K.; Lone, J.F.; Bhushan, A.; Gupta, P.; Gairola, S. Morpho-Anatomical, Molecular, and Chemical Standardization of Trillium govanianum Wall. Ex D. Don: An Endangered Medicinal Herb Native to the Himalayas. Pharmacogn. Mag. 2023, 19, 128–143. [Google Scholar] [CrossRef]
- Vazquez-Muñoz, R.; Borrego, B.; Juárez-Moreno, K.; García-García, M.; Mota Morales, J.D.; Bogdanchikova, N.; Huerta-Saquero, A. Toxicity of Silver Nanoparticles in Biological Systems: Does the Complexity of Biological Systems Matter? Toxicol. Lett. 2017, 276, 11–20. [Google Scholar] [CrossRef]
- Wierzbicki, M.; Jaworski, S.; Sawosz, E.; Jung, A.; Gielerak, G.; Jaremek, H.; Łojkowski, W.; Woźniak, B.; Stobiński, L.; Małolepszy, A.; et al. Graphene Oxide in a Composite with Silver Nanoparticles Reduces the Fibroblast and Endothelial Cell Cytotoxicity of an Antibacterial Nanoplatform. Nanoscale Res. Lett. 2019, 14, 320. [Google Scholar] [CrossRef] [PubMed]
- Burdușel, A.-C.; Gherasim, O.; Grumezescu, A.M.; Mogoantă, L.; Ficai, A.; Andronescu, E. Biomedical Applications of Silver Nanoparticles: An up-to-Date Overview. Nanomaterials 2018, 8, 681. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Jang, J. Antibacterial Properties of Novel Poly (Methyl Methacrylate) Nanofiber Containing Silver Nanoparticles. Langmuir 2008, 24, 2051–2056. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Chen, F.; Zhang, C.; Zhi, X.; Wang, K.; Cui, D. The Antifungal Activity of Graphene Oxide-Silver Nanocomposites. Biomaterials 2013, 34, 3882–3890. [Google Scholar] [CrossRef]
- Ahmad, V.; Ansari, M.O. Antimicrobial Activity of Graphene-Based Nanocomposites: Synthesis, Characterization, and Their Applications for Human Welfare. Nanomaterials 2022, 12, 4002. [Google Scholar] [CrossRef]
- Anuța, V.; Talianu, M.-T.; Dinu-Pîrvu, C.-E.; Ghica, M.V.; Prisada, R.M.; Albu Kaya, M.G.; Popa, L. Molecular Mapping of Antifungal Mechanisms Accessing Biomaterials and New Agents to Target Oral Candidiasis. Int. J. Mol. Sci. 2022, 23, 7520. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Chadha, J.; Harjai, K.; Verma, G.; Saini, A. Synthetic Peptide (DP1) Functionalized Graphene Oxide: A Biocompatible Nanoformulation with Broad-Spectrum Antibacterial and Antibiofilm Activity. FlatChem 2024, 44, 100626. [Google Scholar] [CrossRef]
- Song, B.; Zhang, C.; Zeng, G.; Gong, J.; Chang, Y.; Jiang, Y. Antibacterial Properties and Mechanism of Graphene Oxide-Silver Nanocomposites as Bactericidal Agents for Water Disinfection. Arch. Biochem. Biophys. 2016, 604, 167–176. [Google Scholar] [CrossRef]
- Rosenberg, M. Bacterial Adherence to Hydrocarbons: A Useful Technique for Studying Cell Surface Hydrophobicity. FEMS Microbiol. Lett. 1984, 22, 289–295. [Google Scholar] [CrossRef]
- Chadha, J.; Gupta, M.; Nagpal, N.; Sharma, M.; Adarsh, T.; Joshi, V.; Tiku, V.; Mittal, T.; Nain, V.K.; Singh, A. Antibacterial Potential of Indigenous Plant Extracts against Multidrug-Resistant Bacterial Strains Isolated from New Delhi Region. GSC Biol. Pharm. Sci. 2021, 14, 185–196. [Google Scholar] [CrossRef]
- Zaaba, N.I.; Foo, K.L.; Hashim, U.; Tan, S.J.; Liu, W.W.; Voon, C.H. Synthesis of Graphene Oxide Using Modified Hummers Method: Solvent Influence. Procedia Eng. 2017, 184, 469–477. [Google Scholar] [CrossRef]
- Vi, T.T.T.; Kumar, S.R.; Rout, B.; Liu, C.H.; Wong, C.B.; Chang, C.W.; Chen, C.H.; Chen, D.W.; Lue, S.J. The Preparation of Graphene Oxide-Silver Nanocomposites: The Effect of Silver Loads on Gram-Positive and Gram-Negative Antibacterial Activities. Nanomaterials 2018, 8, 163. [Google Scholar] [CrossRef] [PubMed]
- Chadha, J.; Khullar, L.; Gulati, P.; Chhibber, S.; Harjai, K. Repurposing Albendazole as a Potent Inhibitor of Quorum Sensing-Regulated Virulence Factors in Pseudomonas aeruginosa: Novel Prospects of a Classical Drug. Microb. Pathog. 2024, 186, 106468. [Google Scholar] [CrossRef] [PubMed]
- Rex, J.H. M27-A2 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. In Approved Standard, 2nd ed.; Clinical & Laboratory Standards Institute: Wayne, NY, USA, 2002. [Google Scholar]
- Lara, H.H.; Ixtepan-Turrent, L.; Jose Yacaman, M.; Lopez-Ribot, J. Inhibition of Candida auris Biofilm Formation on Medical and Environmental Surfaces by Silver Nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 21183–21191. [Google Scholar] [CrossRef]
- Chadha, J.; Ravi; Singh, J.; Chhibber, S.; Harjai, K. Gentamicin Augments the Quorum Quenching Potential of Cinnamaldehyde in Vitro and Protects Caenorhabditis Elegans from Pseudomonas aeruginosa Infection. Front. Cell. Infect. Microbiol. 2022, 12, 899566. [Google Scholar]
- Fisher, L.E.; Hook, A.L.; Ashraf, W.; Yousef, A.; Barrett, D.A.; Scurr, D.J.; Chen, X.; Smith, E.F.; Fay, M.; Parmenter, C.D. Biomaterial Modification of Urinary Catheters with Antimicrobials to Give Long-Term Broadspectrum Antibiofilm Activity. J. Control. Release 2015, 202, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Chadha, J.; Singh, J.; Harjai, K. α-Terpineol Synergizes with Gentamicin to Rescue Caenorhabditis Elegans from Pseudomonas aeruginosa Infection by Attenuating Quorum Sensing-Regulated Virulence. Life Sci. 2023, 313, 121267. [Google Scholar] [CrossRef]
- Srisang, S.; Boongird, A.; Ungsurungsie, M.; Wanasawas, P.; Nasongkla, N. Biocompatibility and Stability during Storage of Foley Urinary Catheters Coated Chlorhexidine Loaded Nanoparticles by Nanocoating: In Vitro and in Vivo Evaluation. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 496–504. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Shahisaraee, S.A.; Tavajjohi, A.; Pournoori, N.; Muhammadnejad, S.; Mohammadi, S.R.; Poursalehi, R.; Hamid Delavari, H. Green Synthesis of Silver Nanoparticles Using Zingiber Officinale and Thymus Vulgaris Extracts: Characterisation, Cell Cytotoxicity, and Its Antifungal Activity against Candida albicans in Comparison to Fluconazole. IET Nanobiotechnol. 2019, 13, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Chadha, J. In Vitro Effects of Sub-inhibitory Concentrations of Amoxicillin on Physiological Responses and Virulence Determinants in a Commensal Strain of Escherichia Coli. J. Appl. Microbiol. 2021, 131, 682–694. [Google Scholar] [CrossRef] [PubMed]
- Silva-Dias, A.; Miranda, I.M.; Branco, J.; Monteiro-Soares, M.; Pina-Vaz, C.; Rodrigues, A.G. Adhesion, Biofilm Formation, Cell Surface Hydrophobicity, and Antifungal Planktonic Susceptibility: Relationship among Candida spp. Front. Microbiol. 2015, 6, 205. [Google Scholar] [CrossRef] [PubMed]
- Tene, T.; Guevara, M.; Palacios, F.B.; Barrionuevo, T.P.M.; Gomez, C.V.; Bellucci, S. Optical Properties of Graphene Oxide. Front. Chem. 2023, 11, 1214072. [Google Scholar] [CrossRef] [PubMed]
- Mulvaney, P. Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir 1996, 12, 788–800. [Google Scholar] [CrossRef]
- Pulingam, T.; Thong, K.L.; Appaturi, J.N.; Lai, C.W.; Leo, B.F. Mechanistic Actions and Contributing Factors Affecting the Antibacterial Property and Cytotoxicity of Graphene Oxide. Chemosphere 2021, 281, 130739. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Todd, A.D.; Bielawski, C.W. Harnessing the Chemistry of Graphene Oxide. Chem. Soc. Rev. 2014, 43, 5288–5301. [Google Scholar] [CrossRef]
- Jose, P.P.A.; Kala, M.S.; Joseph, A.V.; Kalarikkal, N.; Thomas, S. Reduced Graphene Oxide/Silver Nanohybrid as a Multifunctional Material for Antibacterial, Anticancer, and SERS Applications. Appl. Phys. A 2020, 126, 58. [Google Scholar] [CrossRef]
- Rokaya, D.; Srimaneepong, V.; Qin, J.; Siraleartmukul, K.; Siriwongrungson, V. Graphene Oxide/Silver Nanoparticle Coating Produced by Electrophoretic Deposition Improved the Mechanical and Tribological Properties of NiTi Alloy for Biomedical Applications. J. Nanosci. Nanotechnol. 2019, 19, 3804–3810. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Zhang, L.; Wang, Z.; Luo, Y. Mechanisms of the Antimicrobial Activities of Graphene Materials. J. Am. Chem. Soc. 2016, 138, 2064–2077. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Li, Y.; Yang, Y.W.; Dong, A.; Li, Y. 2D Graphdiyne Oxide Serves as a Superior New Generation of Antibacterial Agents. iScience 2019, 19, 662–675. [Google Scholar] [CrossRef]
- Panwar, R.; Pemmaraju, S.C.; Sharma, A.K.; Pruthi, V. Efficacy of Ferulic Acid Encapsulated Chitosan Nanoparticles against Candida albicans Biofilm. Microb. Pathog. 2016, 95, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Witika, B.A.; Makoni, P.A.; Matafwali, S.K.; Chabalenge, B.; Mwila, C.; Kalungia, A.C.; Nkanga, C.I.; Bapolisi, A.M.; Walker, R.B. Biocompatibility of Biomaterials for Nanoencapsulation: Current Approaches. Nanomaterials 2020, 10, 1649. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, H.; Zhang, X.; Xu, W.; Li, Y.; Li, Q.; Wei, G.; Su, Z. Graphene Film Doped with Silver Nanoparticles: Self-Assembly Formation, Structural Characterizations, Antibacterial Ability, and Biocompatibility. Biomater. Sci. 2015, 3, 852–860. [Google Scholar] [CrossRef]
- Joshi, S.; Siddiqui, R.; Sharma, P.; Kumar, R.; Verma, G.; Saini, A. Green Synthesis of Peptide Functionalized Reduced Graphene Oxide (rGO) Nano Bioconjugate with Enhanced Antibacterial Activity. Sci. Rep. 2020, 10, 9441. [Google Scholar] [CrossRef]
Test Microorganism | Zone of Inhibition (mm) Obtained with | ||
---|---|---|---|
GO-AgNPs | AgNO3 | Distilled Water | |
C. glabrata ATCC 2001 | 16.0 ± 0.2 | 12.0 ± 0.2 | ND |
C. glabrata NCCPF 100033 | 18.0 ± 0.2 | 12.0 ± 0.2 | ND |
C. glabrata NCCPF 100037 | 17.0 ± 0.2 | 13.0 ± 0.2 | ND |
C. auris NCCPF 470197 | 17.5 ± 0.2 | 14.0 ± 0.2 | ND |
C. auris NCCPF 470200 | 18.0 ± 0.2 | 14.0 ± 0.2 | ND |
C. auris NCCPF 470203 | 17.0 ± 0.2 | 13.0 ± 0.2 | ND |
E. coli | 10.0 ± 0.2 | 8.0 ± 0.2 | ND |
S. aureus | 6.0 ± 0.2 | 6.0 ± 0.2 | ND |
K. pneumoniae | 8.5 ± 0.2 | 5.0 ± 0.2 | ND |
P. aeruginosa | 9.0 ± 0.2 | 5.0 ± 0.2 | ND |
Microorganisms | MIC (µg/mL) | MLC (µg/mL) | ||
---|---|---|---|---|
AgNP | GO-AgNP | AgNP | GO-AgNP | |
C. glabrata ATCC 2001 | 62.5 | 31.25 | 125 | 250 |
C. glabrata NCCPF 100033 | 250 | 125 | 500 | 250 |
C. glabrata NCCPF 100037 | 125 | 62.5 | 250 | 125 |
C. auris NCCPF 470197 | 125 | 62.5 | 250 | 125 |
C. auris NCCPF 470200 | 125 | 62.5 | 250 | 125 |
C. auris NCCPF 470203 | 125 | 62.5 | 250 | 125 |
E. coli | 125 | 62.5 | 250 | 125 |
S. aureus | 125 | 62.5 | 250 | 125 |
K. pneumoniae | 250 | 125 | 500 | 250 |
P. aeruginosa | 125 | 62.5 | 250 | 125 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Negi, P.; Chadha, J.; Harjai, K.; Gondil, V.S.; Kumari, S.; Raj, K. Antimicrobial and Antibiofilm Potential of Green-Synthesized Graphene–Silver Nanocomposite against Multidrug-Resistant Nosocomial Pathogens. Biomedicines 2024, 12, 1104. https://doi.org/10.3390/biomedicines12051104
Negi P, Chadha J, Harjai K, Gondil VS, Kumari S, Raj K. Antimicrobial and Antibiofilm Potential of Green-Synthesized Graphene–Silver Nanocomposite against Multidrug-Resistant Nosocomial Pathogens. Biomedicines. 2024; 12(5):1104. https://doi.org/10.3390/biomedicines12051104
Chicago/Turabian StyleNegi, Preeti, Jatin Chadha, Kusum Harjai, Vijay Singh Gondil, Seema Kumari, and Khem Raj. 2024. "Antimicrobial and Antibiofilm Potential of Green-Synthesized Graphene–Silver Nanocomposite against Multidrug-Resistant Nosocomial Pathogens" Biomedicines 12, no. 5: 1104. https://doi.org/10.3390/biomedicines12051104
APA StyleNegi, P., Chadha, J., Harjai, K., Gondil, V. S., Kumari, S., & Raj, K. (2024). Antimicrobial and Antibiofilm Potential of Green-Synthesized Graphene–Silver Nanocomposite against Multidrug-Resistant Nosocomial Pathogens. Biomedicines, 12(5), 1104. https://doi.org/10.3390/biomedicines12051104