Potential Mechanisms for Organoprotective Effects of Exogenous Nitric Oxide in an Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
- Recruitment of animals for this study;
- Examination by a veterinarian and admission to participate in this study;
- Randomization;
- Induction of anesthesia and the onset of mechanical ventilation;
- NO (nitric oxide) conditioning or no NO supply during the entire main phase of the experiment;
- Anesthesia;
- Conducting CPB or CPB + CA;
- Tracking of clinical events and characteristics; serial perioperative measurements of the biochemical variables;
- Collection of biopsy samples;
- Conservation of biopsy samples;
- Withdrawal of animals from the experiment;
- Laboratory study of the obtained biopsy samples.
- CPB group: the standard protocol of mechanical ventilation and CPB was carried out, and CPB time was 90 min;
- CPB + NO group: NO was delivered immediately after tracheal intubation through the circuit of the ventilator at a dose of 80 ppm, and then at the start of CPB, NO was delivered to the extracorporeal circulation circuit at a dose of 80 ppm throughout the entire period of CPB (90 min), and after weaning from CPB, NO supply continued through the circuit of the ventilator at a dose of 80 ppm for 1 h;
- CPB + CA group: the standard protocol adopted in the clinic for mechanical ventilation, CPB, and hypothermic circulatory arrest was carried out; CPB time was 90 min, and there was 15 min of hypothermic circulatory arrest at 30 °C;
- CPB + CA + NO group: NO was delivered immediately after tracheal intubation through the ventilator circuit at a dose of 80 ppm, and then, at the start of CPB, NO was delivered to the extracorporeal circulation circuit for 90 min; CA was carried out with hypothermia. After reaching the target esophageal temperature of 30 °C, the descending aorta was occluded and, thus, non-perfusion circulatory arrest was simulated for 15 min. The perfusion index was then reduced to 1 L/min/m2. When completing CA, NO delivery to the extracorporeal circuit at a dose of 80 ppm was resumed and maintained until normothermia was achieved (CPB + CA duration was 90 min); and after weaning from CPB, NO was supplied again through the ventilator circuit at a dose of 80 ppm for 1 h.
2.1. Method of Anesthesia and Cardiopulmonary Bypass
2.2. Nitric Oxide Conditioning
3. Results
3.1. HSPG as a Marker of Glycocalyx Degradation
3.2. ADMA as a Marker of Endothelial Dysfunction
3.3. Tissue Concentrations of ATP and Lactate in Cardiac and Lung Biopsies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADMA | asymmetric dimethylarginine |
ATP | adenosine triphosphate |
CA | circulatory arrest |
CMLLI | coefficient of microviscosity in the areas of lipid–lipid interactions |
CMPLI | coefficient of microviscosity in the areas of protein–lipid interactions |
CPB | cardiopulmonary bypass |
CPLLI | coefficient of polarity in the areas of lipid–lipid interactions |
CPPLI | coefficient of polarity in the areas protein–lipid interactions |
ELISA | enzyme-linked immunosorbent assay |
eNOS | endothelial nitric oxide synthase |
etCO2 | end-tidal carbon dioxide |
HSPG | heparan sulfate proteoglycan |
mNOS | macrophage nitric oxide synthase |
NADH | nicotinamide adenine dinucleotide (NAD) + hydrogen |
nNOS | neuronal nitric oxide synthase |
NO | nitric oxide |
References
- Tai, Y.H.; Chu, Y.H.; Wu, H.L.; Lin, S.M.; Tsou, M.Y.; Huang, C.H.; Chang, H.H.; Lu, C.C. High-dose nitroglycerin administered during rewarming preserves erythrocyte deformability in cardiac surgery with cardiopulmonary bypass. Microcirculation 2020, 4, e12608. [Google Scholar] [CrossRef]
- Pu, A.; Ding, L.; Shin, J.; Price, J.; Skarsgard, P.; Wong, D.R.; Bozinovski, J.; Fradet, G.; Abel, J.G. Long-term Outcomes of Multiple Arterial Coronary Artery Bypass Grafting: A Population-Based Study of Patients in British Columbia, Canada. JAMA Cardiol. 2017, 2, 1187–1196. [Google Scholar] [CrossRef]
- Abassi, Z.; Armaly, Z.; Heyman, S.N. Glycocalyx Degradation in Ischemia-Reperfusion Injury. Am. J. Pathol. 2020, 190, 752–767. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, D.; Song, J.W.; Zullo, J.; Lipphardt, M.; Coneh-Gould, L.; Goligorsky, M.S. Endothelial cell dysfunction and glycocalyx—A vicious circle. Matrix Biol. 2018, 71–72, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Owusu, B.Y.; Stapley, R.; Patel, R.P. Nitric oxide formation versus scavenging: The red blood cell balancing act. J. Physiol. 2012, 590, 4993–5000. [Google Scholar] [CrossRef] [PubMed]
- Bor-Kucukatay, M.; Wenby, R.B.; Meiselman, H.J.; Baskurt, O.K. Effects of nitric oxide on red blood cell deformability. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, H1577–H1584. [Google Scholar] [CrossRef] [PubMed]
- Kuck, L.; Grau, M.; Bloch, W.; Simmonds, M.J. Shear Stress Ameliorates Superoxide Impairment to Erythrocyte Deformability With Concurrent Nitric Oxide Synthase Activation. Front. Physiol. 2019, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Kameneva, M.V.; Undar, A.; Antaki, J.F.; Watach, M.J.; Calhoon, J.H.; Borovetz, H.S. Decrease in red blood cell deformability caused by hypothermia, hemodilution, and mechanical stress: Factors related to cardiopulmonary bypass. ASAIO J. 1999, 45, 307–310. [Google Scholar] [CrossRef]
- Diederich, L.; Suvorava, T.; Sansone, R.; Keller, T.C.S., 4th; Barbarino, F.; Sutton, T.R.; Kramer, C.M.; Lückstädt, W.; Isakson, B.E.; Gohlke, H.; et al. On the Effects of Reactive Oxygen Species and Nitric Oxide on Red Blood Cell Deformability. Front. Physiol. 2018, 9, 332. [Google Scholar] [CrossRef] [PubMed]
- Garber, J.C. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Research Council: Washington, DC, USA, 2011. [Google Scholar]
- Fang, W.; Jiang, J.; Su, L.; Shu, T.; Liu, H.; Lai, S.; Ghiladi, R.A.; Wang, J. The role of NO in COVID-19 and potential therapeutic strategies. Free Radic. Biol. Med. 2021, 163, 153–162. [Google Scholar] [CrossRef]
- Uehara, E.U.; Shida, B.d.S.; de Brito, C.A. Role of nitric oxide in immune responses against viruses: Beyond microbicidal activity. Inflamm. Res. 2015, 64, 845–852. [Google Scholar] [CrossRef]
- Kamenshchikov, N.O.; Mandel, I.A.; Podoksenov, Y.K.; Svirko, Y.S.; Lomivorotov, V.V.; Mikheev, S.L.; Kozlov, B.N.; Shipulin, V.M.; Nenakhova, A.A.; Anfinogenova, Y.J. Nitric oxide provides myocardial protection when added to the cardiopulmonary bypass circuit during cardiac surgery: Randomized trial. J. Thorac. Cardiovasc. Surg. 2019, 157, 2328–2336.e1. [Google Scholar] [CrossRef]
- Brun, J.F.; Varlet-Marie, E.; Myzia, J.; Raynaud de Mauverger, E.; Pretorius, E. Metabolic Influences Modulating Erythrocyte Deformability and Eryptosis. Metabolites 2021, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, M.J.; Detterich, J.A.; Connes, P. Nitric oxide, vasodilation and the red blood cell. Biorheology 2014, 51, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Popel, A.S. Nitric oxide production pathways in erythrocytes and plasma. Biorheology 2009, 46, 107–119. [Google Scholar] [CrossRef]
- Baskurt, O.K.; Uyuklu, M.; Meiselman, H.J. Protection of erythrocytes from sub-hemolytic mechanical damage by nitric oxide mediated inhibition of potassium leakage. Biorheology 2004, 41, 79–89. [Google Scholar] [PubMed]
- Nicolay, J.P.; Liebig, G.; Niemoeller, O.M.; Koka, S.; Ghashghaeinia, M.; Wieder, T.; Haendeler, J.; Busse, R.; Lang, F. Inhibition of suicidal erythrocyte death by nitric oxide. Pflugers Arch. 2008, 456, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Barshtein, G.; Pajic-Lijakovic, I.; Gural, A. Deformability of Stored Red Blood Cells. Front. Physiol. 2021, 12, 722896. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathi, K.; Lipowsky, H.H. Capillary recruitment in response to tissue hypoxia and its dependence on red blood cell deformability. Am. J. Physiol. 1999, 277, H2145–H2157. [Google Scholar] [CrossRef]
- Sakr, Y.; Chierego, M.; Piagnerelli, M.; Verdant, C.; Dubois, M.J.; Koch, M.; Creteur, J.; Gullo, A.; Vincent, J.L.; De Backer, D. Microvascular response to red blood cell transfusion in patients with severe sepsis. Crit. Care Med. 2007, 35, 1639–1644. [Google Scholar] [CrossRef]
- Matot, I.; Katz, M.; Pappo, O.; Zelig, O.; Corchia, N.; Yedgar, S.; Barshtein, G.; Guerrero, E.B.; Abramovitch, R. Resuscitation with aged blood exacerbates liver injury in a hemorrhagic rat model. Crit. Care Med. 2013, 41, 842–849. [Google Scholar] [CrossRef]
- Mesquita, R.; Piçarra, B.; Saldanha, C.; Martins e Silva, J. Nitric oxide effects on human erythrocytes structural and functional properties--an in vitro study. Clin. Hemorheol. Microcirc. 2002, 27, 137–147. [Google Scholar]
- Robich, M.; Ryzhov, S.; Kacer, D.; Palmeri, M.; Peterson, S.M.; Quinn, R.D.; Carter, D.; Sheppard, F.; Hayes, T.; Sawyer, D.B.; et al. Prolonged Cardiopulmonary Bypass is Associated With Endothelial Glycocalyx Degradation. J. Surg. Res. 2020, 251, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.; Rocker, G.M.; Westaby, S. Inflammatory response to cardiopulmonary bypass. Ann. Thorac. Surg. 1993, 55, 552–559. [Google Scholar] [CrossRef]
- Schmid, F.X.; Vudattu, N.; Floerchinger, B.; Hilker, M.; Eissner, G.; Hoenicka, M.; Holler, E.; Birnbaum, D.E. Endothelial apoptosis and circulating endothelial cells after bypass grafting with and without cardiopulmonary bypass. Eur. J. Cardiothorac. Surg. 2006, 29, 496–500. [Google Scholar] [CrossRef]
- Nakayama, H.; Otsu, K. Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases. Biochem. J. 2018, 475, 839–852. [Google Scholar] [CrossRef]
- Pittman, K.; Kubes, P. Damage-associated molecular patterns control neutrophil recruitment. J. Innate Immun. 2013, 5, 315–323. [Google Scholar] [CrossRef]
- Qu, J.; Cheng, Y.; Wu, W.; Yuan, L.; Liu, X. Glycocalyx Impairment in Vascular Disease: Focus on Inflammation. Front. Cell Dev. Biol. 2021, 9, 730621. [Google Scholar] [CrossRef] [PubMed]
- Sieve, I.; Münster-Kühnel, A.K.; Hilfiker-Kleiner, D. Regulation and function of endothelial glycocalyx layer in vascular diseases. Vasc. Pharmacol. 2018, 100, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Oshima, K.; King, S.I.; McMurtry, S.A.; Schmidt, E.P. Endothelial Heparan Sulfate Proteoglycans in Sepsis: The Role of the Glycocalyx. Semin. Thromb. Hemost. 2021, 47, 274–282. [Google Scholar] [CrossRef]
- Hannemann, J.; Böger, R. Dysregulation of the Nitric Oxide/Dimethylarginine Pathway in Hypoxic Pulmonary Vasoconstriction-Molecular Mechanisms and Clinical Significance. Front. Med. 2022, 9, 835481. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, Y.; Zhang, B.; Lin, X.; Fu, X.; An, Y.; Zou, Y.; Wang, J.X.; Wang, Z.; Yu, T. Lactate metabolism in human health and disease. Signal. Transduct. Target. Ther. 2022, 7, 305. [Google Scholar] [CrossRef] [PubMed]
- Harmer, A.R.; Chisholm, D.J.; McKenna, M.J.; Hunter, S.K.; Ruell, P.A.; Naylor, J.M.; Maxwell, L.J.; Flack, J.R. Sprint training increases muscle oxidative metabolism during high-intensity exercise in patients with type 1 diabetes. Diabetes Care 2009, 32, 523. [Google Scholar] [CrossRef] [PubMed]
Coefficient of Microviscosity and Polarity of Erythrocyte Membranes in the “CPB” and “CPB + NO” Groups | ||||||
---|---|---|---|---|---|---|
Variables | Stages | CPB Group, M ± SD | p | CPB + NO Group, M ± SD | p | p (CPB and CPB + NO Groups) |
CMLLI J470/J370, λB = 340 nm | before CPB | 0.29 ± 0.109 | p = 0.741 | 0.26 ± 0.119 | p = 0.885 | p = 0.668 |
after CPB | 0.28 ± 0.101 | 0.25 ± 0.026 | p = 0.520 | |||
CMPLI J470/J370, λB = 285 nm | before CPB | 0.40 ± 0.111 | p = 0.009 | 0.41 ± 0.165 | p = 0.827 | p = 0.946 |
after CPB | 0.18 ± 0.054 | 0.39 ± 0.147 | p = 0.008 | |||
CPLLI J390/J370, λB = 340 nm | before CPB | 1.05 ± 0.011 | p = 0.616 | 1.04 ± 0.033 | p = 0.735 | p = 0.474 |
after CPB | 1.05 ± 0.015 | 1.05 ± 0.017 | p = 0.869 | |||
CPPLI J390/J370, λB = 285 nm | before CPB | 5.11 ± 0.903 | p = 0.013 | 5.14 ± 0.669 | p = 0.773 | p = 0.948 |
after CPB | 3.47 ± 0.534 | 5.02 ± 0.457 | p = 0.0003 | |||
Coefficient of Microviscosity and Polarity of Erythrocyte Membranes in the “CPB + CA” and “CPB + CA + NO” Groups | ||||||
Variables | Stages | CPB + CA Group, M ± SD | p | CPB + CA + NO Group, M ± SD | p | p CPB + CA − CPB + CA + NO Groups |
CMLLI J470/J370, λB = 340 nm | before CPB | 0.29 ± 0.106 | p = 0.946 | 0.30 ± 0.086 | p = 0.451 | p = 0.821 |
after CPB | 0.28 ± 0.061 | 0.28 ± 0.430 | p = 0.799 | |||
CMPLI J470/J370, λB = 285 nm | before CPB | 0.40 ± 0.096 | p = 0.049 | 0.39 ± 0,079 | p = 0.946 | p = 0.847 |
after CPB | 0.26 ± 0.072 | 0.39 ± 0.092 | p = 0.019 | |||
CPLLI J390/J370, λB = 340 nm | before CPB | 1.05 ± 0.033 | p = 0.882 | 1.05 ± 0.031 | p = 0.864 | p = 0.954 |
after CPB | 1.05 ± 0.015 | 1.05 ± 0.015 | p = 0.727 | |||
CPPLI J390/J370, λB = 285 nm | before CPB | 4.62 ± 1.074 | p = 0.022 | 4.51 ± 0.926 | p = 0.624 | p = 0.846 |
after CPB | 2.86 ± 0.559 | 4.6 ± 0.835 | p = 0.002 |
HSPG at Different Stages of the Experiment in the “CPB” and “CPB + NO” Groups | ||||
---|---|---|---|---|
Variable | Stages | “CPB” Group, Me [25; 75] | “CPB + NO” Group, Me [25; 75] | p |
HSPG, pg/mL | before CPB | 22.9 [20.0; 24.1] | 21 [20.2; 22.6] | p = 0.69 |
CPB initiation | 22.5 [20.2; 24.8] | 23.45 [21.0; 26.6] | p = 0.39 | |
after CPB | 25.1 [23.2; 28.7] | 23.7 [20.8; 28] | p = 0.59 | |
p (before CPB − CPB initiation) = 0.6 p (before CPB − after CPB) = 0.17 | p (before CPB − CPB initiation) = 0.12 p (before CPB − after CPB) = 0.35 | |||
HSPG at Different Stages of the Experiment in the “CPB + CA” and “CPB + CA + NO” Groups | ||||
Variable | Stages | “CPB + CA” Group, Me [25; 75] | “CPB + CA + NO” Group, Me [25; 75] | p |
HSPG, pg/mL | before CPB | 22.81 [20.0; 26.9] | 23.4 [20.6; 26.3] | p = 1.0 |
CPB initiation | 20 [18.69; 24.8] | 24.4 [22.6; 26.4] | p = 0.3 | |
after CPB | 24.2 [21.4; 25.6] | 21 [20.7; 23.4] | p = 0.39 | |
p (before CPB − CPB initiation) = 0.75 p (before CPB − after CPB) = 0.46 | p (before CPB − CPB initiation) = 0.35 p (before CPB − after CPB) = 0.46 |
ADMA Levels at Different Stages of the Experiment in the “CPB” and “CPB + NO” Groups | ||||
---|---|---|---|---|
Variable | Stages | “CPB” Group, M ± SD | “CPB + NO” Group, M ± SD | p |
ADMA, mkmol/L | before CPB | 1.514 ± 0.145 | 1.575 ± 0.137 | p = 0.473 |
CPB initiation | 1.578 ± 1.480 | 1.584 ± 0.123 | p = 0.924 | |
after CPB | 1.612 ± 0.123 | 1.573 ± 0.109 | p = 0.567 | |
p (before CPB and CPB initiation) = 0.39 p (before CPB − after CPB) = 0.24 | p (before CPB and CPB initiation) = 0.90 p (before CPB − after CPB) = 0.98 | |||
ADMA Levels at Different Stages of the Experiment in the “CPB + CA” and CPB + CA + NO” Groups | ||||
Variable | Stages | “CPB + CA” Group, M ± SD | “CPB + CA + NO” Group, M ± SD | p |
ADMA, mkmol/L | before CPB | 1.580 ± 0.148 | 1.520 ± 0.120 | p = 0.461 |
CPB initiation | 1.636 ± 0.149 | 1.609 ± 0.0974 | p = 0.702 | |
after CPB | 1.699 ± 0.154 | 1.644 ± 0.072 | p = 0.446 | |
p (before CPB − CPB initiation) = 0.53 p (before CPB − after CPB) = 0.20 | p (before CPB − CPB initiation) = 0.15 p (before CPB − after CPB) = 0.06 |
Variable | Organs | “CPB” Group M ± SD | “CPB + NO” Group M ± SD | p “CPB” − “CPB + NO” Groups) | “CPB + CA” Group M ± SD | “CPB + CA + NO” Group M ± SD | p “CPB + CA” − “CPB + CA + NO” |
---|---|---|---|---|---|---|---|
ATP, nmol/g | Heart | 3.638 ± 0.663 | 5.983 ± 1.213 | p = 0.0019 | 2.875 ± 0.389 | 3.298 ± 0.575 | p = 0.1665 |
Lungs | 3.695 ± 0.725 | 5.398 ± 0.518 | p = 0.0008 | 3.621 ± 0.770 | 3.263 ± 0.691 | p = 0.4161 | |
Lactate mMol/g | Heart | 14.49 ± 2.31 | 10.28 ± 2.04 | p = 0.0073 | 16.33 ± 5.05 | 12.24 ± 1.83 | p = 0.0913 |
Lungs | 13.89 ± 1.63 | 11.59 ± 2.10 | p = 0.059 | 13.10 ± 1.70 | 12.30 ± 1.71 | p = 0.437 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamenshchikov, N.O.; Diakova, M.L.; Podoksenov, Y.K.; Churilina, E.A.; Rebrova, T.Y.; Akhmedov, S.D.; Maslov, L.N.; Mukhomedzyanov, A.V.; Kim, E.B.; Tokareva, E.S.; et al. Potential Mechanisms for Organoprotective Effects of Exogenous Nitric Oxide in an Experimental Study. Biomedicines 2024, 12, 719. https://doi.org/10.3390/biomedicines12040719
Kamenshchikov NO, Diakova ML, Podoksenov YK, Churilina EA, Rebrova TY, Akhmedov SD, Maslov LN, Mukhomedzyanov AV, Kim EB, Tokareva ES, et al. Potential Mechanisms for Organoprotective Effects of Exogenous Nitric Oxide in an Experimental Study. Biomedicines. 2024; 12(4):719. https://doi.org/10.3390/biomedicines12040719
Chicago/Turabian StyleKamenshchikov, Nikolay O., Mariia L. Diakova, Yuri K. Podoksenov, Elena A. Churilina, Tatiana Yu. Rebrova, Shamil D. Akhmedov, Leonid N. Maslov, Alexander V. Mukhomedzyanov, Elena B. Kim, Ekaterina S. Tokareva, and et al. 2024. "Potential Mechanisms for Organoprotective Effects of Exogenous Nitric Oxide in an Experimental Study" Biomedicines 12, no. 4: 719. https://doi.org/10.3390/biomedicines12040719
APA StyleKamenshchikov, N. O., Diakova, M. L., Podoksenov, Y. K., Churilina, E. A., Rebrova, T. Y., Akhmedov, S. D., Maslov, L. N., Mukhomedzyanov, A. V., Kim, E. B., Tokareva, E. S., Kravchenko, I. V., Boiko, A. M., Kozulin, M. S., & Kozlov, B. N. (2024). Potential Mechanisms for Organoprotective Effects of Exogenous Nitric Oxide in an Experimental Study. Biomedicines, 12(4), 719. https://doi.org/10.3390/biomedicines12040719